CSE 373 Analysis of Algorithms March 11, 2014

Solutions to Midterm 1

PROBLEM 1

M]lglgn <Inn,lgn < (Ign)? <yn<n<nlgn <n'T<n?2n?+lgn <n®<n-n3+7d <
n o=l < e < pl

2]

F(n) = O(g(n)) <= 3e1,¥n > ny, £(n) < c1 - g(n)

g(n) = O(h(n)) < Fc2,Yn > na,g(n) < co - h(n)

Vn > max(ni,n2), f(n) <ci-g(n) <cp-co-hn)

Thus

dec = ¢1 - ¢2,Yn > ng = maz(ny,na), f(n) <c-h(n)

Thus
f(n) = O(h(n))

PROBLEM 2

There are two ways to solve this problem.

[1] Using a heap.

1) Put the heads of k lists into a heap - O(klog k).

2) Remove the top of the heap (minium element) and add it to the output list.

3) Remove the head mentioned in step 2 from the corresponding list and add the new head of
the list to heap - O(log k) becasue of the heap properties.

4) Repeat steps 2 and 3 until we do not have any elements left in the lists - need to iterate over
n elements.

Overall time is O(nlogk)

[2] Merge 2 lists at a time. Assume kg = k

1) Run merge algorithm from merge sort for % pairs of lists. Each takes O(7%). So overall this
step takes O(n).

Now we have new k;y1 = % lists.

2) Repeat steps 1 for i =0, ...,log k.



PROBLEM 3

[1] Use an array to store the bits. BitFlip(i) is just a look up of A[i] and changing the bit.
NearestOne(i) is a linear scan of the array and is O(n).

[2] Maintain an array of tuples (z;,j), where x; is the bit at index i and j is the index of the
nearest one of x;.

BitFlip(i) — Go to Ali], flip the bit x; in the tuple and fiz the look up tables for all values.
If x; was one before, we need to not only find its nearest one index but also update all those
locations j in the array which had its index in the NearestOne(j) field. If x; was zero, then its
NearestOne(i) = i now, and also it may have become the nearest one of other indices in the
array so a linear scan is needed to find them and update their table. This operation thus takes
O(n).

NearestOne(i) — Just go to A[i] and output the value maintained in its NearestOne field in

O(1) time.

PROBLEM 4

Build a balanced binary search tree on the indices of 1’s.

BitFlip(i) — If i is present in the tree, delete it. If it is not present in the tree, insert it. Both
the search, and insert/delete take O(logn) time.

NearestOne(i) — If i is present in the tree, return 4. If it is not, insert it temporarily and find
x = successor(i) and y = predecessor(i). Return min (z,y) and delete ¢ from the tree. These
operations take O(logn) time as well.

PROBLEM 5

[1] Index of maximum element in the array = £ mod n (assuming first index is 1).
[2] Do a modified binary search on the array.
Initialise start = 0, end = n — 1, mid = start + end /2

1) If start < mid < end : return end.

2) If start > mid < end : end = mid, mid = start + end/2 (recurse on left half).

3) If start < mid > end : start = mid, mid = start + end/2 (recurse on right half).
4) If start > mid > end : return start.

5) Repeat 1-4 till maximum value is returned.



