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Abstract. Popularity of data outsourcing and its consequent access control
issues such as dynamism and efficiency is the main motivation of this paper.
Existing solutions suffer from the potential unlimited number of user keys,
inefficient update of policies, and disclosure of data owner’s access control
policies. Using Chinese remainder theorem and proxy re-encryption together, in
this paper, we propose an efficient access control enforcement mechanism based
on selective encryption that addresses all the shortages. The overall architecture,
required algorithms, and access control policy update are discussed. The
mechanism is evaluated through simulation and, the given results are
satisfactory.
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1 Introduction

Due to reducing communication costs and increasing volume of data, Database-As-a-
Service (DAS) model, in which an organization outsources its data to a database
service provider, becomes a popular paradigm. Although data outsourcing provides
many benefits, it introduces new security concerns. The main concern is the storage of
sensitive data on a site that is not under the direct control of the data owner. As a result,
the data confidentiality and integrity can be compromised. Additionally, the enforce-
ment of access control restrictions on the outsourced data is of main concerns; the issue
on which we have concentrated in this paper. In fact, access control enforcement cannot
be delegated to a server, which is not trusted enough to be aware of access policies and
to enforce them. A promising solution is selective encryption, which couples autho-
rization and encryption. It translates an access policy into an equivalent encryption
policy so that only legitimate users are able to retrieve the decryption key of a protected
resource.

In addition to maintaining a user hierarchy and a key derivation process, enforcing
access control through selective encryption faces a couple of challenges. Firstly,
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updating access policies may cause high overhead to the data owner. It needs acquiring
granted/revoked resources from the server, re-encryption of them, and resending them
to the server. Secondly, privacy of access control policies may be violated due to the
untrustworthiness of the remote server.

In this paper, we propose a solution to overcome the above shortcomings. In
particular, we address the problem of key management using the Chinese remainder
theorem, and of efficiently supporting policy changes using the proxy re-encryption
scheme. Using these two schemes together also ensures the privacy of authorization
policies, as it is an important requirement for the data owner.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 is dedicated to some preliminaries and basic concepts to our solution. Sec-
tion 4 describes the proposed solution for efficient access control enforcement in detail.
This section also demonstrates how changes in the access control policies can be
handled efficiently. Section 5 describes our proposed prototype architecture. Section 6
analyzes our solution from the security and efficiency perspectives. Finally, Sect. 7
concludes the paper.

2 Related Work

Damiani et al. [1] proposed an access control mechanism for an outsourced database
using selective encryption, where they reduced the number of user keys through key
derivation. Vimercati et al. [2] proposed a two-layer data encryption to enforce access
control for dynamic policies. In their scheme, a public token catalogue expresses key
derivation relationships. However, the catalogue could leak information about the
policies and data. To solve the problem, they proposed adding an encryption layer on
the public catalogue of tokens [3]. There are several shortcomings related to their
scheme. The algorithm of building key derivation structure imposes high computing
overhead to the data owner. An update to the access control policy requires the users to
obtain new keys derived from the rebuilt key derivation structure and also requires data
re-encryption with the new keys. As the consequence, the scheme is not scalable. Tian
et al. [4] introduce a new DSP re-encryption mechanism, which provides an efficient
policy update and management approach. Ateniese et al. [5] proposed a secure dis-
tributed storage scheme based on proxy re-encryption. Their scheme depends on the
existence of a semi-trusted server. Moreover, the system data security can be com-
promised due to the collusion of a malicious server and any single malicious user.

In 2005, Sahai et al. [6] proposed an access control scheme, referred to as threshold
encryption, based on their introduced concept of Attribute Based Encryption (ABE). In
the scheme, the owner encrypts his data and specifies an attribute set and a number d.
Only a user with at least d attributes of the given attribute set can decrypt the retrieved
data. Wang et al. [7] combined techniques of ABE, proxy re-encryption, and lazy re-
encryption to delegate most of the computation tasks involved in the revocation of
authorizations to an untrusted server without disclosing data content.

