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1 User-Centric Interference-Aware Load
2 Balancing for Cloud-Deployed Applications
3 Seyyed Ahmad Javadi and Anshul Gandhi

4 Abstract—VMs deployed in cloud environments are prone to performance interference due to dynamic and unpredictable contention

5 for shared physical resources among colocated tenants. Current provider-centric solutions, such as careful co-scheduling of VMs and/

6 or VM migration, require a priori profiling of customer VMs, which is infeasible in public clouds. Further, such solutions are not always

7 aware of the user’s SLO requirements or application bottlenecks. This paper presents DIAL, an interference-aware load balancing

8 framework that can directly be employed by cloud users without requiring any assistance from the provider. The key idea behind DIAL

9 is to infer the demand for contended resources on the physical hosts, which is otherwise hidden from users. Estimates of the colocated

10 load are then used to dynamically shift load away from compromised VMs without violating the application’s tail latency SLOs. We

11 implement DIAL for web and online analytical processing applications, and show, via experimental results on OpenStack and AWS

12 clouds, that DIAL can reduce tail latencies by as much as 70 percent compared to existing solutions.

13 Index Terms—Cloud computing, performance interference, load balancing

Ç

14 1 INTRODUCTION

15 THE benefits of cloud computing are undeniable – low
16 cost, elasticity, and the ability to pay-as-you-go. Not
17 surprisingly, many online services and applications are
18 now hosted on the cloud, on virtual machines (VMs).
19 Despite its popularity, however, applications deployed
20 in the cloud can experience undesirable performance
21 effects, the most severe of which is interference. Perfor-
22 mance interference is caused by contention for physical
23 resources, such as CPU or last-level cache, among colo-
24 cated VM users/tenants.
25 Interference is an undesirable side-effect of a fundamen-
26 tal design principle of the cloud, namely, multi-tenancy
27 (sharing of a physical server among users). While certain
28 resources, such as CPU, can be partitioned among colocated
29 VMs by cloud providers, other resources, such as processor
30 caches, are notoriously hard to partition [1]. Nonetheless,
31 partitioning of resources among tenants can adversely
32 impact cloud resource utilization. Further, resource conten-
33 tion depends on the workload of all colocated tenant VMs,
34 and is thus dynamic and unpredictable [2]; as a result, static
35 partitioning is not a useful solution.
36 Prior work on interference mitigation has typically
37 focused on provider-centric solutions. A popular approach
38 is to profile applications and co-schedule VMs that do not
39 contend on the same resource(s) [3], [4], [5]. However, since
40 interference is dynamic and can emerge unpredictably, stat-
41 ically co-scheduling VMs will not suffice. VM migration can
42 help in this case, but interference is volatile and short-lived,

43often lasting for only a couple minutes [2]; by contrast,
44migration can take several minutes [6] and can incur over-
45heads [7], especially for stateful applications [8].
46A key challenge that has not been addressed with
47regards to interference is the lack of visibility and control
48between the provider and the tenant, especially in public
49clouds [9]. Specifically, tenant VMs in a public can not, or
50should not, be profiled a priori by the provider due to pri-
51vacy concerns [10]. Further, providers are not always aware
52of the cloud user’s Service Level Objective (SLO) require-
53ments or the user application’s bottleneck resources.
54In this paper, wemake the case for a user-centric interference
55mitigation approach which can be employed by the tenant
56without requiring any assistance from the provider or hypervi-
57sor. Such user-centric solutions empower the tenant to have
58greater control on their application performance,which is often
59themost important criteria for users. Further, user-centric solu-
60tions are, by definition, aware of the user application and its
61SLOs, and can appropriately react to the onset or termination
62of interference.
63We present DIAL, a dynamic solution for mitigating
64interference in load-balanced cloud deployments. We con-
65sider a generic cloud-deployed application that has a tier of
66worker nodes hosted on multiple VMs and experiencing
67unpredictable interference from colocated VMs (owned by
68other cloud tenants), as shown in Fig. 1. The incoming load
69is distributed among the worker nodes via one or more load
70balancers. This generic model is widely applicable, for
71example, for web applications (where workers are web or
72application servers), online analytical processing (OLAP)
73systems like Pinot [11], etc.
74The key idea behind DIAL is to infer contention in colo-
75cated VMs. Specifically, by monitoring its own application
76performance, the user can estimate the colocated load that
77can induce the observed level of performance degradation,
78without requiring any assistance from colocated users or
79the hypervisor. We find that, in addition to estimating the
80colocated load, it is also important to determine the resource
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of81 that is under contention, as this dictates the impact of inter-

82 ference on performance.
83 To address the dynamic nature of interference, DIAL
84 adapts the load distribution of incoming requests among
85 user VMs. We introduce a model for interference, based in
86 queueing theory [12], [13], to understand the impact on per-
87 formance of contention at shared physical resources. DIAL
88 then optimizes the time-varying load distribution among
89 worker VMs to reduce tail latency.
90 We implement and experimentally evaluate DIAL for
91 two specific application classes:

92 1) Web applications: We implement DIAL on HAP-
93 roxy [14], and evaluate DIAL’s benefits using two
94 popular web applications with varying workload
95 under CPU, network, disk, and cache interference on
96 OpenStack and AWS clouds. Our experimental
97 results show that DIAL reduces 90%ile response
98 times by as much as 70 percent compared to interfer-
99 ence-oblivious load balancers. Further, compared to

100 existing interference-aware solutions, DIAL reduces
101 tail response times by as much as 48 percent.
102 2) OLAP Systems:We implement DIAL for a popular and
103 open-source OLAP system called Pinot that has being
104 used in production clusters at LinkedIn andUber. Our
105 experimental results on a KVM cluster show that
106 DIAL can reduce 95%ile query completion times by
107 16-40 percent under CPU and LLC contention.
108 A preliminary version of this paper appeared in the
109 ICAC 2017 conference, but only focused on web applica-
110 tions [15]. This version extends the performance modeling,
111 optimization, implementation and evaluation of DIAL for
112 the case of OLAP systems, such as Pinot [11]. Further, this
113 version provides the analytical proof sketches for the theo-
114 retical results that guide DIAL.

115 2 DIAL SYSTEM DESIGN

116 DIAL is a user-centric interference mitigation solution
117 designed for clouds that directly empowers the users. DIAL
118 can complement provider-centric solutions, especially when
119 provider efforts to mitigate interference are not enough to
120 avoid specific SLO violations for user applications.

