
CSE 373 Analysis of Algorithms March 11, 2014

Solutions to Midterm 1

PROBLEM 1

[1] lg lg n < lnn, lg n < (lg n)2 <
√
n < n < n lg n < n1+ε < n2, n2 + lg n < n3 < n−n3 + 7n5 <

2n, 2n−1 < en < n!

[2]

f(n) = O(g(n)) ⇐⇒ ∃c1, ∀n > n1, f(n) ≤ c1 · g(n)

g(n) = O(h(n)) ⇐⇒ ∃c2, ∀n > n2, g(n) ≤ c2 · h(n)

∀n > max(n1, n2), f(n) ≤ c1 · g(n) ≤ c1 · c2 · h(n)

Thus

∃c = c1 · c2, ∀n > n0 = max(n1, n2), f(n) ≤ c · h(n)

Thus

f(n) = O(h(n))

PROBLEM 2

There are two ways to solve this problem.

[1] Using a heap.
1) Put the heads of k lists into a heap - O(k log k).
2) Remove the top of the heap (minium element) and add it to the output list.
3) Remove the head mentioned in step 2 from the corresponding list and add the new head of
the list to heap - O(log k) becasue of the heap properties.
4) Repeat steps 2 and 3 until we do not have any elements left in the lists - need to iterate over
n elements.

Overall time is O(n log k)

[2] Merge 2 lists at a time. Assume k0 = k

1) Run merge algorithm from merge sort for ki
2 pairs of lists. Each takes O(nki). So overall this

step takes O(n).

Now we have new ki+1 = ki
2 lists.

2) Repeat steps 1 for i = 0, ..., log k.

1

PROBLEM 3

[1] Use an array to store the bits. BitF lip(i) is just a look up of A[i] and changing the bit.
NearestOne(i) is a linear scan of the array and is O(n).

[2] Maintain an array of tuples (xi, j), where xi is the bit at index i and j is the index of the
nearest one of xi.

BitF lip(i) – Go to A[i], flip the bit xi in the tuple and fix the look up tables for all values.
If xi was one before, we need to not only find its nearest one index but also update all those
locations j in the array which had its index in the NearestOne(j) field. If xi was zero, then its
NearestOne(i) = i now, and also it may have become the nearest one of other indices in the
array so a linear scan is needed to find them and update their table. This operation thus takes
O(n).

NearestOne(i) – Just go to A[i] and output the value maintained in its NearestOne field in
O(1) time.

PROBLEM 4

Build a balanced binary search tree on the indices of 1’s.

BitF lip(i) – If i is present in the tree, delete it. If it is not present in the tree, insert it. Both
the search, and insert/delete take O(log n) time.

NearestOne(i) – If i is present in the tree, return i. If it is not, insert it temporarily and find
x = successor(i) and y = predecessor(i). Return min (x, y) and delete i from the tree. These
operations take O(log n) time as well.

PROBLEM 5

[1] Index of maximum element in the array = k mod n (assuming first index is 1).

[2] Do a modified binary search on the array.

Initialise start = 0, end = n− 1, mid = start + end/2

1) If start < mid < end : return end.
2) If start > mid < end : end = mid, mid = start + end/2 (recurse on left half).
3) If start < mid > end : start = mid, mid = start + end/2 (recurse on right half).
4) If start > mid > end : return start.
5) Repeat 1-4 till maximum value is returned.

2