Chinese Remainder Theorem (CRT) was used to propose a general access control
structure when the policy enforcement point is not trusted [8]. Tourani et al. [9] then
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used above idea and proposed a CRT-based access control enforcement mechanism for
data outsourcing scenario. Their solution allows updating policy changes, and access
control policies are protected from being revealed to the server or the users.

3 Preliminaries

Let us review basic concepts and preliminaries, including CRT and proxy re-encryption
before the introduction of our proposed access control enforcement mechanism.

3.1 Chinese Remainder Theorem (CRT)

Definition 1. Chinese remainder theorem: for the system of simultaneous congruences
in (1), in which k� 2, the positive integers n1; n2; . . .; nk are pairwise relatively prime,
and a1; a2. . .; ak 2 Z, there exists a unique solution x, such that 0� x\n ¼ n1n2. . .nk.

x � a1 mod n1
x � a2 mod n2

. . .
x � ak mod nk

8>><
>>: ð1Þ

Kong et al. [8] used CRT and proposed a scheme to share a key with k users.
Suppose Kr is the key we want to share it with users u1; u2; . . .; uk. Ksi is the private key
of user ui. Then, xKr , the solution of simultaneous congruences in (2), can be used as a
shared key of Kr.

xKr � EKu1
Krð Þmod nu1

xKr � EKu2
Krð Þmod nu2

. . .
xKr � EKuk

Krð Þmod nuk

8>><
>>: ð2Þ

When a user uj is given a shared key xKr , he can compute Kr as follows:

EKuj
Krð Þ ¼ xKr mod nuj ð3Þ

Kr ¼ DK�1
uj
ðEKuj

Krð ÞÞ ð4Þ

3.2 Proxy Re-Encryption

Definition 2. Proxy re-encryption: Proxy re-encryption is a solution in which the data
owner securely delegates the re-encryption mechanism to a proxy. The proxy re-
encrypts the data without the need to decrypt any parts of the data.
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Syalim et al. [10] proposed a proxy re-encryption scheme for the symmetric ciphers,
which is used in our mechanism to efficiently manage policy updates. Below, we
introduce some primitive functions in symmetric proxy re-encryption scheme. Please
refer to [10] for further details.

• All or nothing transform (AONT): the algorithm converts a s-block message M ¼
m0; . . .;ms�1 to a pseudo message M

0 ¼ m
0
0; . . .;m

0
n�1 with n blocks, such that

n > s and any block of the original message cannot be retrieved if any block of the
pseudo message is lost.

• Perm: the permutation algorithm Perm takes two sequences with the same size n as
inputs and changes the order of the second sequence according to the first sequence,
called “the permutation key.” For example, the output of Perm((3, 1, 2, 0),(a, b, c,
d)) is (d, b, c, a).

• DePerm: the algorithm takes two sequences as an input and changes the order of the
second sequence to the form before being permuted by the Perm function using the
first sequence as the permutation key. For example, the output of DePerm((3, 1, 2,
0),(d, b, c, a)) is (a, b, c, d).

• FindCK: the algorithm generates a conversion key CK, which can be used to
convert a permuted sequence POUTA to another permuted sequence POUTB: If
POUTAis the permuted form of InSeq with the permutation key KPA and POUTB is
the permuted form of InSeq with the permutation key KPB, then the conversion key
CK has the property: Perm KPB; InSeqð Þ ¼ Perm CK;Perm KPA; InSeqð Þð Þ

• PGen: the permutation generator function PGen takes a key k and an integer n as
inputs and generates a permutation key A with n elements. It is implemented using
the encryption function E(k, p) that encrypts the plaintext p using the key k.

• RandGen: giving an integer n as an input, it generates an n-bit size random key.

4 Access Control Enforcement Mechanism

This section represents our proposed mechanism. At first, we describe a generic
architecture for access control in the DAS model. Then, we describe our proposed
mechanism based on the architecture.

4.1 Overall Framework

Figure 1 shows the system architecture for enforcing access control in the DAS model
that involves following entities:

• Data owner: an organization that produces data and delegates its maintenance to the
untrusted server.

• Server: an expertise database organization that receives encrypted data, is respon-
sible to maintain it, responds to user queries, and helps the data owner in updating
access control policies.

