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Last Level Cache (LLC) or L3

Resource contention between
Virtual Machines (VMs)

Memory

Network Adapter

HDD/SSD Storage

Resource contention between

bg workloads and VMs

Big-picture of a commodity server
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Scheduling Challenges in Cloud

foreground (fg)

background

Scheduler
Consumers -

— I:> SC,: Variable resource capacity

— I:> :SCZ: Foreground workload is bIack—box:
-

N
Using analytical approaches to perform dynamic scheduling

9 is critical to address the outlined challenges. y
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e |[EEE Transactions on Cloud Computing (early access)

» Scavenger: Resource-adaptive batch scheduling

> Future directions and conclusions
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Problem: Dealing with Interference

»Generic cloud application containing Load Balancer and Worker tiers

Incoming requests (

Load Balancer tier }
Responses L :

Problem statement: How can load-balanced applications

_ mitigate the impact of interference? y

13



% m Stony Brook University

DIAL: High-level Idea

: .. Load Balancer
Online application

& 4

» Cannot observe host resources

« Cannot quantify interference

14



% m Stony Brook University

DIAL: High-level Idea

Load Balancer

Online application

& 4

» Cannot observe host resources l

Infer the interference

« Cannot quantify interference

15



% m Stony Brook University

DIAL: High-level Idea

Interference-aware
load balancing

Load Balancer

Online application

» Cannot observe host resources I

Infer the interference

« Cannot quantify interference

16



% m Stony Brook University

DIAL: High-level Idea

Load Balancer

Online application

& 4

» Cannot observe host resources l

Infer the interference

« Cannot quantify interference

17



% l\ Stony Brook University

Analyzing Interference

90%ile
Response
time (ms)

Total usage (fg + co-tenants), in % 2>

Goal: Can we infer co-tenants’ usage from RT and fg load?

18



% l\ Stony Brook University

Analyzing Interference

Observation:

Non-linear curves
90%ile
Response
time (ms)

Total usage (fg + co-tenants), in % 2>

Goal: Can we infer co-tenants’ usage from RT and fg load?

19



% l\ Stony Brook University

Analyzing Interference

Observation:

Non-linear curves
90%ile
Response
time (ms)

Queueing + Regress

Total usage (fg + co-tenants), in % 2>

- N
We look at slope of curve and use that, along with queuing theory, to

detect how much resources are being taken away.

\_ J
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Optimal Weight Derivation

a: total arrival rate>[ LB }

via inference
o\
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Experimental Setup

» Physical Machine » Virtual Machine

 Ubuntu 14.04; OpenStack e 4 vCPUs, 4GB of memory
12 cores, 48GB DRAM, 1 Gb/s network

co-tenant,
co-tenant, co-tenant,

co-tenant, co-tenants

Test Workloads
LA ERENET @EEEIEN  Memcached (NET)
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Hadoop (DISK)

e wes server IR AL

Faban '. HAProxy ‘I\

DIV PM,
Training workloads
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DIAL: OpenStack + CloudSuite

» Baseline: Round-robin algorithm and DIAL is disabled
» DIAL: Using optimal weights in weighted round robin algorithm
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DIAL: OpenStack + CloudSuite

» Baseline: Round-robin algorithm and DIAL is disabled
» DIAL: Using optimal weights in weighted round robin algorithm

CENEE DIAL
Ta” Latency 30 l\:l\leEn_'urcache : '
[90%ile RT] e
(mS) 20 (DISK contention)
10 . (LLC contentjgn)
Better o paed) G vl o e, AL Pron s
1 0 T
1000 2000 R100]0)
0 Time (s) 2

dverage
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DIAL: AWS + CloudSuite

» 10 Apache VMs
> LLC contention via AWS dedicated hosts

8 |
- Baseline
- DIAL
90%ile
Response 4
time (ms)

Time (mins) 2
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Outline

» DIAL: Dynamic interference-aware load balancing

»Scavenger: Resource-adaptive batch scheduling

e 10t ACM Symposium on Cloud Computing 2019

> Future directions and conclusions
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Low Resource Utilization in Cloud Environments
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Low Resource Utilization in Cloud Environments

/
Cumulative /
probability, 5] ! . .(.:PU_
F(x) / _SAIELI\JA-_fg utilization
=7 i (%)
/
O"‘ A M M
0) 25 50 75 100
X = Average usage Time (days)
CDF of average CPU and memory usage, VM-level CPU usage for the Azure
4 )
Great opportunity to use cloud idle resources
. /
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Opportunity: Running Background Batch Workload

7 7 i » Key challenge: Resource contention
Cumulative ‘ ’l * May violate SLOs of foreground
" N | .
probability, o5 by CPU dynamic workload
F(X) y, Memory
- CPU - fg :
" —MEM - fg * Foreground workload is a black-box,
O s 50 75 100 SLOs not known

X = Average usage

CDF of average CPU and memory usage,
Alibaba cluster trace (2018).

