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1 Introduction

Access control in open and dynamic Pervasive Computing Environments (PCEs)
is a very complex mechanism and encompasses various new requirements. In
fact, in such environments, context information should be used in access control
decision process; however, it is not applicable to gather all context information
completely and accurately all the time. Thus, a suitable access control model
for PCEs not only should be context-aware, but also must be able to deal
with imperfect context information. In addition, due to the diversity and
heterogeneity of resources and users and their security requirements in PCEs,
supporting exception and default policies is a necessary requirement. In this
paper, we propose a Semantic-Aware Role-Based Access Control (SARBAC)
model satisfying the aforementioned requirements using MKNFT. The main
contribution of our work is defining an ontology for context information along
with using MKNF* rules to define context-aware role activation and permission
assignment policies. Dividing role activation and permission assignment policies
into three layers and using abstract and concrete predicates not only make
security policy specification more flexible and manageable, but also make
definition of exception and default polices possible. The expressive power of the
proposed model is demonstrated through a case study in this paper.

© 2013 ISC. All rights reserved.

have a high expressive policy specification language.
Logics can play a crucial role in addressing such re-

Access control policy determines what, where, when,
and how subjects can access databases, web ser-
vices, electronic devices, and other resources. Access
control in Pervasive Computing Environments (PCEs)
imposes some new requirements which are not covered
by traditional access control models. In fact, impor-
tant features of resources in PCEs such as context-
awareness and heterogeneity require an access control
model for PCEs to be context-aware as well as to
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quirements. Moreover, using logics in access control
models has advantages including clean foundations,
flexibility, expressiveness, declarativeness, and infer-
ence capability [4]. There are two classes of logics that
can be considered for this purpose:

(1) Monotonic logics, where current conclusions are
not invalidated by adding new information and
premises. Classical logics such as propositional
and first-order logic are monotonic.

Non-monotonic logics, where some of the current
conclusions may be retracted by adding new

information and premises.
@

(2)
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Although non-monotonic logics are more com-
plex than the monotonic ones, some particular
characteristics of PCEs motivate us to leverage the
non-monotonic logics for access control in such envi-
ronments. The main related characteristics of such
environments are:

e In PCEs, it is impossible to gather all context
information completely and accurately all the
time [16]. For example, a user’s location might
be unknown due to the communication failure,
the sensor failure, or any other types of failures,
or the information provided by sensors may be
inconsistent. Furthermore, access control system
knowledge about the environment might be lim-
ited and inaccurate.

e Dynamicity of PCEs and need for easy manage-
ment of access control rules necessitate the sup-
port of exceptions in an access control model for
PCEs. If definition of exceptions is supported by
an access control system, new and probably spe-
cific authorizations can be defined using excep-
tions without changing the existing conflicting
general access control rules [4].

e To ensure the completeness of access policies, a
default policy is required when neither permission
nor prohibition about a request is inferred [4]. In
addition, a conflict resolution strategy is needed
to deal with conflicts.

Additionally, context-awareness should be considered
as an important requirement. Therefore, the appro-
priate access control model for PCEs not only must
use a strong context modeling approach, but also it
must be able to make access decisions in the presence
of imperfect context information and support excep-
tion and default security policies as well as conflict
resolution strategy.

According to Figure 1, DL is suitable for model-
ing context information and ASP [11] is an appropri-
ate tool for provision of non-monotonic requirements.
Therefore, a hybrid logic, combining DL and ASP to-
gether, would be an appropriate candidate for our pur-
pose. In this paper, MKNF ™ [14], as a combination of
ASP and DL, is used as a formal basis for the security
policy specification language in our proposed access
control model named the Semantic-Aware Role-Based
Access Control (SARBAC) model.

As Figure 2 shows, in SARBAC, the security policy
is broken into the Role Activation Policy (RAP) and
Permission Assignment Policy (PAP). Both policies
are defined using logical rules and predicates which
brings us easy management and inference capability.
Our main contributions are as follows:
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e We classify both RAP and PAP into three layers,
as depicted in Figure 3. In fact, each regular
security rule can be considered as an exception
to the default rules. In addition, each exception
security rule can be considered as an exception
to regular security policy rules. Therefore, both
exception and default rules can be considered as
exceptions which can be specified in MKNF* by
its only non-monotonic feature, i.e. negation-as-
failure. This approach, is the main contribution
of this paper for dealing with non-monotonic
aspects of access control in PCEs.

e In order to make the specification of RAP and
PAP easier, we proposed the idea of using ab-
stract and concrete predicates as well as system
rules. In fact, abstract predicates are used for the
specification of RAP and PAP by authorities. On
the other hand, concrete predicates are the inter-
mediate predicates used for inference of the final
decision about the role activation and permission
assignment. In truth, these predicates are used
by the access control system not by authorities.
In addition, a set of predefined rules in each layer
of RAP and PAP, which are called system rules,
are defined. These rules are a fixed part of the
proposed model and responsible for enforcing dif-
ferent inheritance as well as translating abstract
predicates to the concrete ones.

To improve the applicability of the model, the idea in
[10] for dividing the context information into the long-
term and short-term context is used. Therefore, the
role activation policy is defined based on the long-term
contextual conditions and the permission assignment
policy is defined based on the short-term contextual
conditions. When a session request is received, a set
of activated roles are assigned to the session based
on the long-term context information. After that, the
user is permitted to perform the operations, which
their permissions have been assigned dynamically to
the session’s roles during the session based on the
short-term context information.

The rest of this paper is organized as follows. Sec-
tion 2 analyses the non-monotonic requirements of
access control in PCEs. Narrative as well as formal
specification of our proposed model, named SARBAC,
is represented in Section 3. In Section 4, the policy
specification language of the proposed model is de-
scribed. Section 5 describes the access control proce-
dure. A case study for clarifying the applicability of
the approach is mentioned in Section 6. Section 7
surveys the related work. Finally, Section 8 concludes
the paper and draws some future directions.
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Analysis of Non-monotonic
Requirements and Our Proposed
Solution

Before explanation of our proposed model in more de-
tails, justification of ASP capabilities for addressing
the mentioned requirements is necessary. Therefore,
three subsequent sections explain and compare capa-
bilities of some of the existing non-monotonic logics
including ASP from this point of view. The notation
used throughout the paper is stated in Table 1.

2.1 Dealing with Imperfect Context
Information

One possible way for dealing with incomplete context
information is to make decision based on the knowl-
edge which is known to be true at the decision time
[16]. The knowledge includes all information which can
be inferred consistently from the security knowledge
base. Therefore, it is expected that decisions are made
temporarily and retracted when new information is
added to the security knowledge base. Non-monotonic

logics are used for modeling such de-feasible inferences.
Examples of non-monotonic logics, which are used for
this purpose, are Default logic [17], auto-epistemic
logic programming [3], and ASP.

Default logic was the first non-monotonic logic used
as policy specification language by Woo and Lam [20].
LF as a knowledge base formal language has been pro-
posed to specify authorization domains with incom-
plete information by Bai [3]. Three types of proposi-
tions namely initial, objective, and subjective proposi-
tions are defined for this purpose. The semantics of L*
is defined based on the world view semantics of epis-
temic logic programs. Table 2 shows the propositions
and their translation to epistemic logic program, in
which ¢ is a conjunctive or disjunctive fact expression,
and 1, 3, and -y are conjunctive fact expressions.

ASP is an appropriate decidable logic, which ex-
tends the general logic program to obtain capability
of modeling incomplete information. ASP supports
negation-as-failure. Also in this logic, a truth value of
a ground proposition can be true, false, or unknown.
Noorollahi and Fallah [16] described how negation-as-
failure provides the ability to deal with different types
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Table 1. Notations used in the rules represented in the paper.

su: is a subject ro: is a role

ac: is a action av: is a activity

ob: is a object v: is a view

u: is a user c: is a context

Itc: is a long-term context stc: is a short-term context

Act: is a abbreviation of “Activate” Deact: is a abbreviation of “Deactivate”

Table 2. Three propositions in L* and their translation to epistemic logic program. 3]

Proposition name Proposition form Translation
Initial initially ¢ — ¢
Objective ¢ if ¢ with absence ~y Y,noty — ¢
Subjective ¢ if ¢ with absence v knowing (8 Y,notv, KB — ¢
Subjective ¢ if ¥ with absence v not knowing 3 YP,not v, K — ¢

of imperfect context information. Table 3 compares
qualitatively three main approaches for dealing with
imperfect context information from the computational
complexity and expressiveness perspectives.

2.2  Access Control Exceptions

There are two types of exceptions namely negative
exceptions and positive exceptions (e.g. see strong
exceptions on weak authorizations in Orion model

[15]).

Monotonic logics such as propositional logic can not
address this requirement appropriately. For example,
suppose the following security policy [20]:

(1) Subject A is not permitted to write on file X.

(2) The subject, who is not permitted to write on
file X, is also not permitted to read X except it
belongs to group G or have permission to read
file Y.