121 2.1 Problem Statement and Scope
122 Fig. 1 illustrates a typical multi-tier cloud deployed applica-
123 tion. The worker nodes process the incoming requests, and
124 are illustrated as a tier of VMs. Incoming requests are distrib-
125 uted among the worker nodes using an application-specific

126

127

128

129

130

131

132

133

134135scheduler or dispatcher or load balancer; we abstract this
136entity as a Load Balancing Tier (LBT). Our focus in this paper
137is on the worker nodes and the LBT; specifically, we propose
138a new technique to dynamically infer the interference on
139worker nodes and adjust the load balancing weights for the
140worker VMs in the LBT. We assert that the LBT is ideally
141suited tomitigate the effects of volatile interference onworker
142VMs as the LBT acts at the front-end for theworker tier.
143The worker tier is hosted on multiple foreground (fg)
144VMs, each of which is hosted on a physical machine (PM);
145we highlight the worker tier fg VMs in Fig. 1. Each PM may
146also host background (bg) VMs that do not belong to the fg
147user, as shown in Fig. 1. The fg and bg VMs on a PM can
148contend for shared physical resources, such as CPU, net-
149work bandwidth (NET), disk I/O bandwidth (DISK), and
150last-level-cache (LLC), resulting in interference. Note that
151the fg user does not have visibility into the bg VMs; in fact,
152the fg user is unaware of bg VMs.

1532.2 DIAL Overview
154Our solution, DIAL, is a user-centric dynamic Interference-
155Aware Load Balancing framework. The design of DIAL
156addresses two key questions:

157(i) Howcan users estimate the interference that their VMs
158are experiencing without any assistance from the pro-
159vider, hypervisor, or colocated users? (Section 2.3)
160(ii) Given this information, how should users dyna-
161mically distribute load among their VMs to mini-
162mize tail latencies in the presence of interference?
163(Section 2.4)
164The key idea in DIAL is to estimate, from within a user VM,
165the amount of interference being induced by colocated VMs,
166and then adapt the incoming load intensity for each user VM
167accordingly. Fig. 2 shows a high-level overview of DIAL’s
168control flow. DIAL monitors performance metrics from
169within the VMs and signals interference if tail latency goes
170above a certain threshold (detection, see Section 2.3.1). DIAL
171then determines if the detected event is a load change for the
172application or a resource contention event (classification, see
173Section 2.3.2). Depending on the source of contention, DIAL
174quantifies, or infers, the severity of resource contention (esti-
175mation, see Section 2.3.3). Based on this quantification, DIAL
176determines the theoretically-optimal load balancing weights
177that the user application should employ tomitigate the impact
178of contention (see Section 2.4). The above steps are continually
179employed at runtime, enabling DIAL to respond dynamically
180to contention.

1812.3 User-Centric Estimation of Interference
182We define amount of interference as the fraction of available
183physical resources that are in use by colocated background
184VMs. In the context of Fig. 1, the amount of interference is
185the fraction of physical resources on a PM that are in use by

Fig. 1. Illustration of a generic cloud application containing LBC and
processing tier deployed on multiple foreground (fg) VMs experiencing
interference from background (bg) VMs.

Fig. 2. Illustration of DIAL’s control flow.
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of186 the colocated bg VMs, and are thus unavailable to the fg VM

187 on that PM. As we show below, estimating the amount of
188 interference is non-trivial as it requires classification and
189 modeling of interference.

190 2.3.1 Impact of Interference on Tail Latencies

191 Interference is known to impact application response
192 times [3], [16], [17]. DIAL leverages this fact to estimate the
193 amount of interference that an fg VM is experiencing
194 because of resource contention created by colocated bg
195 VMs. Specifically, DIAL aims to infer the amount of interfer-
196 ence, or resource contention, that the bg VMs must be creat-
197 ing to effect the observed rise in fg response times.
198 Fig. 3 shows the impact of different types of resource
199 contention on the 90%ile response time of an OpenStack
200 cloud-deployed Apache web server VM hosting files and
201 driven by the httperf load generator. We create contention
202 for this fg VM by running various microbenchmarks in colo-
203 cated bg VMs. The x-axis denotes the percentage of total
204 resource usage, which is the sum of resource usage by the
205 fg VM and all colocated bg VMs, normalized by peak
206 resource capacity or bandwidth. For example, if the total
207 network bandwidth usage is 80MB/s, and the peak network
208 bandwidth is about 115MB/s, then the resource utilization
209 is 80=115 � 0:7.
210 We make two observations from this figure:
211 (i) response time increases considerably under interference, (ii)
212 the relationship between total resource usage and response time
213 depends on the exact resource under contention.
214 Detecting Interference. DIAL uses the first observation to
215 detect when the fg application VM is under interference.
216 Specifically, from Fig. 3, we see that application response
217 times, or Tx, are initially low and stable (left of the graph).
218 However, once the total resource usage increases (right of
219 the graph), because of the increased resource demand from
220 bg VMs, the fg response times rise sharply. Thus, DIAL sig-
221 nals interference when Tx goes beyond the 95 percent confi-
222 dence intervals (around the mean of periodically monitored
223 tail latencies) observed during no or low interference.
224 Need for Identifying the Source of Interference: The second
225 observation suggests that using tail response times to esti-
226 mate interference will require knowledge of the specific
227 resource that is under contention.

228 2.3.2 Classifying Interference using Decision Trees

229 Our next task is to classify the source of interference, which
230 is defined as the dominant resource under contention. Note
231 that it is possible for several resources to be simultaneously

232under contention; however, we only consider dominant
233resource contention. Our key idea in classification is to
234observe the impact of interference on user metrics, such as
235CPU utilization and I/O wait time, which can be easily
236obtained from within the VM via the /proc subsystem.
237DIAL uses decision trees to classify contention. The deci-
238sion tree classifier is trained by running controlled interfer-
239ence experiments using microbenchmarks and monitoring
240the metrics in each case. After training, the decision tree can
241classify the source of interference, even for unseen work-
242loads, based on the observed metric values (Section 4.3.2).
243Distinguishing Interference from Workload Variations. An
244application’s response time can degrade for various rea-
245sons, such as workload surges, in addition to interference.
246While our detection methodology detailed in Section 2.3.1
247does not distinguish between interference and workload
248variations, DIAL makes this distinction at the classification
249stage by again leveraging the decision tree classifier. Specifi-
250cally, to distinguish interference from workload variations,
251DIAL normalizes the observed metric values with predicted
252values based on monitored workload intensity. Prior work
253has shown that linear models can accurately predict CPU
254usage based on workload intensities [18]. We thus use
255linear regression to predict the metric values as a linear
256function of the number of requests seen in the past monitor-
257ing interval.
258The intuition behind this approach is that, in the absence
259of interference, the normalized values will be close to 1
260under workload variations. The decision tree can thus use
261the deviation of the observed metrics from the normalized
262metrics to distinguish workload changes from interference.