• User: an entity, whose queries are translated into queries over the encrypted data
and sent to the server.
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We assume that the server is honest-but-curious. It is honest in executing the
protocols but is not trusted with the confidentiality of data and access control policies.

4.2 Initialization Phase

The following actions are performed by the data owner to outsource its data:

• For each user ui of the system, the data owner generates a pair of keys (Kui ;K
�1
ui )

and a modulus nui .
• For each resource r of the system, the data owner generates a key Kr by which the

resource is encrypted.

• For each resource r of the system with access control list ACL(r) = {u1, u2, …, uk}
and encryption key Kr, the data owner calculates the CRT solution xKr for the
simultaneous congruences in (5).

xKr � EKu1
Krð Þmod nu1

xKr � EKu2
Krð Þmod nu2

. . .
xKr � EKuk

Krð Þmod nuk

8>><
>>: ð5Þ

For each resource r, the data owner calculates cr ¼ SEKrðrÞ and sends cr and xKr to
the server. Detailed explanation of the SE function is provided in Sect. 5.

Fig. 1. Overall architecture of the proposed mechanism
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4.3 Query Processing Phase

When a user ui needs to retrieve a resource r from the server, he needs to perform the
following steps with the server:

• User ui generates a query and request r from the server.
• The server processes the query and sends cr and xKr to ui.
• If ui 2 ACLðrÞ then he computes Kr as follows:

EKui
Krð Þ ¼ xKr mod nui ð6Þ

Kr ¼ DK�1
ui

EKui
Krð Þ

� �
ð7Þ

• User ui accesses r using its key: r ¼ SDKr
crð Þ. The function SD is further explained

in Sect. 5.

If ui 62 ACLðrÞ, he cannot retrieve the key Kr, so he cannot access r.

4.4 Policy Update

Policy update operations can be restricted to granting and revoking an authorization.
Here we describe general steps of our mechanism for updating policies.

1) Grant: Granting a new user ui an access to a resource r does not require the key of
the resource to be changed but it needs the shared key xKr to be updated. Kong et al. [8]
suggest an efficient way for this purpose. Consider simultaneous congruence equations
in (8) with xKr as the solution and the simultaneous congruences in (9) which contain a
congruence equation for the new user ui with x0kr as the solution.

xKr � EKu1
Krð Þmod nu1

xKr � EKu2
Krð Þmod nu2

. . .

xKr � EKuk
Krð Þmod nuk

8>>><
>>>:

ð8Þ

x0kr � EKu1
Krð Þmod nu1

x0kr � EKu2
Krð Þmod nu2
. . .

x0kr � EKuk
Krð Þmod nuk

x0kr � EKui
Krð Þmod nui

8>>>>><
>>>>>:

ð9Þ

According to [8], the value of x0kr can be easily obtained by solving (10).

x0kr � xKr mod nu1nu2 . . .nuk
x0kr � EKui

Krð Þmod nui

(
ð10Þ
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2) Revoke: Authorization revocation is more complicated than grant and requires
changing the key of the resource. Consider a situation in which the data owner wants to
revoke access to a resource r (encrypted with Kr) from a user ui. The data owner and
the server must go through following steps:

• The data owner updates ACL(r) by removing user ui.
• The data owner generates re-encryption key REKr using RKG function with Kr as

an input.
• The data owner calculates the CRT solution x0kr according to the new ACL(r).
• The data owner sends REKr and x0kr to the server and asks him to re-encrypt r.
• The server calculates c0r using RE function with cr and REKr as inputs.

Preserving the confidentiality of r, this method re-encrypts r with a new key without
imposing high computational overhead to the data owner.

5 The System Architecture

For implementing our proposed access control enforcement mechanism, we suggest the
architecture shown in Fig. 2. According to Fig. 2, the proposed architecture consists of
four main components discussed in the subsequent sections.

5.1 Symmetric Encryption Module

Symmetric Encryption Module (SEM) provides a symmetric key cryptosystem to
encrypt resources in our system. There are three functions in this module:

1. Symmetric Key Generator (SKG): in this function three random k-bit keys K1, K2,
and K3 and a random b-bits key KX are generated using RandGen function. Here,
k is the size of key in Pgen algorithm and b is the size of each block of original
message M in AONT algorithm. The resulted key is K = (K1, K2, K3, KX), which is
used in SE function, SD function, and REM.