A simple specification of the policy is as the follows:

Ry : Prohibition(A, Write, X)

Ry : Prohibition(su, Write, X) A ~(IsMemebrO f(su, G)V
Permission(su, Read,Y)) — Prohibiton(su, Read, X)

Rs3 : Prohibition(su, Write, X) A (IsMemebrO f(su, G)V

Permission(su, Read,Y)) — Permission(su, Read, X)

Although Ry, Ro, and R3 specify the mentioned
security policy, they are inflexible and error-prone;
because we should specify each condition that the
given exception does not have conflict with, in
the premise of a separate rule (e.g. here rules Ry
and R3). Also, if neither ~TsMemebrO f(su, G) nor
—Permission(su, Read,Y") can be inferred, the read
privilege of file X for su is not prohibited explicitly.
In other words, in this approach, in presence of an
exception we cannot have a complete set of rules that

18:0ured)

decide (infer Prohibition or Permission) in each possi-
ble condition. Such a situation is more challenging in
access control for PCEs, which faces with incomplete
information.

A better way to support exception is specifying
general security policies as a set of general rules (e.g.
using default rules) and defining subsequent desired
exceptions using negative/positive exceptions. The
rules represented in the third and fourth rows of Ta-
ble 4, show how exceptionable general rules can be
defined using Default logic. Consequently, the rules
represented in the first and second rows of Table 4,
can be used to define exceptions to the above general
rules. For example, the previous security policy can
be defined as follows:

R; : Prohibition(A, Write, X),

Ry : Prohibition(su, Write, X) : =Exception™ (su, Read, X)
Prohibition(su, Read, X)

R3 : IsMemberO f(su,G) — Exception™ (su, Read, X),

Ry : Permission(su, Read,Y) — Exception™ (su, Read, X).

)

It is obvious that the new exceptions can be added
easily, and due to the semantics of Default logic if
an exception is not derived explicitly, it is assumed
not to be hold, which is an suitable property. In other
words, in the semantics of Default logic the predi-
cate ~Exception™ (su, Read, X) is consistent with the
security knowledge base if Exception™ (su, Read, X)
does not inferred from it. Accordingly, the read privi-
lege of file X for subjects who are not known explicitly
as exceptions (for example due to imperfect context
information in PCEs) is prohibited explicitly, which
is truly consistent with the concept of exception and
provides more appropriate level of security than the
previous approach.

Using negation-as-failure in ASP is another ap-

proach to define exceptions. The general rules speci-
fied in the fifth and sixth rows of Table 4 determines
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Table 3. Three approaches used for dealing with imperfect information.

Approach

Computational complexity Expressiveness

Default logic
Auto-epistemic logic programming

Answer set programming

undecidable very high
high high
medium medium

Table 4. Exception definition using default logic and ASP.

Negative
exception

Exception Conditions — Exception™ (su, ac, ob)

Positive exception

Ezception Conditions — Exzception™ (su, ac, ob)

[Preconditions] : ~Exception™ (su, ac, ob), ...

Default logic

Permission(su, ac, ob)

[Preconditions] : ~Exception™ (su, ac, ob), ...

Prohibission(su, ac, ob)

[Preconditions|, not Exception™ (su, ac, 0b) — Permission(su, ac, ob)

ASP

[Preconditions], not Exception® (su,ac, ob) — Permission(su, ac, ob)

how exceptions can be defined using ASP. As an ex-
ample, the previous example policy can be defined as:
R1 : Prohibition(A, Write, X),

Rs : Prohibition(su, Write, X ), not Exception™ (su, Read, X)
— Prohibition(su, Read, X),

R3 : IsMemberO f(su, G) — Exception™ (su, Read, X),

Ry : Permission(s, Read,Y) — Exception™ (su, Read, X).

2.3 Default security policy

Three main approaches for the definition of default
security policies are as follows:

(1) The first approach is to use non-monotonic log-
ics which support default rule. For example, sup-
pose a default access control rule as “by default,
students are privileged to access the Internet”.
It can be defined by a default rule as follows:

Student(s) : ~Prohibition(s, Access, Internet)

Permission(s, Access, Internet)

This rule means that if the subject s is a student

and he is not prohibited to access Internet ex-
plicitly (i.e. ~Prohibition(s, Access, Internet) is
consistent with the security knowledge base), he
can access the Internet. The first two general
default access control rules shown in Table 5 can
be used for this purpose.

(2) Using negation-as-failure in ASP is the second
approach. The last two general default rules
shown in Table 5 can be defined in ASP. The
third rule means that if no responses (neither
permission nor prohibition) are inferred for the
request (su, ac, ob) and a set of prerequisite con-
ditions are satisfied, su will have permission to
do ac on ob. In fact, the closed-world assump-
tion is applied to Permission and Prohibition
predicates using not as negation-as-failure oper-
ator. The next rule is interpreted similarly. The

previous example of default access rule can be
defined in this approach as follows:
not Permission(su, Access, Internet), (1)
not Prohibition(su, Access, Internet), Student(su)

— Permission(su, Access, Internet).

In this approach, we can specify different default
actions for different situations (or contextual
states). In contrast to default logic, answer set
programming is decidable.

(3) Although using logics such as default logic and
answer set programming as policy specification
language brings high expressiveness, due to their
high complexity, most access control models re-
strict themselves to a general open/close policy.
In this approach, when no response about a re-
quest is inferred, the system permits/denies the
requested access whether open/close policy is
determined. Low complexity and applicability
are the benefits of this approach and low expres-
siveness is its main weakness.

2.4 Our proposed approach to use ASP

Our analysis as well as other research such as [16] and
[4] show that, ASP is an appropriate logic for provision
of the requirements in PCEs. However, ASP is not
as suitable as Description Logic (DL) for modeling
context information. In this paper, we use MKNFT
to propose a powerful context-aware access control
model for PCEs.

Each MKNF* knowledge base is a pair K = (O, P),
where O is a DL knowledge base and P is a pro-
gram(finite set of MKNF™ rules). Predicates defined
in O are called DL-predicates and other predicates are

1S¢0ured)
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Table 5. Default access control rules definition using Default and ASP logics.

PC's : = Prohibition(su, ac, ob), ...

Permission(su, ac, ob)

Default logic

PCs : =Permission(su, ac, oD), ...

Prohibition(su, ac, ob)

ASP

not Permission(su, ac, ob), not Prohibition(su, ac, ob), PC's — Permission(su, ac, ob)

not Permission(su, ac, ob), not Prohibition(su, ac, ob), PCs — Prohibition(su, ac, ob)

called non-DL-predicates. DL-predicates are unary
or pair predicates but non-DL-predicates are not
bounded. Moreover, two types of modal atoms namely
K-atom and not-atom are defined in this formalism.
K-atom is denoted by K A and not-atom is denoted by
notA. The structure of an MKNF rule is as follows:

Bl, ...,Bn — H1 V..V Hm

Where, B; can be a non-modal predicate, a K-atom,
or a not-atom, whereas, H; would be either a non-
modal predicate or a K-atom. To preserve decidability
of MKNF*, the DL-safety restriction must be applied;
each variable in a rule should appear in the body of the
rule in some non-DL-K-atom. Appendix A provides
more detailed explanation about this logic. In the rest
of this paper, DL-atom names are indicated by initial
capital words and non-DL-atom names are demon-
strated by lower case words. In addition, variables are
represented by lowercase names, and constants are
represented by initial capital words.

3 Access Control Model

This section represents our proposed model which ad-
dresses the specified access control requirements. We
first describe an overall framework for access control
in PCEs, then we describe our proposed model based
on the overall framework.

3.1 Overall Framework

Similar to the approach that we proposed for semantic-
aware open environments in [1], a PCE can be divided
into a number of security domains in our framework
(see Figure 4). Each security domain includes the
following components:

e A set of under-protection resources, which are
registered in the security domain. Resources are
distributed in the environment.

e An authority who specifies the security policy
of the domain for the resources (objects) regis-
tered in the domain. Security policy consists of
Role activation Policy (RAP) and Permission As-
signment Policy (PAP). RAP is a context-aware
policy, which uses long-term context information
to determine the roles that must be activated for
a user in a session. PAP is a context-aware pol-
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icy, which uses short-term context information
for assigning permissions to the activated roles in
the session. Using long-term context information
for RAP and short-term context information for
PAP, increases the applicability and performance
of the access control system developed based on
our model. In fact, since long-term contextual con-
straints used in a role activation rule are verified
only before establishing a session, lower overhead
is enforced to the access control system.

e A security agent, which infers and enforces se-
curity policy rules (specified by the authority).
The security agent receives the session requests
from a user and activates a set of roles for the
user based on the domain’s role activation policy.
After determination of active roles, the security
agent sets up a session for the user based on the
activated roles.