2632.3.3 Queueing-based Model for Interference

264The final step is to use the classification information to esti-
265mate the amount of interference, which is the fraction of
266resources that are in use by colocated bg VMs. Once we have
267these estimates, DIAL can redistribute incoming load accord-
268ingly tomitigate the impact of interference (Section 2.4).
269From Fig. 3, we see that tail response times increase non-
270linearly with the total usage of the resource under conten-
271tion. Recall that the total resource usage is the sum of
272resource usage of the fg VM (can be monitored by the fg
273user) and all colocated bg VMs (cannot be monitored by the
274fg user). Our key idea is to model this non-linear relation-
275ship for each resource; this allows inferring the resource
276usage of the colocated bg VMs based on observed fg tail
277latencies, which in turn gives us the amount of interference.
278Modeling Interference. We employ queueing theory to
279model the non-linear relationship between resource usage
280and tail latencies. Queueing models suggest that the tail
281response time for an application is inversely proportional
282to the unused capacity of the VM [12]. Mathematically,
283Tx � 1=ð1� rfgÞa, for some parameter a, where rfg is the
284resource load of the fg application (such as CPU utilization
285or I/O bandwidth utilization), normalized to peak resource
286usage; that is, 0 � rfg � 1. Prior work [19] has shown that
287a ¼ 2 works well for practical settings given the high vari-
288ability in real workloads. Prior theoretical work has also
289shown that a quadratic term in the denominator can result
290in better predictability under high loads [20]. However,
291such models do not account for interference.
292Under interference, the fg application experiences con-
293gested resources due to colocated bg VMs. As a result, the

Fig. 3. Performance of an OpenStack-deployed Apache web server
under interference from colocated VMs running microbenchmarks.
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294 application experiences higher load than it would in the
295 absence of interference. We model this effect by adding
296 the resource usage of colocated bg VMs to that of the fg VM,
297 resulting in fg response times being inversely proportional
298 to ð1� ðrfg þ rbgÞÞ. The sum of loads exerted by the fg
299 and bg VMs, ðrfg þ rbgÞ, represents the normalized total
300 resource utilization. We thus approximate x%ile response
301 time as:

Tx ¼ c0 þ c1=ð1� rfg � rbgÞ þ c2=ð1� rfg � rbgÞ2; (1)

303303

304 where ~c is the coefficient vector that depends on the specific
305 resource under contention. The polynomial function in Eq. (1)
306 is inspired by prior work on queueing systems [20], [21] to
307 interpolate between low load (linear term in denominator)
308 and high load (quadratic term in denominator) regimes.
309 To determine the coefficients, we train the model in
310 Eq. (1) by creating different levels of resource usage and
311 monitoring the Tx of fg VMs (see Section 2.5.1). We then use
312 multiple linear regression over this training data to derive
313 the resource-specific coefficients. While Eq. (1) is inspired
314 by queueing models, it can accurately track the relationship
315 between tail response times and resource usage for realistic
316 web applications, as we show in Section 4.3.
317 Applying the Model to Estimate Interference: Eq. (1) can be
318 easily employed to estimate the amount of interference.
319 After detection and classification, the fg user can estimate
320 rbg by monitoring Tx and rfg, and solving Eq. (1) for rbg.

321 2.4 Interference-Aware Load Balancing
322 Interference-aware load balancing is the key component of
323 DIAL. When there is no interference, balancing the load
324 among VMs works well to provide low response times.
325 However, if one of the VMs is facing interference (can be
326 estimated via the above-described interference modeling),
327 then its share of the load must be adjusted accordingly. One
328 might think that reducing the share of load in proportion to
329 the available capacity at the compromised VM, ð1� rbgÞ,
330 should work well. Unfortunately, this approach can be far
331 from optimal, as we show via experiments in Section 4.3.

332 2.4.1 Minimizing Tail Response Times for Web

333 Applications

334 To minimize application tail response times under interfer-
335 ence, we again employ queueing theory. We first consider
336 the case where any VM can serve an incoming request, as in
337 the case of a web application tier. Consider a cluster of n
338 VMs, with VM i facing interference of rbg;i. Let the fraction
339 of total incoming load that is directed to VM i be pi; we refer
340 to pi as the weight assigned by the load balancer (LB) to VM
341 i. If the total arrival rate for the application is a, the arrival
342 rate for VM i is a � pi. Our goal is to determine the pis that
343 minimize the x%ile response time, Tx.
344 To obtain a simple closed-form expression for the theo-
345 retically optimal pis, we model each VM as an M/M/1
346 system. By focusing on the dominant resource that is caus-
347 ing interference, as classified using the decision tree, we
348 employ the M/M/1 model to represent the contention at
349 the dominant resource. While this is an oversimplification,
350 the resulting closed-form tail latency expression enables the
351 optimization and determination of theoretically-optimal
352 load balancer weights. We note that the resulting pis are

353only optimal under the M/M/1 model; we refer to these as
354the “theoretically optimal” weights in the rest of the paper.
355For the M/M/1 model, the response time is known to fol-
356low an Exponential distribution [12]. We can thus obtain
357any tail probability of response time by using the CDF of
358the Exponential distribution. Under the M/M/1 assump-
359tion, Tx for a cluster of n VMs is approximated as:

Tx �
Xn
i¼1

pi � � lnð1� x=100Þ
ri � a � pi ; (2)

361361

362where ri represents the throughput of VM i (with conten-
363tion). Since interference reduces the throughput of the com-
364promised VM, we set ri ¼ r � ð1� rbg;iÞ, where r is the peak
365throughput of an application VM. For example, if the peak
366throughput of our Apache server is r ¼ 1000 req/sec, and it
367is experiencing an estimated interference of rbg ¼ 0:6, then
368we set r ¼ 1000� 0:4 ¼ 400 req/sec.
369Eq. (2) above works for all percentiles of response time.
370For example, if x ¼ 90, meaning we focus on the 90%ile
371response time, then the term in the numerator becomes
372� lnð1� 0:9Þ ¼ ln 10. For 95%ile response times, the numer-
373ator becomes ln 20. Interestingly, the optimization for pis
374discussed below does not depend on the numerator value
375(since it is independent of pi), and thus our results apply, as-
376is, for any percentile of response times, including the median.
377Given a (monitored at the LB) and ri (derived as dis-
378cussed above using interference estimation from Section
3792.3), Tx can be expressed as a function of pi via Eq. (2). We
380can now derive the theoretically optimal weights, pis, that
381minimize Tx in Eq. (2) via calculus, as presented below.