Fig. 2. The architecture of our implemented prototype
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2. Symmetric Encryption (SE): the function encrypts message M using the keys K1,
K2, K3, and KX. Algorithm 1 shows the SE algorithm.

3. Symmetric Decryption (SD): the function decrypts ciphertext C using the keys K1,
K2, K3, and KX. The SD algorithm is shown in Algorithm 2.

5.2 Asymmetric Encryption Module

The aim of Asymmetric Encryption Module (AEM) is to provide a public-key cryp-
tosystem used for sharing the keys of resources. It contains three functions including,
Asymmetric Key Generator (AKG), Asymmetric Encryption (AE), and Asymmetric
Decryption (AD). The module can be implemented using a public-key cryptosystem
such as RSA.

5.3 Re-Encryption Module

Re-Encryption Module (REM) consists of two functions to provide a proxy
re-encryption mechanism for access control policy updates:

1. Re-encryption Key Generator (RKG): the function generates re-encryption keys
sent to the server when policy is updated. It is implemented using Algorithm 3.

2. Re-Encryption (RE): the function is used when the data owner needs to update his
policies by re-encrypting the cipher-text with the new key. Details of this function
are shown in Algorithm 4.
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5.4 Chinese Remainder Theorem Module

Chinese Remainder Theorem Module (CRTM) is used by the data owner for key
management. It contains two functions:

1. Modulus Generator (MG): for every user ui, this function generates a modulus nsi
such that ns1 ; ns2 ; . . .; nsl are pairwise relatively prime. These moduli will be used as
CRT moduli.

2. Find Solution (FS): the function is used for computing the solution of simultaneous
congruences in (1).

6 Theoretical and Experimental Analysis

Three main requirements for an access control enforcement mechanism in the DAS
model are as follows:

1. The mechanism requires keeping a few numbers of secret keys by each user.
Generally, mechanisms in which users keep a small set of secret keys are more
feasible and manageable than those in which the number of keys is unlimited.

100 L. Karimi et al.



2. Efficiency of operations, especially policy updates should be acceptable. In fact,
data outsourcing should not lead to unacceptable computational and storage over-
heads for the data owner.

3. Privacy of access control policy should be preserved. We assume that the server is
honest-but-curious. The server may get some information about the content of data,
if access control mechanism reveals access control policies.

We show that our proposed solution addresses these requirements, appropriately.

6.1 Number of User’s Secret Keys

In our approach, each user needs to keep only a key pair (secret and public keys) to
access all of her authorized resources. This advantage is a result of using CRT to
compute a shared key value for each resource (xKr ). Thereby, the authorized user can
compute the decryption key of the resource and easily access the content of the
resource. The second column of Table 1 compares our proposed mechanism with some
other known solutions from this point of view. Compared to the proposals in [2, 11],
and [12], in our approach the user does not need to derive lots of keys to access her
permitted resources. So, accessing the resources is more efficient here and does not
need several interactions with the server to drive proper keys.

6.2 Efficiency of Operations

In a typical selective encryption based access control enforcement mechanism,
changing policy may need the update of some resources’ encryption keys. Therefore,
these resources should be re-encrypted using new encryption keys. Reaching this
purpose necessitates conducting the three steps of receiving the resource from the
server, decrypting it with the old key and re-encrypting it with the new key, and finally,
sending the encrypted resource to the server.

In addition, data owner should inform the users about the key changes. Clearly in
such a case, a lot of computational overheads are imposed to the data owner.

Table 1. Comparison of our mechanism with some other solutions

Mechanism Number of keys for each user Are access policies
kept confidential?

Key-derivation based
mechanism [1]

More than one (based on the users
hierarchy and ACLs)

Yes

Two-layer mechanism [2] Two No
Two-layer mechanism with
encrypted tokens [14]

Two Yes

Two-layer mechanism [15] More than one (based on user
membership in the groups)

Yes

Proposed mechanism One pair (public and secret key) Yes
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Our mechanism transfers a large portion of such computations to the server relying
upon the CRT and re-encryption together. Let us investigate the computational cost of
grant and revoke operations for the data owner in our solution.