3.1.1 Security Agent Architecture

For implementing a security agent in a security domain,
we suggest the architecture shown in Figure 5. The
main components of the security agent are as follows:

e Policy Administration Point (PAP): This unit
provides an interface for the authorities to state
their security policy rules.

e Security Knowledge Base (SKB): In our pro-
posed model, security related context infor-
mation is modeled as ontology called Security
Ontology (SO). Also, Security Policy (SP),
including RAP and PAP, is specified using
MKNF™* predicates and rules. In fact, SKB
is an MKNF™ knowledge base where SO and
SP construct the DL knowledge base and the
logic program in an MKNFT knowledge base
respectively.

o Context Management Point (CMP): CMP pro-
vides a framework for management of required
context information. CMP gathers the informa-
tion from the context sensors and other sources
and has the responsibility of keeping the SO up-
dated and accurate.

e Role-Activation Policy Decision Point (RAPDP):
RAPDP uses an MKNF™ inference engine for
role activation decision making. It sends a set of
activated role names in response to the session
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manager’s request.

Session Manager (SM): SM receives the session
requests and conducts needed actions for setting
up a session.

Permission Assignment Policy Decision Point
(PAPDP): PAPDP uses an MKNF* inference
engine to make decision about granting/revoking
permissions to the session roles.

Policy Enforcement Point (PEP): PEP receives
an access request from a subject in a session and
determines the response using PAPDP.
Credential Verifier (CV): This unit verifies the
validity of the provided credentials (in an access
request) using a source of authority (SOA).

The proposed architecture enables the security
agent to verify the users’ certificates, infer the acti-
vated roles for the users’ sessions and the assigned
permissions for the roles dynamically, and enforce
them. The details of the required access control proce-
dure, which should be followed by the security agent,
are described in Section 5.

3.1.2 Security Knowledge Base

As shown in Figure 6, in our proposed model, access
control elements and context information are modeled
in an ontology. However, it is not applicable to cover all
entities and context information in different domains
in a predefined ontology. Thus, the context model is
divided into the upper-level ontology and the domain-
specific ontology by Wang et al. [19] for resolving the
issue. We follow the same idea, and thus, our proposed
ontology consists of two layers:

(1) The upper-level ontology is a high-level ontol-
ogy, which represents the main general entities
and their attributes in a security domain. Such
entities can be used in different domains and are
required for our proposed access control model.
The domain-specific ontology is a detailed ontol-
ogy, which describes domain-specific concepts
and their relationships existing in a PCE, in
addition to the main concepts (specified in the
upper-level ontology). In contrast to the upper-
level ontology which is fix for all PCEs, the
domain-specific ontology might be defined and
customized for each PCE separately.

(2)
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Table 6. Entities (concepts) of upper-level ontology.

Entity Description

User Representing active entities

Role The entity used to link users to their access privileges. In fact privileges are
granted (revoked) to (from) the roles instead of users.

Object Representing inactive (passive) entities (such as a data file, an email), which are
accessed by users.

View Representing a group of objects on which the same security rules apply.

Action Computer actions such as “read” and “write”.

Activity A group of actions that follow the same principles.

LTContext Use.d to spemf.y the concrete long-term circumstances where security domains
activate/deactivate roles for users

STContext Used to specify the concrete short-term circumstances where security domains

grant (revoke) permissions to (from) roles for performing activities on views.

Figure 7 depicts the upper-level ontology consisting
of the main concepts in SARBAC model represented
in Table 6. In order to make our proposed model
stronger, the concepts of view and activity represented
in OrBAC model [12] are used. Table 7 describes the
relationships existing in the upper-level ontology. Note
that, the two important context information including
time and location are considered in the upper-level
ontology.

1SeCure

Henceforth in this paper, non-DL-predicates
cie(ContextInformationEntity) and ape(AccessPolicy
Entity) are used to apply DL-safety restriction. Predi-
cates ‘ape’ and ‘cie’ hold for all access policy entities
and context information entities respectively. For
example, if domain D; defines a new role called Guest,
Role(Guest) and ape(Guest) are added to the security
knowledge base. As another example, if D; defines
a new location called Rooms, Location(Rooms) and
cie(Rooms) are added to the security knowledge base.
By doing so, the DL-safety restriction is satisfied in
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Table 7. Relations (Roles) of upper-level ontology.

Relation Description

The relation that is used for the role hierarchy definition.
IsSubRoleOf(ro1, ro2) means that ro; is the sub-role
of ros.

IsSubRoleOf(Role, Role)

IsUsedIn(Object,View) IsUsedIn(ob,v) means that object ob is used in view wv.

IsSubViewOf(v1, v2) means that view v; is the sub-

IsSubViewOf(View,View) view of view v
2.

IsConsideredAs(ac,av) means that action ac is fell

IsConsidered As(action, activity) within activity av

IsSubactivityOf(av1, avz) means that activity av; is

IsSubActivityOf(activity, activity) the sub-activity of av
- 5.

IsSubContextOf(c1, c2) means that context c; is the

I b textOff text text . .
sSubContextO (Con ext, Contex ) sub-context of context ca, or ¢1 is true when ¢ is true.

the specified MKNF™ rules.

3.2 Formal Specification of the Model

Following the narrative description of the proposed
model, we formally define the SARBAC model for
PCEs in the following.

Definition 1. Semantic-Aware Role-Based Access
Control Model (SARBAC): SARBAC for a PCE is
defined as a pair (SDS, ACP) where:

e SDS = {SD;|SD; is a security domain} is a
set of security domains in the environment. A
security domain is formally defined at the end of
this section.

e ACP is an Access Control Procedure which is
defined in Section 5.

Prior to specifying security domains, we need to
define Security Knowledge Base (SKB). In fact, each
security domain has its own SKB.

Definition 2. Security Knowledge Base (SKB): An
SKB is an MKNF* knowledge base and it is defined
as a pair (SO, SP), in which SO is a security ontology
defined in DL and SP is a security policy correspond-
ing to the logic program part of MKNF™ knowledge
bases.

An ontology (like SO) is defined as a pair
(T'Box, ABox) where:

e T'Box = {Cz C C]} @] {Rl C Rj} in which C;
and Cj are either primitive or complex concepts
specified in DL. Similarly R; and R; are relations
either primitive or complex specified in DL.

e ABox = {C(a)la’ € A} U{R(a,b)|a’,b! € A}
where A is the universe of entities (objects).

Note that we suppose, TBox is acyclic and each con-
cept has at most one definition.

Definition 3. Security Ontology (SO): SO is de-
fined as a pair (T'Box, ABox), where TBox is the ter-

minological box and ABox is the assertional box in
MKNF™:

e TBox at least includes the concepts and the
relationships which are represented in Table 6
and Table 7, respectively. Furthermore, TBox in-
cludes other concepts and relationships defined
in the domain-specific ontology of the PCE.

e ABox is the set of assertions about the individ-
uals existing in the PCE and includes LT Con-
text(Universal) and ST Context(Universal) (see
4.1.3 and 4.2.3 for further information).

In what follows, we explain different components of
a security policy briefly. More details on the format of
the required predicates and policy rules are provided
in the next section.
Definition 4. Security Policy (SP): SP is a pair
(RAP, PAP) where:

e Role Activation Policy(RAP): RAP is defined
as five-tuple (LTCD, RRAP, ERAP, DRAP,
MetaPolicy ) where:

o Long-Term Context Definition (LTCD) is a set
of long-term context definition rules (see Sec-
tion 4.1.1).

o Regular Role Activation Policy (RRAP) is
union of the system rules represented in Ta-
ble 9 and a set of the Abstract Regular Role
Activation (arra) predicates specified by the
authorities.

o Exception Role Activation Policy (ERAP) is
union of the system rules represented in Ta-
ble 10 and a set of Abstract Exception Role
Activation (aera) predicates specified by the
authorities.

o Default Role Activation Policy (DRAP) is
union of the system rules represented in Ta-
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ble 11 and a set of Abstract Default Role
Activation (adra) predicates specified by the
authorities.

o MetaPolicy is the set of system rules repre-
sented in Table 12.

e Permission Assignment Policy (PAP): A PAP
is a five-tuple (STCD, RPAP, EPAP, DPAP,
MetaPolicy) where:

o Short-Term Context Definition Rules (STCD)
is a set of short-term context definition rules
(see Section 4.2.1).

o Regular Permission Assignment Policy
(RPAP) is union of the system rules repre-
sented in Table 14 and a set of Abstract Reg-
ular Permission Assignment (arpa) predicates
specified by the authorities.

o Exception Permission Assignment Policy
(EPAP) is union of the system rules repre-
sented in Table 15 and a set of Abstract Ex-
ception Permission Assignment (aepa) predi-
cates specified by the authorities.

o Default Permission Assignment Policy (DPAP)
is union of the system rules represented in Ta-
ble 16 and a set of Abstract Default Permis-
sion Assignment (adpa) predicates specified
by the authorities.

o MetaPolicy is the set of system rules repre-
sented in Table 17.

Definition 5. Security Domain (SD): A security do-
main is formally defined as a triple (d, O, K), where
d is the name of the security domain, K is the local
SKB of the security domain, and O is the set of under-
protection objects registered in the security domain.