382Lemma 1. The theoretically optimal load split for minimizing Tx

383for a cluster of n VMs with total arrival rate a and individual
384VM throughputs ri is given by:

p	i ¼ ri
Xn
j¼1

ffiffiffiffi
rj

p � ffiffiffiffi
ri

p Xn
j¼1

rj þ a
ffiffiffiffi
ri

p
 !�

a
Xn
j¼1

ffiffiffiffi
rj

p
 !

: (3) 386386

387

388Proof. The proof proceeds via mathematical induction on n.
389We first prove the base case for n ¼ 2. Let the probability
390of sending a request to VM 1 (with throughput r1) be p;
391thus, arrival rate into VM 1 is a � p. Then, under the M/
392M/1 queueing model [12], the response time for VM 1 is
393distributed as Expðr1 � a � pÞ. Based on this, the x%ile

394response time is � lnð1�x=100Þ
r1�a�p . Likewise, the x%ile response

395time for VM 2 (with arrival rate a � ð1� pÞ) is � lnð1�x=100Þ
r2�a�ð1�pÞ .

396We now approximate Tx for the 2-VM system as:

Tx � p � �lnð1� x=100Þ
r1 � a � p þ ð1� pÞ � �lnð1� x=100Þ

r2 � a � ð1� pÞ :

398398

399We now derive the optimal value of 0 � p � 1 that mini-
400mizes Tx. Taking the derivative of Tx w.r.t. p, we get:

p	1 ¼ p	 ¼ r1
ffiffiffiffiffi
r2

p � r2
ffiffiffiffiffi
r1

p þ a
ffiffiffiffiffi
r1

p
að ffiffiffiffiffi

r1
p þ ffiffiffiffiffi

r2
p Þ :

402402

403

404Now assume that the above expression for p	 is true for
405n ¼ k. Then, for n ¼ ðkþ 1Þ, we partition the ðkþ 1Þ VM
406system into a single VMwith request probability pn and a
407k-VM system with request probability ð1� pnÞ. For the
408k-VM system (with primed variables) with request rate

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. X, XXXXX 2019
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409 a0 ¼ a � ð1� pnÞ, by the inductive hypothesis, we have:

p0	i ¼ ri
Pk

j¼1
ffiffiffiffi
rj

p � ffiffiffiffi
ri

p Pk
j¼1 rj þ a0

ffiffiffiffi
ri

p

a0
Pk

j¼1
ffiffiffiffi
rj

p :

411411

412 The approximate x%ile response time for the ðkþ 1Þ-VM
413 system can then be written as:

Tx � pn � �lnð1� x=100Þ
rn � a � pn

þ ð1� pnÞ �
Xk
j¼1

p0	i � �lnð1� x=100Þ
ri � a0 � p0	i

(4)

415415

416 Note that Tx is itself a function of pn since request rate for
417 the k-VM system is a0 ¼ að1� pnÞ). We now derive the
418 theoretically optimal p	n by differentiating Eq. (4) to get:

p	n ¼ rn
Pn

j¼1
ffiffiffiffi
rj

p � ffiffiffiffiffi
rn

p Pn
j¼1 rj þ a

ffiffiffiffiffi
rn

p
a
Pn

j¼1
ffiffiffiffi
rj

p : (5)

420420

421 The remaining k theoretically optimal probabilities can
422 then be derived by noting that p	i ¼ ð1� p	nÞ � p0	i : tu
423 Note that p	i depends on the estimates of ri, thus necessitat-
424 ing the interference estimation of Section 2.3. Also note that p	i
425 depends on the total arrival rate, a. This is to be expected since,
426 for example, if the arrival rate is very low, we can send all
427 requests to the VM with the highest throughput to minimize
428 response times; however, if the arrival rate is very high, then a
429 single VM cannot handle all requests, and we have to distrib-
430 ute the load. Importantly, both ri and a can change unpredict-
431 ably at any time (ri due to interference and a due to variable
432 customer traffic), motivating the need for a dynamic solution
433 instead of existing static solutions.

434 2.4.2 Minimizing Tail Response Times for OLAP

435 Applications

436 We now extend the above analysis to the case where only a
437 subset of workers (replicas) can serve an incoming request
438 due to data locality, as in the case of OLAP systems. Let the
439 number of replicas be c. Let us first consider the case where
440 one worker, say w, out of n, is under interference. Let the
441 non-interference throughput be r and that of w be rw < r.
442 In the absence of interference, 1=c fraction of requests that
443 have a replica on wwould be sent there by the LB; further, the
444 arrival rate to w would be a=n, assuming a fair distribution of
445 replicas amongworkers. In the presence of interference, let the
446 fraction sent tow be p, and so the fraction sent to the remaining
447 ðc� 1Þ replicas is 1�p

c�1. Thus, the arrival rate into w is now
448

a
n � p

1=c ¼ a
n � p c, and the fraction of all requests that go to w is

449 q ¼ p c
n . Likewise, arrival rate into each non-interferenceworker

450 is a
n þ a

n � 1�p c
ðn�1Þ ¼ a � 1�q

n�1, and the fraction of all requests that go
451 to each non-interferenceworker is 1�q

n�1.
452 Using the M/M/1 model [12], we have, similar to Eq. (2):

Tx � q � � lnð1� x=100Þ
rw � a � q

þ ðn� 1Þ � 1� q

n� 1
� � lnð1� x=100Þ

r� a � 1�q
n�1

:

(6)

454454

455

456Observe that Eq. (6) is exactly the same as Eq. (2) when
457r1 ¼ rw and ri ¼ r for i 6¼ 1, except that p1 is replaced by q.
458Thus, the theoretically optimal solution, via Eq. (3), is q	 ¼ p	1,
459and thus the theoretically optimal split for the worker under
460interference is q	 � nc ¼ p	1 � nc. Intuitively, this result says that
461more load needs to be placed on the interference worker in
462case of OLAP when compared to web applications; this makes
463sense as there are fewer alternative workers in case of OLAP
464applications as opposed to web applications, i.e., ðc� 1Þ as
465opposed to ðn� 1Þ. We can similarly obtain the theoretically
466optimal splitwhenmore than oneworker is under interference.

