

Analytical Approaches for Dynamic Scheduling

in Cloud Environments

Seyyed Ahmad Javadi

Iran University of Science and Technology January 1, 2020

Cloud Computing

➤ Tenants Cloud providers Rent Virtual Machines (VMs) Operate cloud infrastructures

Cloud Computing

Cloud providers Operate cloud infrastructures

Tenants Rent Virtual Machines (VMs)

Benefits:

Economical virtual machines

Elasticity

Challenges:

Performance issues

Security concerns

Scheduling (Computing)

- Different ways of describing general scheduling problem
- ➤Our purpose: Distributed process scheduling

Scheduling (Computing)

- Different ways of describing general scheduling problem
- ➤Our purpose: Distributed process scheduling

Performance Interference

- > Multi-tenancy is a main design principle of cloud computing
 - The immediate challenge is resource contention

Performance Interference

- > Multi-tenancy is a main design principle of cloud computing
 - The immediate challenge is resource contention

Resource contention between Virtual Machines (VMs)

Performance Interference

- > Multi-tenancy is a main design principle of cloud computing
 - The immediate challenge is resource contention

foreground (fg)

Resource contention between

Virtual Machines (VMs)

Resource contention between

bg workloads and VMs

Scheduling Challenges in Cloud

Scheduling Challenges in Cloud

Using analytical approaches to perform dynamic scheduling is critical to address the outlined challenges.

Outline

- ➤ DIAL: Dynamic interference-aware load balancing
- Scavenger: Resource-adaptive batch scheduling
- > Future directions and conclusions

Outline

>DIAL: Dynamic interference-aware load balancing

- IEEE Transactions on Cloud Computing (early access)
- > Scavenger: Resource-adaptive batch scheduling
- > Future directions and conclusions

Problem: Dealing with Interference

Seneric cloud application containing **Load Balancer** and **Worker** tiers

Problem statement: How can load-balanced applications mitigate the impact of interference?

Online application requests

Load Balancer

Policy

- Cannot observe host resources
 - Cannot quantify interference

Online application requests

Load Balancer

Policy

Worker Tier

VM₁ co-tenants bg

VM_n co-tenants bg

- Cannot observe host resources
 - Cannot quantify interference

Infer the interference

Interference-aware load balancing

Online application requests

Load Balancer

Policy

Worker Tier

VM₁ co-tenants bg

VM_n co-tenants bg

- Cannot observe host resources
 - Cannot quantify interference

Infer the interference

Online application requests

Load Balancer

Policy

Worker Tier

VM₁ co-tenants bg

VM_n co-tenants bg

- Cannot observe host resources
 - Cannot quantify interference

Infer the interference

Analyzing Interference

Total usage (fg + co-tenants), in $\% \rightarrow$

Goal: Can we infer co-tenants' usage from RT and fg load?

Analyzing Interference

90%ile Response time (ms)

Total usage (fg + co-tenants), in $\% \rightarrow$

Observation:

Non-linear curves

Goal: Can we infer co-tenants' usage from RT and fg load?

Analyzing Interference

90%ile Response time (ms)

Total usage (fg + co-tenants), in $\% \rightarrow$

Observation:

Non-linear curves

Queueing + Regress

We look at *slope of curve* and use that, along with *queuing theory*, to

detect how much resources are being taken away.

Optimal Weight Derivation

Optimal Weight Derivation

Experimental Setup

- > Physical Machine
 - Ubuntu 14.04; OpenStack
 - 12 cores, 48GB DRAM, 1 Gb/s network

- > Virtual Machine
 - 4 vCPUs, 4GB of memory

Experimental Setup

- > Physical Machine
 - Ubuntu 14.04; OpenStack
 - 12 cores, 48GB DRAM, 1 Gb/s network

- > Virtual Machine
 - 4 vCPUs, 4GB of memory

Experimental Setup

- > Physical Machine
 - Ubuntu 14.04; OpenStack
 - 12 cores, 48GB DRAM, 1 Gb/s network

- > Virtual Machine
 - 4 vCPUs, 4GB of memory

DIAL: OpenStack + CloudSuite

- ➤ Baseline: Round-robin algorithm and DIAL is disabled
- > DIAL: Using optimal weights in weighted round robin algorithm

DIAL: OpenStack + CloudSuite

- > Baseline: Round-robin algorithm and DIAL is disabled
- > DIAL: Using optimal weights in weighted round robin algorithm

DIAL: AWS + CloudSuite

- ► 10 Apache VMs
- > LLC contention via AWS dedicated hosts

Outline

> DIAL: Dynamic interference-aware load balancing

>Scavenger: Resource-adaptive batch scheduling

• 10th ACM Symposium on Cloud Computing 2019

> Future directions and conclusions

Low Resource Utilization in Cloud Environments

CPU utilization (%)

Time (days)

CDF of average CPU and memory usage, Alibaba cluster trace (2018).