[bg = background/batch workload]
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Opportunity: Running Background Batch Workload

— " s i » Key challenge: Resource contention
/
Cumulative | " * May violate SLOs of foreground
babilit . .
Prodabllity, osr I, CPU dynamic workload
F(X) / / Memory
— ==CPU - f
/ I —MEM - fg * Foreground workload is a black-box,
L . :
00 o5 50 75 100 SLOs not known
X = Average usage
~ )

Problem statement: How to schedule background batch jobs to improve

utilization without hurting black-box foreground performance?
N\ J
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Prior approaches

» Treat foregroud as white-box (assume SLO is known)
e Bistro (ATC’15, Facebook) :]
* Heracles (ISCA’15, Google)
* History-based harvesting (OSDI'16, Microsoft)
e PARTIES (ASPLOS ‘19, SAIL group-Cornell Uni.)

» Typically focus only on one resource (need some critical profiling)
e dCat (EuroSys’18, IBM)
e Perflso (ATC’18, Microsoft)

o Reprofiles often if workload changes
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Our approach: Scavenger

» Considers foreground workloads as a black-box

» Takes multiple resources (processor, memory, nw) into account
»|s a dynamic and tunable solution

» Uses container as the agile execution environment for batch jobs

Physical server

Container [1] Container [n_socket]

[Worker process} { Worker process ]
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Scavenger Daemon

» Background resource regulation is the main design decision

* Dealing with resource contention is challenging

Container
[DCopyJ
1] 2

CPU Cores
Last Level Cache (LLC)

I Ubuntu 16.04, K\VVM, Docker

Using Linux’s cpuset cgroups
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Resource Regulation Algorithm

» Scavenger determines availability of resources for bg jobs
e Background CPU load (cgroups)
o CPU quota (maximum CPU cycles given to a process under the CFS)
 Memory capacity (libvit)
 Network bandwidth (TC)
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Resource Regulation Algorithm

» Our generic online algorithm
* Monitor VMs’ perf metric (e.g., memory usage) for window-size
* Calculate mean, u, and standard deviation, o

* React based on the VMs’ perf metric and u +/- c.o Headroom

Simplified illustration

network usage]

bg=0 Time =——> bg=1-(u + c. o)
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Evaluation Methodology

»Scavenger prototype implementation

e Largely written in C++ and shell script (~750 lines of code)

Training | CloudSuite | Widely used benchmark suite
Foreground
Testing TailBench | Designed for latency-critical applications
Background KMeans A popular clustering algorithm
(SparkBench) SparkPi Computes Pi with very high precision

Sensitivity analysis ] - [ Experimental evaluation
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TailBench

The load generators employed in TailBench are open-loop.

Workload Domain Tail latency scale

http://people.csail.mit.edu/sanchez/papers/2016.tailbench.iiswc.pdf
43 /o0



Cloud Testbed

/-[ Background
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¥ m Stony Brook University
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Evaluation with Spark jobs as background

VM, Workload Il VM, Workload

60 — 64835 bg: SparkPi
SIS [EfEme | y ZSeeere CPU | Memor
degradation (%) 401 Baseline y
m Scavenger 43% 201%™
Better 20r i -
| 0 | I I | el 1 | l I [ | l I
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325 :
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degradation (%) 40 - I -ggz‘éﬁgger CPU Memory
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Limit Study With DCopy as the Background

Cloud testbed: 4-vCPU foreground VM, 6-core background DCopy container.

B No background
I Baseline
DScavenger

Normalized
95%ile latency

Betterl

SI|O sec'bb masstree shore shmx imo dnn

rsity

Scavenger can successfully and aggressively regulate

 bg workload to mitigate its impact on fg performance.

)

J
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Outline

» DIAL: Dynamic interference-aware load balancing

» Scavenger: Resource-adaptive batch scheduling

> Future directions and conclusions
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Future Direction

» Using Machine Learning (ML) techniques for
* Predicting the resource demand of customers workloads
* Tuning the solution parameters dynamically (u + c(t). o)

ML deployment challenge

o Easy and simple deployment in production systems

» Extending Scavenger for CAT-equipped servers
e LLC allocation based on the Scavenger's regulation algorithm

* Background workload will be allowed to use idle cores in full capacity
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Conclusions

»Scheduling is a key component of applications
* |t faces new challenges in cloud environments

» Analytical approaches can address these challenges

{C ) Scheduler h
onsumers
J | [ Policy ] J

_ [ SC,: Variable resource capacity ] DIAL
_ [ SC,: fg workload is black-box J Scavenger
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