4672.5 The DIAL Control Flow
468The control flow for our DIAL implementation (for web and
469OLAP applications) is as follows:

4700) Monitoring: DIAL monitors the fg application’s Tx,
471arrival rate, a, load, rfg;i, and classification metrics
472(e.g., connection time), averaged every interval, for
473all fg VMs.
4741) Detection: DIAL signals interference if Tx exceeds its
47595 percent confidence bounds for successive moni-
476toring intervals.
4772) Classification: DIAL next employs the decision tree
478to identify the dominant resource under contention.
4793) Estimation: DIAL then uses the Tx and rfg;i values in
480Eq. (1), with the dominant resource-specific coeffi-
481cients, to estimate the interference, rbg;i. The interfer-
482ence-aware throughput for fg VM i is adjusted by
483ð1� rbg;iÞ.
4844) Interference-aware load balancing: Given these esti-
485mates, and the monitored a value, DIAL derives the
486LB weights, ~p	, via Eq. (3), and inputs them to the LB.
487We continue monitoring the VMs’ performance to detect
488further changes in interference and to detect the end of
489interference. When Tx returns to normal (for successive
490intervals), we reset the LB weights.

4912.5.1 Training the DIAL Controller

492DIAL requires somemodel training to build the decision tree
493(Section 2.3.2) and derive the coefficients of the estimation
494model (Eq. (1)). The above training tasks can be performed
495offline on a dedicated server in a cloud environment by con-
496trolling the bg VMs to run microbenchmarks at different
497intensities while monitoring relevant metrics. In a private
498cloud environment, such as OpenStack, we can set aside a
499dedicated host using Availability Zones. In some public
500clouds, such as Amazon, dedicated hosts can be rented. We
501use these options for training the DIAL controller, as dis-
502cussed in Sections 4.3 and 5.4.

5032.5.2 Assumptions for DIAL Controller Training

504The above-described DIAL control flow and training makes
505certain implicit assumptions about the incoming workload.
506Specifically, by training at different load intensities, DIAL
507assumes that (i) the workload request mix does not change sig-
508nificantly at runtime, and (ii) the distribution of inter-arrival
509times does not change significantly at runtime. When the
510request mix changes, for example, to a more database-heavy
511request mix, then the workload will have a greater sensitivity
512to disk I/O contention. This will thus require a retaining of the
513DIAL controller to infer the new model parameters. Note that
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514 the mean arrival rate and/or the number of workers may
515 change dynamically, and this is already monitored by DIAL
516 and is taken into account when determining the theoretically
517 optimal load balancing weights via the a and n parameters,
518 respectively. We show, in Section 5.4.3, that DIAL works well
519 even under an abrupt request rate change and a change in the
520 number ofworkers.

521 3 EVALUATION METHODOLOGY

522 To evaluate the efficacy of DIAL, we implement it for realis-
523 tic applications and study the reduction in tail latency when
524 worker nodes face interference. This section describes the fg
525 and bg application setup we employ, and our resource mon-
526 itoring approach for worker nodes.

527 3.1 Foreground (fg) Applications

528 3.1.1 Web Applications

529 We consider multi-tier web applications where the applica-
530 tion server tier is treated as the worker tier. The incoming
531 requests are distributed among application servers via a
532 load balancer.
533 We employ two multi-tier web benchmarks as our fg
534 application, CloudSuite [22] and WikiBench [23]. Unless
535 specified otherwise, we use CloudSuite in foreground.
536 CloudSuite. The CloudSuite 2.0Web Serving benchmark is
537 a multi-tier, multi-request class, PHP-MySQL based social
538 networking application. The benchmark uses several request
539 classes, e.g., HomePage, TagSearch, EventDetail, etc.
540 Our CloudSuite setup consists of: (i) Faban workload
541 generator for creating realistic session-based web requests.
542 We set the number of users to 1000 for OpenStack and 5000
543 for AWS; the think time is 5s (default). (ii) HAProxy LB dis-
544 tributes incoming http requests (from Faban) among the
545 back-end application tier VMs. We use the default Round
546 Robin policy, unless stated otherwise. (iii) Application VMs
547 installed with Apache, PHP, Memcached, and an NFS-Cli-
548 ent. We employ 3 application VMs in OpenStack and 10 in
549 AWS. (iv) A MySQL server and an NFS server, hosting the
550 file store, are installed on separate, large VMs (to avoid
551 being the bottleneck).
552 WikiBench. WikiBench is a Web hosting benchmark that
553 mimics wikipedia.org. Our WikiBench setup consists of:
554 (i) wikijector load generator to replay real traffic from past
555 traces of requests to Wikipedia, (ii) HAProxy LB, and
556 (iii) three VMs running the MediaWiki application (the
557 same application that hosts wikipedia.org), and (iv) a
558 MySQL database to store the Wikipedia database dump.

559 3.1.2 OLAP Applications

560 We use the open-source Pinot [11] system as our represen-
561 tative OLAP application. Pinot is a low-latency, scalable,
562 distributed OLAP data store that is used at LinkedIn and
563 Uber for various user-facing functions and internal analy-
564 sis. The Pinot architecture consists of three main compo-
565 nents: (1) controller, (2) broker, and (3) historical worker
566 nodes. The controller is responsible for cluster-wide coor-
567 dination and segment (data shard) assignment to worker
568 nodes. The broker(s) receives queries from clients, distrib-
569 utes them among workers, and integrates the results from
570 the workers and sends the final result back to clients. The
571 brokers act as our load balancing tier (LBT), see Section
572 2.1. The historical worker nodes host data segments and

573respond to queries that originate from the broker. The
574worker nodes constitute our worker tier. Historical work-
575ers store data in the form of an index called segment; every
576table has its own segments.
577For all the above fg applications, we use the suggested
578default configuration values, resulting in average CPU utili-
579zation of about 25 percent for CloudSuite, 34 percent for
580WikiBench, and 62 percent for Pinot, without interference.
581Recent studies, including those at Azure [24] and Alibaba
582[25], reported average CPU utilizations of about 20 percent
583for fg VMs.

5843.2 Background (bg) Workloads
585In our experiments, we emulate interference by employing
586several bg workloads to create contention for the fg applica-
587tion. The bg workloads are hosted on VMs colocated with
588the fg application layer VMs. Each fg VM under interference
589is hosted separately from other fg VMs, and is colocated
590with bg VMs. We first employ microbenchmarks to stress
591individual resources for analyzing fg interference. We then
592employ test workloads to evaluate DIAL for fg applications
593under realistic cloud workloads.
594Microbenchmarks. We employ: (i) stress-ng tool on bg
595VMs to create controlled CPU contention; (ii) httperf load
596generator (on a separate VM and PM) to retrieve hosted files
597from the colocated bg VMs at different, controllable request
598rates to create NET contention; (iii) dcopy benchmark on bg
599VMs to create LLC contention; and (iv) stress on bg VMs to
600create DISK contention.
601Test Workloads. We employ: (i) SPEC CPU to create CPU
602contention, (ii) Memcache server (driven by mutilate client)
603to create NET contention, (iii) STREAM to create LLC con-
604tention, and (iv) Hadoop running TeraSort with a large data
605set to create DISK contention.