4 Security Policy Specification

Figure 8 shows the overall structure of a security
policy in SARBAC model. Accordingly, both RAP and
PAP consist of three separate policies. Each of them
has its own propagation and conflict resolution rules.
Although different conflict resolution strategies can
be used in these policies, for the sake of simplicity, the
Denial-Takes-Precedence (DTP) strategy is used in
all of them. Subsequent sections provide more details
about the structure.

4.1 Role Activation Policy

Table 8 represents the required predicates for specifi-
cation of role activation policy. The following subsec-
tions describe the predicates.

4.1.1 Regular Role Activation Policy

Definition of required long-term contexts is the first

18:0ured)

step for definition of regular role activation rules. Long-
term context is a type of context that does not change
during a session with a high probability. Predicate
lted(User, LT Context) is used for long-term context
definition and ltcd(u, ltc) means that long-term con-
text ltc is true for user u. The conditions under which
a specific context holds, are described by an MKNF+
rule of the following form:

Bi, ..., Bn = Kltcd(u, ltc).

The conclusion of the rule is the lted predicate K-
atom and the premises of the rule contain a set of K-
atoms and not-atoms such that DL-saftey restriction
is satisfied. For example, consider the following long-
term context definition rule defined by domain D;:

K ape(u), K cie(lloc), K HasLogical Location(u, lloc),
K HasLocationZone(lloc, D1_Net)
— K lted(u, Internal _User)

This rule means that a user is an internal user if
he uses an IP address in the location zone of the do-
main. Remember that, LT Context(Internal_User)
and ape(Internal_User) should be added to the se-
curity knowledge base, in addition to the above rule.
As another example, Dy can apply the closed-world
assumption to the Internal_User context and define
the Ezternal_User context using negation-as-failure:

not lted(u, Internal -User) — K ltcd(u, External _User)

After the definition of long-term contexts, the
regular role (de)activations can be defined using
the arra(Role, LT Context,Act/Deact) abstract pred-
icate by the authorities of a domain. Predicate
arra(r,ltc, Act) means that the role r is activated
when the long-term context ltc being true. Simi-
larly, arra(r,ltc,Deact) means that r must not be
activated when the long-term context ltc being true.
For example, D; can activate the role Guest in the
Internal _User context using the following predicate:

arra( Guest, Internal_User, Act)

Domain D; may also want to deactivate some spe-
cific roles explicitly. For example, D; deactivates the
Administrator role in the External_User context:

arra(Administrator, External User, Deact).

A regular role activation policy includes two types of
system rules represented in Table 9. These rules have
the following two responsibilities:

(1) Inheritance enforcement rules: The first two
rules and the third rule enforce inheritance over
role and context hierarchies respectively.

(2) Translation of the abstract-level predicates to
the concrete-level ones: Predicate crra(Role, User,
Act/Deact) is defined for this purpose. Accord-
ingly, crra(r,u,Act) means that role r must be
activated for user u and crra(r,u,Deact) means
the opposit. Translation must be done such that
the possible conflicts do not transferred to the
concrete level. The translation rules in Table 9
simply gives more priority to role-deactivations.
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Figure 8. Overall structure of a security policy in the proposed model.
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Table 8. Role activation policy predicates.

Type Description predicate
Context Long-Term Context Definition lted(User, LTContext )
Regular Role activation arra(Role, LT Context, Act/Deact)
Abstract Exception Role activation aera(Role, LT Context, Act/Deact)

Default Role Activation adra(Role, LT Context, Open/Close)

Regular Role Activation crra(Role, User, Act/Deact)
Exception Role Activation cera(Role, User, Act/Deact)
Concrete
Default Role Activation cdra(Role, User, Open/Close)
Role Activation cra(Role, User, Act/Deact)

Table 9. System rules of a regular role activation policy.

Inheritance over the role hierarchy:
K arra(roi,c, Act), K IsSubRoleO f(roz2,ro1) — K arra(roz, ¢, Act)
K arra(roz, ¢, Deact), K IsSubRoleO f(ro2,ro1) — K arra(roi, ¢, Deact)

Inheritance over the context hierarchy:

K arra(ro, c1,d), K IsSubContexO f(c2,c1) — K arra(ro, cz, d)

Translating the abstract predicates to the concrete ones:
K arra(r, ¢, Deact), K ltcd(u, c) — K erra(r, u, Deact)
K arra(r, ¢, Act), K ltcd(u, c), not crra(r, u, Deact) — K crra(r, u, Act)

4.1.2 Exception Role Activation Policy (2) General exceptions: The kind of exceptions that

. are inherited over the role hierarchy.
In presence of role hierarchy, two general types of

exceptions worth to be discussed: In this paper, due to the limitations of local exceptions,

e take general exceptions into account.
(1) Local exceptions: The kind of exceptions that b general exceptions m .

are defined locally on a role, and they are not Each regular role activation rule adds a set of con-
inherited over the role hierarchy. The definition crete role activations and deactivations to the security
of local exceptions impose that the users having knowledge base. So, an exception can be defined in
sub-roles are not permitted to login as parent either of following two ways:

roles. Such a limitation contradicts the existence

; (1) Rule-specific exception; which is defined over a
of role hierarchy.

specific role activation rule.
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Table 10. System rules of an exception role activation policy.

Inheritance over the role hierarchy:
Kaera(roi,c, Act), KIsSubRoleO f(roz,ro1) — Kaera(roz, ¢, Act)
Kaera(roz, ¢, Deact), KIsSubRoleO f(roz,ro1) — Kaera(roi, ¢, Deact)

Inheritance over the context hierarchy:

Kaera(ro,ci,t), KIsSubContextO f(c2,c1) — Kaera(ro, c,t)

Translating the abstract predicates to the concrete ones:
K aera(ro,c, Deact), K ltc(u, c) — K cera(ro, u, Deact)

K aera(ro,c, Act), K ltc(u, ¢), not cera(ro,u, Deact) — K cera(ro,u, Act)

(2) Rule-independent exception; which is defined
independently from the defined role activation
rules. So, an exception role activation (deacti-
vation) overwrites all other conflicting deactiva-
tions (activations).

In this paper, we take rule-independent exceptions
into account. In our proposed model, global and rule-
independent exceptions are defined using negation-
as-failure. Predicate aera(Role, LT Context,Act/Deact)
is used for exception role activation definition. Thus
aera(r,ltc,Act) means tha,t role r must be activated
in the ltc context exceptionally and aera(r,ltc,Act)
means that, » must be deactivated in the ltc context
exceptionally.

Table 10 represents the system rules. The first
three rules enforce the propagation of role activation
and deactivation through the role and context hierar-
chies. The predicate cera(Roel, User, Act/Deact) is
the concrete version of the predicate aera. Accordingly,
cera(ro,u,Act) means that, role ro must be activated
and cera(ro,u,Deact) means ro must be deactivated
exceptionally. Table 10 shows the translation rules by
giving more priority to role-deactivations.

4.1.3 Default Role Activation Policy

In almost all of the previous access control models
one of the Open or Close policies is used as a default
policy. However, the default policy can be determined
based on the context. For example, a domain may
prefer to define Open policy for the specific roles at
working hours and to define Close policy for them
at non-working hours. The predicate adra(Role, LT-
Context, Open/Close) is used to define the default
rules. Covering all roles and users in a domain is an
important requirement of default policy. To meet this
requirement, we define the Universal long-term con-
text, which is true for all users who registered in the
domain. Each domain must choose Open or Close
policy for all roles in the Universal context. In other
words, one of the rules represented in the fourth and
fifth row of Table 11 should be added to each RAP.
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Additionally, all long-term contexts are defined as a
sub-context of the Universal context.

Table 11 represents the system rules of a default
role activation policy. The first two rules enforce the
Universal context related propositions. Default rules
can be inherited over the roles and context hierarchies.
Each sub-role inherits Open policy from its parent
role and each parent role inherits Close policy from
its sub-roles. For instance, if IsSubRoleOf(Guest, Ad-
ministrator) is true, adra(Administrator, ¢, Open) will
result adra(Guest, ¢, Open) as well as adra(Guest, c,
Close) will result adra(Administrator, ¢, Close). The
last two rules in Table 11 translate abstract default
role activation rules to the concrete ones.

4.1.4 Meta Policy

Meta policy is a set of MKNF* rules, which combines
the regular, exception, and default role activation con-
crete predicates to result the final decision about the
activation and deactivation of a specific role for a spe-
cific user. The predicate cra(Role, User,Act/Deact) is
defined for this purpose. If cra(ro,u,Act) can be in-
ferred from the security knowledge base, the security
agent can activate role ro for user u in the requested
session. Otherwise, the security agent must not acti-
vate ro for u in the requested session. Based on the
priorities of the different types of role activation rules,
cra can be determined by the following general rules:

(1) Exception role activation rules have the highest
priority. Therefore, they are translated to the
cra predicates directly.

(2) Regular role activation concrete predicates are
translated to the cra predicates, if there exist
no opposite exception concrete predicates.

(3) Default role activation rules determine the cra
predicates for a role and a user which neither
activation nor deactivation is inferred for them
from the regular and exception policies.

