
Poster Abstract - Application-Agnostic Batch Workload
Management in Cloud Environments

Seyyed Ahmad Javadi, Shalini Bhaskara, Rahul Doshi, Prashanth Soundarapandian, Muhammad Wajahat, Anshul Gandhi
Stony Brook University -{sjavadi, shbhaskara, radoshi, psoundarapan, mwajahat, anshul}@cs.stonybrook.edu

ABSTRACT
We present Scavenger, a reactive batch workload manager that
opportunistically runs containerized batch jobs next to customer
Virtual Machines (VMs) in a public cloud like setting to improve
utilization. Scavenger dynamically regulates the resource usage
of batch jobs, including CPU usage, memory capacity, and LLC
capacity, to ensure that the customer VMs’ resource demand is met
at all times. We experimentally evaluate Scavenger and show that it
considerably increases resource usage without compromising on the
resource demand of customer VMs. Importantly, Scavenger does so
without requiring any offline profiling or prior information about the
customer workloads.

1 PROBLEM BACKGROUND
Servers in cloud data centers often have low resource utilization. A
study focused on Amazon EC2 observed that cloud server usage
is often below 10% [5]. To increase server utilization, prior works
have proposed running provider workloads, such as Hadoop or Spark
batch jobs, next to customer VMs to leverage idle resources [1, 3].
While effective, the key challenge with this approach is interference
– the performance degradation of the colocated customer VMs due
to resource contention with batch workloads at the underlying host
server. This interference can be caused by contention for several
resources simultaneously [4].

Ideally, in a public cloud, provider (or background (bg)) work-
loads should run next to customer (or foreground (fg)) workloads
or VMs in such a way that their resource utilization complements
that of the customer VMs. In particular, the dynamic demand of the
customer VMs, across all resources, should be met at all times and
the bg workloads should consume the remaining resources to do
useful work. Thus, the goal is to maximize resource usage and bg
workload throughput in a public cloud while satisfying the customer
VM workloads’ resource demands at all times.

While there has been considerable prior work in this important
area, there are still several shortcomings that must be addressed.
Existing solutions often either rely on historical usage patterns to
predict the resource demand of fg VMs [6] or benchmark customer
VM performance to carefully colocate bg workloads [2]; such solu-
tions cannot always be deployed in public clouds where customer
VMs should not be instrumented and there is often significant varia-
tion in VM loads [3, 4].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6011-1/18/10.
https://doi.org/10.1145/3267809.3275446

Time (minutes) →
0 5 10

C
P

U
 u

til
iz

at
io

n 
(%

) 
→

0

50

100
isolation
wrong LLC placement
correct LLC placement

(a) Average CPU utilization of PMs.

Time (minutes) →
0 5 10

95
%

ile
 la

te
nc

y 
(m

s)
 →

0

100

200

300
isolation
wrong LLC placement
correct LLC placement

(b) 95%ile latency for fg (Pinot).

Figure 1: Colocation impact under CPU and LLC regulation

2 SCAVENGER DESIGN
Scavenger currently handles resource management of CPU, Memory
Capacity (MemCap), and Last-Level-Cache (LLC). Scavenger lever-
ages cgroups for CPU resource management. For LLC management,
we use a threshold-based approach to estimate the cache sensitivity
of fg workloads, thus informing the colocation of bg workloads on
specific processor sockets. For MemCap management, we monitor
the memory usage of fg workloads and reactively scale (up or down)
the memory consumption of our batch job containers.

We implement Scavenger on top of KVM, Docker, and YARN.
Our experimental results on a multi-server testbed show that Scav-
enger can dynamically allocate resources to batch jobs while having
negligible effect on fg workload latencies. We show that while CPU
resource regulation does not suffice by itself to address contention,
when combined with LLC regulation, we can significantly improve
resource utilization. For instance, Figure 1(a) shows the average
CPU utilization across 4 host servers when running Pinot (popular
OLAP system in use at LinkedIn and Uber) in isolation (blue), in
colocation but with wrong placement of bg workloads (red), and
with the correct colocation placement via Scavenger (black). We see
that the increase in CPU utilization under Scavenger is considerably
higher than under the wrong LLC placement. Figure 1(b) shows the
impact of colocation on the 95%ile latency of Pinot. With the correct
placement under Scavenger, the latency increases by about 10.6%,
whereas under the wrong placement, the latency increases by about
59.9%. This shows that careful LLC regulation, as under Scavenger,
can considerably increase the resource utilization under colocation
without significantly impacting the performance of fg VMs.

REFERENCES
[1] A. Goder et. al. 2015. Bistro: Scheduling Data-parallel Jobs Against Live Production

Systems. In Proceedings of USENIX ATC. Santa Clara, CA, USA, 459–471.
[2] C. Delimitrou et. al. 2013. Paragon: QoS-aware Scheduling for Heterogeneous

Datacenters. In Proceedings ASPLOS. Houston, TX, USA, 77–88.
[3] D. lo et. al. 2015. Heracles: Improving Resource Efficiency at Scale. In Proceedings

of ISCA. Portland, OR, USA, 450–462.
[4] S. A. Javadi et. al. 2017. DIAL: Reducing Tail Latencies for Cloud Applications via

Dynamic Interference-aware Load Balancing. In Proceedings of ICAC. Columbus,
OH, USA, 135–144.

[5] H. Liu. 2011. A Measurement Study of Server Utilization in Public Clouds. In
Proceedings of DASC. Sydney, Australia, 435–442.

[6] Y. Zhang et. al. 2016. History-based Harvesting of Spare Cycles and Storage in
Large-scale Datacenters. In Proceedings of USENIX OSDI. 755–770.

504

https://doi.org/10.1145/3267809.3275446

	Abstract
	1 Problem Background
	2 Scavenger Design
	References