6063.3 Resource usage Monitoring
607We study resource contention for four resources: (i) network
608(NET), CPU, Last-Level-Cache (LLC), and disk. We now
609explain how we monitor fg and bg resource usage, from
610within the VMs, for our model training.

611� NET: We use the dstat Linux tool to monitor the used
612network bandwidth for bg and fg VMs. We then nor-
613malize their sum by the peak bandwidth.
614� CPU: We consider fair-sharing of the possibly over-
615committed PM cores among VMs. If a PM has n
616cores available and all VMs together requirem cores,
617then the CPU usage of each VM is normalized by
618maxfm;ng.
619� LLC: Since memory bandwidth for a VM cannot be
620easily monitored, we employ the RAMspeed bench-
621mark to measure the available memory bandwidth.
622We obtain this bandwidth for each experiment and
623then estimate the LLC usage by computing the dif-
624ference between peak bandwidth and experiment
625bandwidth. Finally, we normalize this difference by
626peak bandwidth to estimate LLC usage.
627� DISK: Disk usage typically depends on the access
628pattern (sequential versus random). We thus use the
629same approach as for LLC, but with sysbench
630instead of RAMspeed, for estimating DISK usage.
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632 We first explain our DIAL implementation, and then pres-
633 ent evaluation results for CloudSuite and WikiBench.

634 4.1 DIAL Implementation
635 For DIAL web application deployment, we implement the
636 DIAL controller logic using: (i) a C program to execute the
637 detection, classification, and estimation tasks, and (ii) a set
638 of bash scripts to monitor metrics from the /proc subsys-
639 tem (from within the VM) and the LB logs, and to communi-
640 cate with the LB to reconfigure the weights. The overhead
641 of the DIAL controller is negligible in practice since the
642 decision tree building, response time modeling, and LB
643 weights optimization are performed offline, and are only
644 leveraged periodically during run time using the monitored
645 metrics. Our evaluation results show that the average
646 increase in CPU utilization of the LB VM under DIAL is
647 about 2 percent. ough interval.

648 4.2 Cloud Environments
649 We set up two cloud environments for our evaluation, an
650 OpenStack based private cloud environment and an AWS-
651 based public cloud environment. Unless specified other-
652 wise, we use the OpenStack environment.
653 OpenStack-based Private Cloud. Fig. 4 depicts our experi-
654 mental setup. We use an OpenStack Icehouse-based private
655 cloud with several dedicated Dell C6100 physical machines,
656 referred to as PMs. Each PM has 2 sockets with 6 cores each,
657 and 48GB memory. The host OS is Ubuntu 14.04. All PMs
658 are connected to a network switch via a 1Gb Ethernet cable.
659 Our experiments reveal that the maximum achievable net-
660 work bandwidth is about 115 MB/sec (we flood the net-
661 work using a simple load generator, httperf, and measure
662 the peak observed bandwidth under various request rates
663 and request sizes). Likewise, we find that the maximum
664 achievable memory and (sequential) hard disk drive I/O
665 bandwidths are about 11GB/sec (using RAMspeed) and
666 50 MB/sec (using sysbench), respectively.
667 AWS-based Public Cloud. We rent 10 c4.large instances (2
668 vCPUs and 3.75GB of memory) in AWS EC2’s US East (N.
669 Virginia) region. We also rent a c4 dedicated server (PM) for
670 hosting one of the instances colocated with bg VMs.

671 4.3 Evaluation
672 We first present results for classification and estimation of
673 test workloads. We then present results for performance
674 improvement (reduction in T90) under DIAL for OpenStack
675 and AWS setups for CloudSuite and WikiBench. Unless
676 mentioned otherwise, we compare performance under
677 DIAL with performance without DIAL, referred to as

678baseline. In Section 4.3.6 we compare DIAL against existing
679interference-aware techniques that are popularly employed.

6804.3.1 Evaluating Detection, Classification, and

681Estimation

682Detection. The crosses in Fig. 5 show the impact of different
683resource contentions, created by microbenchmarks, on
684CloudSuite’s HomePage request class response time under
685the OpenStack setup. Every data point (cross) in Fig. 5 is
686obtained by averaging the 90%ile of response times in every
687monitoring interval over three different experiments, each of
688which takes 300s. To detect contention, we use the 95 percent
689confidence intervals around the mean (see Section 2.3.1) to
690obtain the following detection rule for both the OpenStack
691and AWS setups: T90 > 5ms, for HomePage; similar rules
692can be derived for other request classes. We run several
693experiments using the bg test workloads and find that our
694detection rule results in a low false positive rate of 5.7 percent.
695Prior work has employed similar techniques to detect
696and analyze interference using hardware performance
697counters such as CPI [27], MIPS [5], cache miss rate [1], [2],
698etc.; such values are visible to the hypervisor, but are diffi-
699cult and often infeasible to obtain from within the VM. We
700tried accessing such counters through VMs hosted by AWS
701EC2, Google Cloud Platform, and our OpenStack environ-
702ment, but the values were either not supported or were
703incorrectly reported as all zeros; similar observations were
704made for AWS EC2 VMs in prior work [2].
705Classification. We monitor the user space CPU utilization,
706usr, the system space CPU utilization, sys, the I/O wait
707time, wai, the rate of segments retransmitted, seg ret, and
708the 90%ile time taken to establish a connection to the

Fig. 4. Illustration of our OpenStack cloud setup.

Fig. 5. Observed and modeled response times for CloudSuite under
resource contention via microbenchmarks. Average modeling error: 6.1
percent.