Table 12 represents the logical rules that enforce the
above rules.
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Table 11. System rules of a default role activation policy.

Universal context:

K ace(u), K User(u) — K LT Context(u, Universal)
K ace(ltc), K LT Context(ltc) — K IsSubContextO f(ltc, Universal)

One of the following rules:

K ace(ro), K Role(ro) — K adra(ro, Universal, Open)

K ace(ro), K Role(ro) — K adra(ro, Universal, Close)

Inheritance over the role hierarchy:
Kadra(roi, ¢, Open), KIsSubRoleO f(roz,ro1) — Kadra(roz, ¢, Open)
Kadra(roz, ¢, Close), KIsSubRoleO f(roz,ro1) — Kadra(ro1, c, Close)

Inheritance over the context hierarchy:

Kadra(ro, ci1,t), KIsSubContextO f(c2, c1) — Kadra(ro, ca,t)

Translating the abstract predicates to the concrete ones:

K adra(ro, ¢, Close), K ltc(u, ¢) — K cdra(ro, u, Close)

K adra(ro, ¢, Open), K lic(u, c), not cdra(ro, u, Close) — K cdra(ro,u, Open)

Table 12. Role activation meta policy

Exception role activation enforcement:

K cera(ro,u,t) — K cra(ro, u,t)

Regular role activation enforcement:

K crra(ro,u, Act), not cera(ro,u, Deact) — K cra(ro,u, Act)

K crra(ro,u, Deact), not cera(ro,u, Act) - K cra(ro, u, Deact)

Default role activation enforcement:

not cra(ro,u, Act), not cra(ro, u, Deact), K cdra(ro,u, Open) — Kecra(ro,u, Act)

not cra(ro,u, Act), not cra(ro, u, Deact), K cdra(ro,u, Close) — K cra(ro, u, Deact)

4.2 Permission Assignment Policy

Table 13 represents different predicates used in the
PAP. The predicates and their usage are discussed in
the following sections.

4.2.1 Regular Permission Assignment Policy

Definition of required short-term contexts is the first
step of defining permission assignment rules. A short-
term context is defined as a context that may change
during a session frequently. Predicate sted(User, ac-
tion, Object, STContext) is used for short-term con-
text definition. Intuitively,sted(u, ac, ob, stc) means
that short-term context stc is true for user u, action ac,
and object 0b. The required conditions for a specific
context are described by the MKNFT rule similar to
the long-term context. For example, the following rule
defines short-term context for physical location “L;”.

K ace(u), K IsLocated(u, L1) — K sted(u, ac, ob, L1)
Abstract predicate arpa(Role, activity, View, STCon-

text, +/—) is used for regular permission assignment
definition. Predicate arpa(ro, av,v,stc,4+) permits role

ro to perform activity av on view v within context stc.

Similarly, arpa(ro, av,v,stc,— ) prohibits ro from doing

av on v within context stc. Regular permission assign-
ment can be inherited over the following hierarchies:

e Role hierarchy: each parent role inherits the per-
missions of its sub-roles and each sub-role inherits
the prohibitions of its parent roles.

e Activity hierarchy: if a permission for performing
activity av is assigned to a role, the permission is
propagated to the all sub-activities of av. In addi-
tion, prohibition of performing av is propagated
to the all activities that av is a sub-activity of
them.

e View hierarchy: the interpretation of inheritance
over the view hierarchy is similar to the activity
hierarchy.

e Context hierarchy: IsSubContextOf(stcy, stca)
means that, stc; is true whenever stcy is true.
Therefore, assigning permission in stcy implies
assigning it in stc;.

Table 14 represents the system rules of regular
permission assignment policy. These rules enforce au-

thorization inheritance over the role, activity, view,
and context hierarchies. Furthermore, the last two
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Table 13. Predicates required in the specification of the permission assignment policy

Name of predicate,
Type
Predicate

Short-Term Context Definition (stcd)
Context
sted(User, action, Object, ST Context)

Regular Permission Assignment (arpa)

arpa(Role, activity, View, STContext, +/—)

Exception Permission Assignment (aepa
Abstract P & (acpa)

aepa(Role, activity, View, ST Context, +/—)

Default Permission Assignment (adpa)

adpa(Role, activity, View, ST Context, +/—)

Regular Permission Assignment (crpa)

crpa(User, action, Object, +/—)

Exception Permission Assignment (cepa)

Concrete cepa(U ser, action, Object, +/—)

Default Permission Assignment (cdpa)

cdpa(User, action, Object, Open/Close)

Permission Assignment (cpa)

cpa(User, action, Object, +/—)

Table 14. System rules of a regular permission assignment policy.

Inheritance over the role hierarchy:
K arpa(roi, av,v, ste,+), K IsSubRoleO f(ro1,ro2) — K arpa(roz, av, v, ste, +)

K arpa(roz, av,v, stc, —), K IsSubRoleO f (ro1,ro2) — K arpa(ro1, av, v, ste, —)

Inheritance over the activity hierarchy:
K arpa(ro, avi, v, ste, +), K IsSubactivityO f (ava, avi) — K arpa(ro, ava, v, ste, +)

K arpa(ro, ava, v, ste, —), K IsSubactivityO f (avsa, avi) — K arpa(ro, avi, v, ste, —)

Inheritance over the view hierarchy:
K arpa(ro, av,v1, ste,+), K IsSubViewO f(v2,v1) — K arpa(ro, av, v, ste, +)

K arpa(ro, av, va, ste, —), K IsSubViewO f (v2,v1) — K arpa(ro, av, v1, ste, —)

Inheritance over the context hierarchy:

K arpa(ro, av,v, stci, t), K IsSubContextO f(stea, stc1) — K arpa(ro, av, v, stea, t)

Translation of the abstract level predicates to the concrete ones:
K arpa(ro, av,v, ste, —), K cra(ro, u, act), K IsConsideredAs(ac, av),
K IsUsedIn(ob,v), K sted(u, ac, ob, stc) — K crpa(u, ac, ob, —)
K arpa(ro, av,v, ste,+), K cra(ro, u, act), K IsConsideredAs(ac, av),

K IsUsedIn(ob,v), K stcd(u, ac, ob, stc), not crpa(u, ac, ob, —) — K crpa(u, ac, ob, +)

rules in the table translate the abstract level predi- the role o, also ro is activated for u (in the session),
cates to the concrete ones considering the prohibition- ac is considered as av, ob is used in v, stc is true for
takes-precedence conflict resolution strategy. The first u, ac, and ob as well as u is not prohibited for this
translation rule means that user v can perform action permission (for preventing possible conflicts).

ac on object ob in a session, if permission to perform
activity av on view v within context stc is granted to
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Table 15. System rules of an exception permission assignment policy.

Inheritance over the role hierarchy:

K aepa(roi, av,v, ste,+), K IsSubRoleO f (ro1,ro2) — K aepa(roz, av, v, ste, +)

K aepa(roi, av,v, ste, —), K IsSubRoleO f(roz,ro1) — K aepa(roz, av, v, ste, —)

Inheritance over the activity hierarchy:

K aepa(ro, avi, v, ste, +), K IsSubactivityO f(ave, avi) — K aepa(ro, ava, v, stc, +)

K aepa(ro, avi,v, ste, —), K IsSubactivityO f (av1, ava) — K aepa(ro, ave, v, ste, —)

Inheritance over the view hierarchy:

K aepa(ro, av,v1, ste,+), K IsSubViewO f(v2,v1) — K aepa(ro, av, va, ste, +)

K aepa(ro, av,v1, ste, —), K IsSubViewO f(v1,v2) — K aepa(ro, av, va, ste, —)

Inheritance over the context hierarchy:

K aepa(ro, av, v, stei, t), K IsSubContextO f(stca, ster1) — K aepa(ro, av, v, stea, t)

Translation of the abstract level predicates to the concrete ones:

K aepa(ro, av, v, ste, —), K cra(ro,u, act), K IsConsideredAs(ac, av),

K IsUsedIn(ob,v), K sted(u, ac, ob, stc) — K cepa(u, ac, ob, —)

K aepa(ro, av,v, ste,+), K cra(ro, u, act), K IsConsideredAs(ac, av),

K IsUsedIn(ob,v), K sted(u, ac, ob, stc), not cepa(u, ac, ob, —) — K cepa(u, ac, ob, +)

4.2.2 Exception Permission Assignment
Policy

Predicate aepa(Role, activity, View, STContext, +/—)
is used for exception permission assignment. In fact
aepa(ro,av,v,stc,+ ) permits role ro to perform activity
av on view v within short-term context stc exception-
ally. Also, aepa(ro,av,v,stc,— ) means appositely. Simi-
lar to the regular permission assignment rules, propa-
gation rules and the rules that translate the abstract
predicates to the concrete ones are defined in Table 15.