VM-level CPU usage for the Azure trace (2017).

fg = foreground/online workload

Low Resource Utilization in Cloud Environments

CDF of average CPU and memory usage,

VM-level CPU usage for the Azure

Great opportunity to use cloud idle resources

Opportunity: Running Background Batch Workload

Cumulative probability, F(x)

X = Average usage

CDF of average CPU and memory usage, Alibaba cluster trace (2018).

bg = background/batch workload

- > Key challenge: Resource contention
 - May violate SLOs of foreground dynamic workload
 - Foreground workload is a *black-box*, SLOs not known

Opportunity: Running Background Batch Workload

Cumulative probability, F(x)

- > Key challenge: Resource contention
 - May violate SLOs of foreground dynamic workload
 - Foreground workload is a *black-box*, SLOs not known

Problem statement: How to schedule background batch jobs to improve utilization without hurting black-box foreground performance?

Prior approaches

- >Treat foregroud as white-box (assume SLO is known)
 - Bistro (ATC'15, Facebook)
 - Heracles (ISCA'15, Google)

- fg: facebook bg: FB-Hadoop
- History-based harvesting (OSDI'16, Microsoft)
- PARTIES (ASPLOS '19, SAIL group-Cornell Uni.)
- > Typically focus only on one resource (need some critical profiling)
 - dCat (EuroSys'18, IBM)
 - Perflso (ATC'18, Microsoft)
 - Reprofiles often if workload changes

Our approach: Scavenger

- Considers foreground workloads as a *black-box*
- Takes *multiple resources* (processor, memory, nw) into account
- Is a dynamic and tunable solution
- >Uses container as the agile execution environment for batch jobs

Scavenger Daemon

- > Background resource regulation is the main design decision
 - Dealing with resource contention is challenging

Using Linux's cpuset cgroups

Scavenger Daemon

- Background resource regulation is the main design decision
 - Dealing with resource contention is challenging

Using Linux's cpuset cgroups

Scavenger Daemon

- > Background resource regulation is the main design decision
 - Dealing with resource contention is challenging

95%ile RT degradation (%)

Background CPU usage (%)

Instruction Per
Cycle (IPC)
degradation(%)

Using Linux's cpuset cgroups

Scavenger Daemon

- > Background resource regulation is the main design decision
 - Dealing with resource contention is challenging

Instruction Per Cycle (IPC)

degradation(%)

Using Linux's cpuset cgroups

Resource Regulation Algorithm

- > Scavenger determines availability of resources for bg jobs
 - Background CPU load (cgroups)
 - CPU quota (maximum CPU cycles given to a process under the CFS)
 - Memory capacity (libvit)
 - Network bandwidth (TC)

Resource Regulation Algorithm

- ➤ Our generic online algorithm
 - Monitor VMs' perf metric (e.g., memory usage) for window-size
 - Calculate mean, μ , and standard deviation, σ
 - React based on the VMs' perf metric and μ +/- $c.\sigma$

Headroom

Normalized metric value [memory usage, network usage]

Evaluation Methodology

- >Scavenger prototype implementation
 - Largely written in C++ and shell script (~750 lines of code)

Foreground	Training	CloudSuite	Widely used benchmark suite	
	Testing	TailBench	Designed for latency-critical applications	
Background (SparkBench)	KMeans		A popular clustering algorithm	
	SparkPi		Computes Pi with very high precision	

Sensitivity analysis

Experimental evaluation

TailBench

The load generators employed in TailBench are open-loop.

Workload	Domain	Tail latency scale
Xapian	Online search	Milliseconds
Moses	Real-time translation	Milliseconds
Silo	In-memory database (OLTP)	Microseconds
Specjbb	Java middleware	Microseconds
Masstree	Key-value store	Microseconds
Shore	On-disk database (OLTP)	Milliseconds
Sphinx	Speech recognition	Seconds
Img-dnn	Image recognition	Milliseconds

http://people.csail.mit.edu/sanchez/papers/2016.tailbench.iiswc.pdf

Cloud Testbed

Evaluation with Spark jobs as background

Limit Study With DCopy as the Background

Cloud testbed: 4-vCPU foreground VM, 6-core background DCopy container.

3-5%

Scavenger can *successfully and aggressively* regulate bg workload to mitigate its impact on fg performance.

Outline

- > DIAL: Dynamic interference-aware load balancing
- > Scavenger: Resource-adaptive batch scheduling

> Future directions and conclusions

Future Direction

- >Using Machine Learning (ML) techniques for
 - Predicting the resource demand of customers workloads
 - Tuning the solution parameters dynamically $(\mu + c(t).\sigma)$
 - ML deployment challenge
 - Easy and simple deployment in production systems

- Extending Scavenger for CAT-equipped servers
 - LLC allocation based on the Scavenger's regulation algorithm
 - Background workload will be allowed to use idle cores in full capacity

Conclusions

- >Scheduling is a key component of applications
 - It faces new challenges in cloud environments
- >Analytical approaches can address these challenges

Analytical Approaches for Dynamic Scheduling in Cloud Environments

Q&A

Seyyed Ahmad Javadi (sjavadi@cs.stonybrook.edu)

PACE Lab at Stony Brook University

25th International Computer Conference (CSICC 2020)