Fig. 6. Our trained decision tree. Leaves represent the contention classi-
fication with numbers in the leaves representing the total classification
instances (left) and the number of misclassified ones, if any (right).
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709 application VM, Tc (via HAProxy logs). Note that all metrics
710 are monitored from within the VMs, to comply with the
711 user-centric design of DIAL. We normalize usr and sys
712 using predicted values to distinguish from workload varia-
713 tions, as discussed in Section 2.3.2. The usr and sys metrics
714 can help detect CPU and LLC contention as the processor
715 might have to do more work under these contentions. wai
716 could potentially help classify DISK contention. Finally, seg
717 and Tc could help classify NET contention because of the
718 reduced available network bandwidth.
719 Our decision tree for CloudSuite, trained using microbe-
720 nchmarks, is shown in Fig. 6. The decision tree is generated
721 using WEKA [27]; in particular, WEKA determines the
722 nodes and cutoff values using the J48 algorithm. The tree
723 structure may be different for different applications. How-
724 ever, we expect the high level rules to be the same, as illus-
725 trated by our classification results for the Pinot OLAP
726 application in Section 5.4.1. For example, we expect that
727 LLC interference will lead to an increase in CPU usage.
728 Our 10-fold cross-validation error is 7.8 percent. Our clas-
729 sifier shows that high (normalized to predicted contention)
730 usr signals LLC contention, possibly because more work
731 has to be done to service the LLC misses. A high Tc signals
732 NET contention, which seems intuitive. A moderate drop in
733 usr and moderate rise in sys signals CPU contention; we
734 believe this is because throughput decreases under conten-
735 tion, resulting in lower usr, and thus exhibiting a relative

736rise in sys. A high wai suggests DISK contention. Finally, a
737moderate rise in seg ret and Tc signals workload variations
738(denoted as D_load in Fig. 6).
739We also evaluate our classifier using test workloads that
740were not seen during classifier training. We run 50 total
741experiments using 10 experiments each for Memcache (NET
742contention), SPEC (CPU contention), Hadoop (DISK conten-
743tion) and STREAM (LLC contention), in addition to 10
744experiments under varying CloudSuite application load.
745Our decision tree successfully classifies 44 of the 50 test
746instances; the misclassifications are observed for change in
747workload and DISK contention. The “misclassifications” for
748DISK contention (as LLC) under Hadoop are because of the
749numerous memory accesses made by the colocated Slave
750VMs; we believe that Hadoop interference cannot always be
751classified as a single resource due to its complex and
752dynamic resource needs.
753Estimation. The solid lines in Fig. 5 show our modeling
754results for CloudSuite interference estimation (see Section
7552.3.3) under different resource contentions via training. Our
756average modeling error across all contentions is 6.1 percent.
757If we instead use a ¼ 1 in Eq. (1) to model T90 simply as
758c0 þ c1=ð1� rfg � rbgÞ, the modeling error increases to about

75915 percent. However, when we increase the value of a
760beyond 2, we find only modest improvements in accuracy.
761Effect of Monitoring Interval Length. We use a metrics mon-
762itoring interval length of 10s for the above evaluation.

Fig. 7. Performance comparison between DIAL and baseline for test background workloads. The red, blue, green, and gray regions represent NET,
CPU, DISK, and LLC contention, respectively. DIAL reduces 90%ile response time during these contentions by 39.1, 56.3, 16.2, and 59.2 percent.

Fig. 8. Tc, wai, sys, and usr metrics for apache1 application layer VM for the experiments in Fig. 7. apache1 VM experiences NET, DISK, and LLC
contention, and shows an increase in relevant metrics under those contentions.

Fig. 9. Tc, wai, sys, and usr metrics for apache2 application layer VM for the experiments in Fig. 7. apache2 VM experiences only CPU contention,
and consequently shows an increase in relevant metrics under CPU contention.
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764 as 1s or 5s, lead to inaccurate classification and estimation
765 due to system noise and load fluctuations. On the other
766 hand, intervals larger than 10s do not significantly improve
767 accuracy. For these reasons, we choose an interval length of
768 10s; prior work has also reported such reaction times to
769 avoid rash decisions [2], [26], [28].

770 4.3.2 Evaluating DIAL under Real Workloads

771 Fig. 7 shows our experimental results for CloudSuite under
772 OpenStack for various time-varying contentions created
773 using test workloads in bg VMs. The y-axis shows the tail
774 latency for CloudSuite across all request classes. We create
775 NET, DISK, and LLC contention for apache1 VM using
776 Memcache, Hadoop (TeraSort), and STREAM, respectively.
777 We use SPEC to create CPU contention for apache2.
778 We see that DIAL significantly reduces tail response times,
779 when compared to the baseline, under all contentions; the
780 reduction ranges from 16 percent under DISK contention to
781 59 percent under LLC contention. The relatively low improve-
782 ment under DISK contention is because Hadoop intermit-
783 tently utilizes disk I/O bandwidth; further, not all CloudSuite
784 request classes require (or contend for) disk access.
785 Without DIAL, the tail response time can be as high as
786 20-30ms; with DIAL, the tail response time is almost always
787 around 4-5ms. Note that DIAL requires some time (at least
788 two successive intervals of high response time) for interfer-
789 ence detection during which response time continues to be
790 high, as seen at the start of each contention.
791 Figs. 8 and 9 show our classification metrics for apache1
792 and apache2, respectively; we only show Tc, wai, sys, and
793 usr (and not seg ret) for ease of presentation. Note that the
794 y-axis range in Fig. 9 is intentionally smaller to focus on the
795 rise in the sys metric. For apache1, under NET contention,
796 Tc is high while the other metrics are unaffected. For DISK
797 and LLC contentions, sys is high, especially for LLC; fur-
798 ther, usr is also high under LLC contention. Finally, the wai
799 metric, though noisy, is higher under DISK contention. By
800 contrast, these metrics are unaffected for the corresponding
801 time periods under apache2.
802 Likewise, for apache2, for CPU contention, sys is moder-
803 ately high but not as high as that under DISK and LLC con-
804 tention under apache1. Again, the metrics are unaffected for
805 the CPU contention period under apache1. This shows that
806 the relevant metrics on the compromised VM change under
807 contention, but are unaffected for uncompromised VMs. Fur-
808 ther, the change in metric values under the contention peri-
809 ods are in agreement with the rules of the decision tree
810 classifier in Fig. 6, even though the classifier was trained on

811microbenchmarks and not on these test workloads. This
812highlights the efficacy of our classifier.
813For Memcache, the server is hosted on a bg VM and is
814driven by mutilate clients (on different hosts) issuing a high
815request rate for a small set of key-value pairs, resulting in
816NET being the dominant resource. DIAL correctly classifies
817this Memcache bg VM as creating NET contention. For
818Hadoop, there is significant demand for disk and memory
819bandwidth; our classifier suggests DISK contention.