4.2.3 Default Permission Assignment Policy

Predicate adpa(Role, activity, View, STContext,
Open/Close) is used for the default permission assign-
ment. Similar to the default role activation policy the
short-term context Universal, which is true for all
users, actions, and objects, is defined. Each domain
must choose Open or Close policy for the Univer-
sal context. Additionally, all short-term contexts
are defined as a sub-context of the Universal con-
text. Table 16 represents the system rules of default
permission assignment policy.

4.2.4 Meta Policy

The meta policy integrates the regular, exception, and
default concrete permission assignment to conclude
the final decision. Predicate cpa(User, Action, Ob-
ject, +/—) is defined as a final concrete permission
assignment policy. The following rules integrate the
predicates crpa, cepa, and cdpa similar to the meta
policy of role activation policy:

(1) Exception permission assignment rules have the
most priority. Therefore, they are translated to
the cpa predicates directly.

(2) Regular permission assignment concrete pred-
icates are translated to the cpa predicates, if
there exist no opposite exception concrete pred-
icate.

(3) Default permission assignment rules determines
the cpa predicates for a user, action, object when
neither + nor — is inferred from the regular and
exception rules.

Table 17 shows the rules required to enforce the above
meta policy.

5 Access Control Procedure

The access control procedure, which is used by the
security agent of a domain SD=(d, O, K), contains
the following three overall steps:

(1) Session establishment: In this step activated
roles for a requested session are determined and
according to the result, other required actions
are done.

(2) Controlling access requests during the session:
In this stage, each access request during the
session is evaluated and the appropriate response
is generated.

(3) Session termination: In this step, assertions
or predicates, which are added to the security
knowledge base during the session are removed.
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Table 16. System rules of a default permission assignment policy.

Universal context:

K ace(u), K User(u) — K STContext(u, Universal)

K ace(stc), K STContext(stc) — K IsSubContextO f(stc, Universal)

One of the following rules:

K ace(ro), K Role(ro) — K adpa(ro, Universal, Open)

K ace(ro), KRole(ro) — K adpa(ro, Universal, Close)

Inheritance over the role hierarchy:

K adpa(ro1, av, v, ste, Open), K IsSubRoleO f(roz,ro1) — K adpa(roz, av, v, stc, Open)

K adpa(ro1, av,v, ste, Close), K IsSubRoleO f(ro1,ro2)— K adpa(roz, av, v, stc, Close)

Inheritance over the activity hierarchy:

K adpa(ro, avi, v, stc, Open), K IsSubactivityO f(ave, avi) — K adpa(ro, ava, v, ste, Open)

K adpa(ro,avi, v, ste, Close), K IsSubactivityO f(av1, ava)— K adpa(ro, ava, v, stc, Close)

Inheritance over the view hierarchy:

K adpa(ro, av, v1, stc, Open), K IsSubViewO f(va,v1) — K adpa(ro, av, va, ste, Open)

K adpa(ro, av, v1, ste, Close), K IsSubViewO f(v1,v2) — K adpa(ro, av, v, stc, Close)

Inheritance over the context hierarchy:

K adpa(ro,av,v, ster, t), K IsSubContextO f (stcz, stc1) — K adpa(ro, av, v, stea, t)

Translation of abstract level predicates to concrete ones:

K adpa(ro, av, v, ste, Close), K cra(ro,u, act), K IsConsideredAs(ac, av), K IsUsedIn(ob,v),

K sted(u, ac, ob, stc) — K cdpa(u, ac, ob, Close)

K adpa(ro, av,v, stc, Open), K cra(ro,u, act), K IsConsideredAs(ac, av), K IsU sedIn(ob,v),

K sted(u, ac, ob, stc), not cdpa(u, ac, ob, Close) — K cdpa(u, ac, ob, Open)

Table 17. Permission assignment meta policy

Translation of the concrete exception permission assignment:

K cepa(ro, u,t) — K cpa(ro,u,t)

Translation of concrete regular permission assignment:

K crpa(ro,u, +), not cepa(ro,u,—) — K cpa(ro,u, +)

K crpa(ro,u, —), not cepa(ro,u,+) — K cpa(ro,u,+)

Translation of concrete default permission assignment:

not cpa(ro, u, +), not cpa(ro,u, —), K cdpa(ro, u, Open)

— Kepa(ro,u, +)

not cpa(ro,u, +), not cpa(ro,u, —), K cdra(ro, u, Close)

— K epa(ro,u, —)

Session establishment process consists of the follow-
ing steps:

(1) Session request reception: Session Manager (SM)
receives a session request in the form (u,, Crd,)
from a user u,., where Crd,. is the set of creden-
tials that u, presents.

(2) Request validation: SM checks the validity of
the received credentials using Credential Verifier
and SOA, and sends the validated credentials
to RAPDP.

ISeGure@

(3) SKB initialization:

(a) RAPDP generates a set of assertions based
on the received credentials and inserts them
to the ABox of SO in security knowledge
base K. The assertions are of the form
C(uy), where C € Crd,. For example, if
RAPDP receives a credential that says “Al-
ice is a student” and concept Student is
defined in TBox of SO of K, the assertion
Student(Alice) is added to the ABox.
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(b) By the request of RAPDP, K updates itself
with the last change in long-term context
information (using Context Management
Point).

(4) Determination of activated roles: By the request
of SM, RAPDP derives the activated roles for
the user using the following inference:

activatedRole(u,) = (2)
{role|K t yxnp+ cra(role,u,, Act)}

RAPDP sends this set to SM.

(5) Session establishment : SM establishes a session
for u,. and sends the session information includ-
ing the activated roles to the user and PEP.

Controlling access requests during the session has
the following steps:

(1) Request reception: PEP receives an access re-
quest in the form (u,, o, a,., Crd,) from a user,
where u,., and o, and a, are a user (access re-
quester), a resource (object), and an action, re-
spectively. Crd,. is the set of credentials that w,
represents.

(2) Request validation:

(a) PEP checks whether o, is registered in the
security domain and a.. is an eligible action
on o, (by checking the description of the
resource in K).

(b) PEP checks the validity of the received
credentials using Credential Verifier and
SOA, and sends the validated credentials
to PAPDP.

(3) SKB updating:

(a) PAPDP generates a set of assertions based
on the received credentials and inserts
them to the ABox of SO in K. The asser-
tions are of the form C(u,), where C' €
Crd,. Furthermore for each activated role,
like ro, PAPDP should add the predicate
cra(ro, u,, Act) to the knowledge base.

(b) By the request of PAPDP, K updates itself
with the last changes in short-term context
information (using Context Management
Point).

(4) Access decision making: PAPDP sends “Permis-
sion” to PEP if ¢pa(u,., 0., a,) can be inferred
from K i.e. K Fyenp+ cpa(uy, op,a,). Other-
wise PAPDP sends “Prohibition” to PEP.

After the session termination , PAPDP removes the
assertions and predicates, which had been added to
the SKB during the session.

One of the shortcomings of this procedure is that
the determination of the activated roles has high
computational overhead because computation of
activatedRole(u,) is costly and also should be done

for each session request. This operation can decrease
the efficiency of the system significantly, especially
when there exist numerous amounts of roles in the
system and high volume of context information. One
approach to decrease the negative effect of role activa-
tion phase is to ask users to determine their desirable
roles. In this approach, users should send a subset of
the existing roles with their session requests. Then,
the system determines which of these roles should be
activated. By doing so, not only smaller number of
roles are checked for each session request, but also
the least privilege principle is satisfied. An example of
this approach is used in most of the Editorial Systems,
where a user can determine his roles that he wants to
have in the requested session at the login time.

6 Case Study

To demonstrate the applicability of the proposed
model, a case study is discussed in this section. Fig-
ure 9 shows a partial definition of specific ontology for
a healthcare domain. In addition to the general classes
defined in the proposed upper-level ontology, a num-
ber of concrete sub-classes are defined to model more
specific context information in a given environment
(e.g. class Channel is defined).

Suppose that hospital H; uses the aforementioned
ontology. Table 18 shows the role activation policy
defined by H;. According to the long-term context
definition rules, context IsPhysician is true for user
u if he has a physician certificate. Also context Un-
safe_Channel is true for u if he uses an unsafe channel
to request a session. Accordingly, H; activates role
Physician and Guest in the contexts IsPhysician and
Universal respectively. Also, role Physician is deac-
tivated in context Non_Physician. However, H; may
want to deactivate role Physician when the user uses
an unsafe channel due to the potential leakage of sen-
sitive information of patients. Therefore, H; defines
this rule as an exception to the regular role activation
rules. In fact, our proposed model can be used to im-
plement black list approach easily. Finally, H; selects
the Close default policy for Universal context.