Grant: as we discussed before, a data owner should find the new shared key as the
solution of (10) and send it to the server to be replaced by the old one.

Revoke: re-encryption key generation and finding CRT solution x0kr , according to the
new ACL(r), are two main operations in a revoke process. According to the analysis in
[10], re-encryption key generation needs two operations of finding conversion key
(FindCK), four permutation key generations (PGen), and four random bits generations
(RandGen). FindCK is cheap and PGen and RandGen are linear to a symmetric cipher
operation. Thus, the re-encryption key generation function is linear to a symmetric
cipher operation. On the other hand, computing the CRT solution, using an efficient
algorithm suggested in [13], takes O(tk2) bit operations, where k is the number of bits of
each modulus nui , t is the number of users in ACL(r), and kt is the number of bits for the
CRT solution in (5). Now, we investigate on the relation between the number of users,
the required bits for nui , and the CRT solution.

Recall that a user ui has its own modulus nui and if ACL(r) = {u1, u2, …, uk}, then
0� xKr\nu1nu2 . . .nuk . On the other hand, users’ moduli are co-primes. Therefore, the
maximum number of users in a system with m bits for each modulus nui is equal to the
number of prime numbers between 0 and 2m. For a resource r whose ACL is the set
U of all users, the maximum number of bits required for xKr is m * l where l = |U|.
Table 2 represents the maximum number of users and required bits for xKr based on
some possible number of bits of a modulus. We use the Prime Number Theorem which
proves that the number of prime numbers less than an integer n is approximately equal
to n

ln n. Therefore, finding the CRT solution in (5) takes approximately Oðk � k � 2k
lnkÞ bit

operations where k is the size of modulus in bit. For instance, in a system with about

5900 users, finding CRT solution takes O 16 � 16 � 216
ln16

� �
bit operations, in worse case,

that is not an expensive process for the data owner.

6.3 Confidentiality of Access Control Policies

In our approach confidentiality of security policies is preserved against both the server
and users. When the server receives a request, it sends the cipher-text and the shared
key of the requested resources to the requester. However, the server cannot understand
whether the user can decrypt the resource or not. Therefore, users’ privileges are not

Table 2. The relation between the number of users and the imposed storage cost of storing xKr

Size of user modulus Maximum number of users Size of xKr (in bits)

8 bit (28/ ln 28) = 46 8 * 46
16 bit (216/ ln 216) = 5909 16 * 5909
32 bit (232/ ln 232) = 193635335 32 * 193635335
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revealed in the query processing scenario. Moreover, policy change in our approach
does not reveal access policies to the server.

6.4 Experimental Results

We performed two series of experiments. We ran our programs on Java 2 Standard
Edition (J2SE) 1.6.0 and Windows 7 with an Intel(R) Core i5 2.5 GHz processor and
6 GB of main memory. In both series, we used RSA as a public-key cryptosystem.

At first, we evaluated the efficiency of finding a CRT solution in terms of the
required time for the data owner with different ACL sizes for a resource. Such a metric
allows us to estimate the load on the data owner in the initialization phase as well as for
the policy update. The graph in Fig. 3 illustrates the time of finding a CRT solution for
a set of congruence equations. We observe that the growth is somehow linear to the
size of ACL.

Then, we evaluated the performance of calculating a resource key in terms of the
required time for a user to derive the decryption key from a shared key (Fig. 4). Such a
metric allows us to estimate the load on the user in the query processing phase. We
observe in Fig. 4 that the growth is nearly linear to the size of ACL. Moreover, the time
remains low for a reasonable size of ACL, e.g., 8 ms for 1000 users in an ACL.
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Fig. 3. Required time to find a CRT solution
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Fig. 4. Required time to drive a resource encryption key
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7 Conclusions

In this paper, we address the problem of enforcing access control policies in database
outsourcing scenario. Our mechanism uses Chinese remainder theorem and proxy re-
encryption that results in a limited number of users’ keys, the efficiency of policy
changes, and the protection of access control policies from the untrusted server.
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