Table 19 shows the permission assignment policy
defined by H;. Accordingly, H; grants permission
to physicians to consult on a medical record when
they are in the attending team of the patient who is
the owner of the record. Also, it prohibits physicians
whose context Non_Attending_Physician is true to
access the medical records. However, in emergency
conditions these physicians should be able to access the
medical record of a patient. Therefore, H; defines an
exception, which allows the physicians not belonging
to the patient’s attending team to access his medical
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Figure 9. Partial definition of a specific ontology for healthcare domain

Table 18. An example of role activation policy

Long-term context definition:

K ape(u), K HasCertificate(u, Physician_Cert) — K ltc(u, [sPhysician)

not ltc(u, [sPhysician) — K ltc(u, Non_IsPhysician)

K ape(u), K cie(c), K UseChannel(u, c), K IsUnsafeChannel(c) — K ltc(u, Unsafe_Channel)

Regular role activation policy:

arra(Physician, [sPhysician, Act)

arra(Physician, Non_IsPhysician, Deact)

arra(Guset, Universal, Act)

Exception role activation policy:

aera(Physician, Unsafe_Channel, Deact)

Default role activation policy:

K ace(ro), K Role(ro) — K adra(ro, Universal, Close)

record when he is in an emergency condition. Finally,

H; chooses Close default policy for the permission
assignment policy.

7 Related Work

Context-Aware Access Control (CAAC) is a family
of access control solutions, which uses context infor-
mation in access control process. Many CAAC-based
models extend RBAC through adding new contextual
constraints as shown in Figure 10. These constraints
are used to control User Assignment (UA) and Per-

1SeCure

mission Assignment (PA) functions dynamically. For
this purpose, a role is assigned to a user if the user
satisfies a set of contextual constraints. Similarly, a
permission is assigned to a role if a set of contextual
constraints are satisfied by the user who has the role

Many of context-aware access control models for PCEs
are based on the CAAC model.

Two main RBAC-based access control models which
have been proposed based on this approach are:

(1) Generalized Role-Based Access Control (GR-
BAC): Covington et al. [7] augmented the con-
cept of environmental role to RBAC. This type
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Table 19. An example of permission assignment policy

Short-term context definition:
Kape(u), Kape(p), Kape(o), KHasPhysician(p, u), KOwenBy(o,p) — Kstc(u, ac, o, Attending_Physician)
not stc(u, ac, o, Attending-Physician) — K stc(u, ac, o, Non_Attending-Physician)
Kape(p), Kape(hd), Kape(mr), KOwnBy(mr, p), KOwnBy(hd, p), KHasEmergencyState(hd, True)

— ste(u, ac, mr, Emergency)

Regular permission assignment policy:
arpa(Physician, Consult, Medical Record, Attending_-Physician, +)
arpa(Physician, Use, M edical Record, Non_Attending-Physician, —)

Exception permission assignment policy:

aepa(Physician, Consult, Medical Record, Emergency, +)

Default permission assignment policy:

K ace(ro), KRole(ro) — K adpa(ro, Universal, Close)

Contextual constraint Contextual constraint

Context information

7N N /
/ \ /
\: Users :\4 User Assignment (UA)—)> Roles <—Permission Assi (PA) N: Permissi
\ ) ) \
,/ k\ \\;, /,/ /'/‘ \\;,

Figure 10. Conceptual view of CAAC

of roles allows the participation of context infor-
mation in the access control procedure. Using
the role concept for modeling of user and envi-
ronment characteristics redounds to the simplic-
ity and flexibility of policy definition language.

(2) Dynamic Role-Based Access Control Model
(DRBAC): DRBAC [21] is one of the complete
context-aware extensions of RBAC in which
dynamic assignments of roles and permissions
are provided. In DRBAC access decisions are
made based on the current context/state of the
system and the certificates of the user. DRBAC
tries to address the two main requirements
including dynamic change of assigned roles to a
user and the dynamic change of granted permis-
sions to the roles when system information is
changed. DRBAC reaches this goal using a state
machine for the both assigned roles and granted
permissions, and considering state transition by
change in the system information.

One of the main shortcomings of the aforementioned
access control models is the lack of inference capability.
In other words, they are not semantic-aware access
control models. According to the advantages of using
logics in access control, a wide spread researches have
been done for using logics in access control models so
far [4]. Organization-based Access Control (OrBAC)
[12] is one the famous logic-based access control model
which extends the RBAC. OrBAC generalizes the role

concept for objects and actions by adding view and
activity concepts to RBAC. Different types of context
information have been modeled by Cuppens et al. [8]
in OrBAC using first-order logic.

Logics used in access control models typically are
monotonic logics in which previous conclusions are
not defeated by adding new information. However,
according to the demonstrated requirements, non-
monotonicity is a critical and integral part of access
control in novel computing environments and these
requirements cannot be provided using classic (mono-
tonic) logics.

Based on the needs for provision of non-monotonic
access control requirements, some researchers tried to
do this using non-monotonic logics. Boustia et al. in
their set of researches [6] [5] extended description logic
with two operators namely default (§) and exception
() to provide the default and exception definition ca-
pabilities. This logic named JClassics. and makes the
access control model to be able to define default and
exception knowledge in the conceptual level. However,
this logic inherits the shortcomings of description logic
such as lack of ability to non-tree like relationship de-
scription, lack of support of rules, and lack of support
of integrity constraint definition capability.

Several frameworks have been proposed for combin-
ing DLs and rules (logic programming). Description
logic ALC and positive Datalog programs are com-
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bined in AL-log [9]. Rosati et al. extended AL-log and
proposed DL-log [18]. In comparison with AL-log, dis-
junctive Datalog with negation and pair predicates
are supported in DL-log. To preserve decidability, the
weak DL-safety condition has been employed. Accord-
ing to this restriction, each variable in a DL-atom of
the conclusion must occur in a non-DL-atom of the
premises. MKNF™ logic as a combination of ASP and
DL is proposed by Motick et al. [14]. They showed
that each DL-log knowledge base can be encoded to a
MKNF* knowledge base. However, MKNF* is more
flexible than DL-log. In DL-log, DL-predicates and
non-DL-predicates are interpreted under open-world
and closed-word assumption respectively, which makes
DL-log knowledge base inflexible. In contrast to DL-
log, in MKNF7, an open-world or closed-world inter-
pretation of a predicate can be chosen freely through
its usage in either a non-modal or a modal atom. To
the best of our knowledge, MKNF is one of the most
powerful decidable formalisms proposed for combina-
tion of DL and rules, and thus, it is used in this paper.

8 Conclusion

Non-monotonicity is an important feature in context-
aware access control models. Furthermore, seman-
tic technology and semantic modeling languages like
OWL are appropriate and widely used mechanisms
for context modeling. In this paper, the advantages
of semantic technology and answer set programming
have been integrated to propose a powerful context-
aware access control model where MKNF™ is em-
ployed to specify the required policies which satis-
fying non-monotonic requirements. In the proposed
model, DL is used to model main entities of access
control as well as the context information. In addi-
tion, MKNF* rules, which are used to express role
activation and permission assignment policy rules and
specify context information, enable the model to sup-
port non-monotonic reasoning in presence of incom-
plete context information. The default and exception
role activation and permission assignment rules are
defined using negation-as-failure, which is one of the
main non-monotonic features of the MKNF logic.

References

[1] M. Amini and R. Jalili, “Multi-level Authori-
sation Model and Framework for Distributed
Semantic-aware Environments,” IET Informa-
tion Security, vol. 4, no. 4, pp. 301-321, 2010.

[2] F. Baader, D. Calvanese, D. McGuinness,
D. Nardi, and P. Patel-Schneider, The Descrip-
tion Logic Handbook: Theory, Implementation
and Applications. Cambridge university press,

18:0ured)

2003.

[3] Y. Bai, “A Modal Logic for Authorization Speci-
fication and Reasoning,” in IEEFE International
Conference on Intelligent Computing and Intelli-
gent Systems, vol. 1. IEEE, 2009, pp. 264-268.

[4] P. A. Bonatti and P. Samarati, “Logics for Au-
thorization and Security,” Logics for Emerging
Applications of Databases, pp. 277-323, 2003.

[5] N. Boustia and A. Mokhtari, “Representation
and Reasoning on ORBAC: Description Logic
with Defaults and Exceptions Approach,” in Pro-
ceedings of the Third International Conference
on Availability, Reliability and Security. ITEEE,
2008, pp. 1008-1012.

[6) ——, “A Contextual Multilevel Access Control
Model with Default and Eception Description
Logic,” in Proceedings of the International Confer-
ence for Internet Technology and Secured Trans-
actions. TEEE, 2010, pp. 1-6.

[7] M. J. Covington, W. Long, S. Srinivasan, A. K.
Dev, M. Ahamad, and G. D. Abowd, “Securing
Context-Aware Applications using Environment
Roles,” in Proceedings of the Sixth ACM Sympo-
stum on Access Control Models and Technologies.
ACM, 2001, pp. 10-20.

[8] F. Cuppens and N. Cuppens-Boulahia, “Model-
ing Contextual Security Policies,” International
Journal of Information Security, vol. 7, no. 4, pp.
285-305, 2008.

[9] F. M. Donini, M. Lenzerini, D. Nardi, and
A. Schaerf, “Al-log: Integrating Datalog and De-
scription Logics,” Journal of Intelligent Informa-
tion Systems, vol. 10, no. 3, pp. 227-252, 1998.

[10] S.S. Emami and S. Zokaei, “A Context-Sensitive
Dynamic Role-Based Access Control Model for
Pervasive Computing Environments,” ISeCure,
The ISC International Journal of Information
Security, vol. 2, no. 1, pp. 47-66, 2010.

[11] M. Gelfond and V. Lifschitz, “Classical Negation
in Logic Programs and Disjunctive Databases,”
New Generation Computing, vol. 9, pp. 365-385,
1991.

[12] A. A. E. Kalam, R. Baida, P. Balbiani, S. Ben-
ferhat, F. Cuppens, Y. Deswarte, A. Miege,
C. Saurel, and G. Trouessin, “Organization Based
Access Control,” in IEEFE 4th International Work-
shop on Policies for Distributed Systems and Net-
works. I1EEE, 2003, pp. 120-131.

[13] V. Lifschitz, “Nonmonotonic Databases and Epis-
temic Queries,” in Proceedings of the 12th In-
ternational Conference on Artificial Intelligence,
vol. 1, 1991, pp. 381-386.

[14] B. Motik and R. Rosati, “Reconciling Description
Logics and Rules,” Journal of the ACM, vol. 57,
no. 5, pp. 30:1-30:62, June 2008.

[15] F. Rabitti, E. Bertino, W. Kim, and D. Woelk,




July 2013, Volume 5, Number 2 (pp. 119-140)

“A Model of Authorization for Next-generation
Database Systems,” ACM Transactions on
Database Systems (TODS), vol. 16, no. 1, pp. 88—
131, 1991.

[16] A.N. Ravari and M. S. Fallah, “A Logical View

of Nonmonotonicity in Access Control,” in SE-

CRYPT, 2011, pp. 472-481.

R. Reiter, “Readings in Nonmonotonic Reason-

ing,” M. L. Ginsberg, Ed. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1987,

ch. A Logic for Default Reasoning, pp. 68-93.

[18] R. Rosati, “Towards Expressive KR Systems In-

tegrating Datalog and Description Logics,” in

Proceedings of the 1999 International Workshop

on Description Logics DL. Citeseer, 1999, pp.

160-164.

X. Wang, D. Q. Zhang, T. Gu, and H. Pung, “On-

tology Based Context Modeling and Reasoning

using OWL,” in Proceedings of the Second IEEE

Annual Conference on Pervasive Computing and

Communications Workshops. TEEE, 2004, pp.

18-22.

[20] T. Y. Woo and S. S. Lam, “Authorization in
Distributed Systems: a Formal Approach,” in
IEEE Computer Society Symposium on Research
in Security and Privacy. IEEE, 1992, pp. 33-50.

[21] G. Zhang and M. Parashar, “Context-Aware Dy-
namic Access Control for Pervasive Applications,”
in Proceedings of the Communication Networks
and Distributed Systems Modeling and Simula-
tion Conference, 2004, pp. 21-30.

17

19

Appendix A. Introduction to MKNF™*

MKNF™ integrates DL and ASP using the MKNF
logic as a semantic infrastructure. To introduce
MEKNFT, a brief overview of its underlying compo-
nents is necessary.

e Description Logic (DL): DL represents the knowl-
edge of a world by defining the existing concepts
in the world (its terminology) and their relation-
ships (roles), and then using the defined concepts
and roles to specify individuals existing in the
world and their properties. For example, concepts
such as Person and Application can be defined
in a PCE as two general category of subjects
who use resources. The syntax of DL consists of
atomic concepts, atomic roles, and individuals
which are corresponding to unary predicates, pair
predicates, and constants in first-order logic re-
spectively. A DL knowledge base O consists of
two components [2]:

(1) Terminology Box (TBox): TBox describes the

general structure of the world using concepts
(classes) and roles (relations).

(2) Assertion Box (ABox): ABox specifies the

objects in the world and their properties. It in-
cludes assertions like C'(a) (e.g. Person(Alice))
and R(a,b) (e.g. IsLocatedIn(Alice, CS-
Department)) in which C and R are a concept
and a relation respectively.

e ASP: ASP is a non-monotonic rule based formal-

ism that can compensate the shortcomings of DL.
A literal in ASP is a formula of the form A or —A,
where A is a function-free first-order atom. ASP
supports two types of negations:

(1) Classical or strong negation (—): The negation is

used for specifying explicit negative information.
In other words, the ASP program P concludes
- A, if = A is explicitly inferred from it.

(2) Non-monotonic negation-as-failure (not):

not A means that A can be false. In other words,
A is false or it is not possible to determine its

truth value.
An answer set program P is a finite set of rules
of the form:

Bi,...,Bm,not By,41,...,not B, - H1 V...V Hy,

where B; and H; are literals. Operator not,
can be used to specify the default truth value
for a predicate. As an example the closed-world
assumption for a predicate A can be expressed
using the following rule:

not A(z) — —A(x).

MKNF: The logic of Minimal Knowledge and
Negation as Failure (MKNF) was proposed by
Lifschitz [13] to unify different non-monotonic
formalisms, such as default logic, auto-epistemic
logic, and logic programming. MKNF extends

the first-order logic by K and not operators.
Suppose that, ¥ = (X, Xy, ;) be a first-order
signature, where X, X, and X, are a set of
constants, a set of function symbofs, and a set of
predicates containing the pair equality predicate
~, respectively. The following grammar in which
t;’s are first-order terms and P is a predicate,
defines the syntax of MKNF formulas over X:

@ 1= P(t1, ., tn)| (=) (0 A )| (32 = 0)|(K ¢)|(not ¢)

A formula of the form K ¢ and not ¢ are modal
atoms, which named as modal K-atom and not-
atom respectively. An MKNF formula ¢ is close
if it has no free variable. Accordingly, an MKNF
theory is a countable set of closed MKNF formula.

Assume that X is a signature and A is a non-
empty set called universe. A first-order interpre-
tation over X and A assigns what is shown in Ta-
ble 20 for each element of . In addition, predi-
cate = is interpreted as equality. Before a brief
review of the semantics of MKNF, the following
three key points should be considered:
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Table 20. The first-order interpretation over ¥ and A in semantics of MKNF

Element of X

Output of the first-order interpretation

constant a € X,
n-ary function symbol f € X¢
n-ary predicate P € 3,

An object af € A

A function fI: A" - A

A relation PT C A™

Table 21. Satisfaction of a closed MKNF formula in an MKNF structure [14].

(IM,N) [= true

for each triple (I, M, N)

(ILM,N) = P(t1, ...

Jtn) 3 (¢,

th) e P!

N) ¥

N) E 1 and (I, M, N) = @2

N) = ¢[na/z] for some a € A

N) =g forall Je M

(IM,N) = —¢ iff (1,
(LM,N) = ¢1 A @2 iff (1,
(LM,N) =3z : ¢ iff (1,
(LM,N) = K ¢ iff (1,
(I,M,N) = not ¢ iff (1,

N) ¥ ¢ for some J € N

(1) Existing of a special constant n, called name:
In contrast to standard first-order logic, for each
element o € A, the signature X must contain
this constant such that nl, = a.

(2) The interpretation of a variable-free term ¢ =
f(s1, ..., 8,): This interpretation is defined re-
cursively as t! = fI(sl, ..., sI).

(3) MKNF triple: The MKNF triple over a universe
Ais atriple (I, M, N) such that [ is a first-order
interpretation over A and ¥; and M and N
are non-empty sets of first-order interpretation
over A and X.

An MKNF triple is used to define the semantics
of an MKNF formula over signature . Table 21
shows the definition of satisfiability of a closed
MKNF formula in (I, M, N). Accordingly, K¢
means that ¢ is known to hold or be true. Also
not is a weak negation or negation-as-failure.

One of the important characteristics of MKNF is
that each DL and ASP knowledge base can be trans-
lated into the MKNF logic. This property is used in
the proposing of MKNF ™. Each MKNF™ knowledge
base is a pair K = (O, P), where O is a DL knowledge
base and P is a program (finite set of MKNF™T rules).
Predicates defined in O are called DL-predicates and
other predicates are called non-DL-predicates. DL-
predicates are unary or pair predicates but non-DL-
predicates are not bounded. Moreover, two types of
modal atoms namely K-atom and not-atom are de-
fined in this formalism. K-atom is denoted by K A
and not-atom is denoted by not A. The semantics of
MKNFT is based on the MKNF semantics. In fact,
parts O and P of MKNF™ knowledge base are trans-
lated into MKNF separately (see [14] for further ex-
planation of the MKFN T semantics). The structure
of an MKNF™ rule is as follows:

ISeﬂure@

Bl, ,Bn — H1 V..V Hm

where, B; can be a non-modal predicate, a K-atom,
or a not-atom, whereas, H; would be either a non-
modal predicate or a K-atom. To preserve decid-
ability of MKNF™, the DL-safety restriction must
be applied; each variable in a rule should appear in
the body of the rule in some non-DL-K-atom. The
main idea of this restriction is to restrict the appli-
cability of the rules only to the individuals that are
explicitly specified by name in the knowledge base.
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