8204.3.3 Evaluating DIAL under Multiple Contentions

821DIAL is capable of dynamically responding to multiple
822compromised VMs. The optimization in Section 2.4.1 pro-
823vides estimates for LB weights, via Eq. (3), for all VMs. This
824is different from the case of multiple resource contentions
825on the same VM, which is beyond the scope of this paper.
826Fig. 10 shows our experimental results for CloudSuite
827where initially apache2 VM is under CPU contention, but
828then, after about 5 mins, apache1 (on a different host) also
829starts experiencing NET contention, resulting in very high
830interference for the application. After an additional 5 mins,
831both contentions are terminated. We see that DIAL substan-
832tially reduces T90 under interference. This example highlights
833the dynamic nature of DIAL. Compared to existing techniques
834that employ (static) VM placement to mitigate interference,
835DIAL is able to adapt to variations in interference by constantly
836updating its estimates and re-distributing load accordingly.
837For the above experiment, for CPU contention, the DIAL
838weights are f0:45; 0:1; 0:45g (apache2 under contention), and
839for combined CPU and NET contention, the weights are
840f0; 0:27; 0:73g (apache1 under severeNET contention).

8414.3.4 Evaluating DIAL for the WikiBench fg Application

842Fig. 11 shows our results for WikiBench under LLC conten-
843tion created by the dcopy microbenchmark. Here, we have
844two application VMs and one of them is under contention.
845The figure shows the response time for baseline and DIAL
846for all request classes. We create three different contention
847levels for this experiment, shown in gray. DIAL reduces
848response time by about 23 percent when compared to the
849baseline. We also measure the usr and sysmetrics for classi-
850fication and find that both increase considerably, by about
85162 and 41 percent, respectively, under interference; this is in
852agreement with our decision tree classifier.

8534.3.5 Evaluating DIAL in the AWS Setup

854Fig. 12 shows our results for CloudSuite under LLC conten-
855tion created by the dcopy microbenchmark in the AWS
856setup. Here, we have 10 application VMs and only one of
857them is under contention. The figure shows the response
858time for baseline and DIAL for all request classes served by

Fig. 10. DIAL reduces the response time of all request classes by 37 and
56 percent under CPU and combined CPU + NET contention,
respectively.

Fig. 11. Performance under LLC contention for fgWikiBench. DIAL reduces
response times by�23.6 percent during contention (gray regions).
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859 all VMs in the AWS setup. We create several different con-
860 tention levels for this experiment. We see that DIAL reduces
861 response time by about 22 percent when compared to the
862 baseline. This shows that even one compromised VM (out of
863 10) can considerably impact the overall response time.
864 Fig. 13 shows the usr and sys metrics for the shaded
865 region in Fig. 12 to assess classification. Clearly, both the
866 usr and sysmetrics increase considerably during contention
867 when compared to the low, flat lines during no contention.
868 Further, the regions of contention can be easily discerned
869 from the figure, resulting in good detection accuracy.

870 4.3.6 Comparison with Existing user-Centric

871 Techniques

872 Utilization-based Strategies.Fig. 14 shows our experimental
873 results for high CPU contention under DIAL and under
874 ICE [1]. Similar to DIAL, ICE is an interference-aware load
875 balancer that adjusts the traffic directed towards compro-
876 mised VMs. However, instead of using LB weights, ICE
877 ensures that the CPU utilization for the compromised VMs
878 stays below a certain threshold. The authors do not men-
879 tion this threshold value in the paper, and so we experi-
880 mentally determine the best threshold value across
881 experiments. Unfortunately, we find that the optimal CPU
882 utilization threshold varies with the amount and type of
883 interference. For example, we find that 15 percent CPU
884 utilization works well for moderate CPU interference
885 under ICE, but does not work well for high CPU interfer-
886 ence, as shown in Fig. 14. Under DIAL, response time is
887 significantly lower, and the observed CPU usage at the
888 compromised VM is about 8-10 percent; results are similar
889 for other contentions.
890 Queue-Length based Strategies.Queue-length or load-based
891 strategies send traffic to the VM that has the lowest load. We
892 consider the Least Connections (LC) strategy that directs the
893 next incoming request to the VM that has the least number
894 of active connections. Under interference, the outstanding
895 requests for the compromised VM will be higher, resulting
896 in fewer additional requests being sent to it under LC.

898

898

899

900

901

902

903

904

905

906907Fig. 15 shows the reduction in T90 afforded by DIAL over
908LC (and other heuristics that we discuss next) for the
909TagSearch request class under CPU and LLC conten-
910tions; results are similar for other classes and for NET
911and DISK contention. We see that DIAL lowers response
912time significantly, by as much as 70-80 percent, when
913compared to LC (red dashed line). The improvement is
914greater at higher contentions. The reason for this
915improvement is that the compromised VM does not just
916have lower capacity, but also requires (non-linearly) more
917time to serve each request. The weights under DIAL take
918both these into consideration, as opposed to LC that
919only addresses the former.
920Weighted Load Balancing Strategies. We now compare
921DIAL with other weighted load balancing heuristics, such
922as Weighted Round Robin (WRR) and Weighted Least Con-
923nections (WLC). For WRR and WLC, we use proportional
924interference-aware weights, as discussed in Section 2.4.
925Fig. 15 shows the reduction in T90 afforded by DIAL over
926WRR (blue solid line) and WLC (black dotted line). We see
927that DIAL lowers response time considerably when com-
928pared to these heuristics. It is interesting to note that WRR
929is typically worse thanWLC under CPU contention, but bet-
930ter than WLC under LLC contention; this observation reaf-
931firms the fact that the impact of interference depends on the
932type of resource under contention.

9335 DIAL FOR PINOT

934We now present our implementation of DIAL and its evalu-
935ation for a widely used OLAP solution, Pinot [11].

9365.1 DIAL Implementation
937The Load Balancing Tier (LBT) for Pinot consists of the Bro-
938ker nodes (see Section 3.1.2), that distribute queries to the
939back-end workers nodes. The Brokers rely on routing tables,
940stored in Broker memory, to determine which worker nodes
941host the data segments that are needed to serve the incom-
942ing query. Each routing table is a map from every segment

Fig. 12. Performance under LLC contention for AWS setup. DIAL
reduces response times by around 22.3 percent.

Fig. 13. usr and sys metrics for the gray region in Fig. 12. These metrics
clearly increase during contention.

Fig. 14. Comparison of DIAL with ICE under CPU contention. DIAL
reduces T90 by 25-48 percent for all request classes.

Fig. 15. Comparison of DIAL with other LB heuristics.
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944 replicas, numerous unique routing tables can be generated.
945 By randomly selecting a routing table for each query, the
946 Brokers balance load among the worker nodes.
947 We implement DIAL on the Broker using �300 lines of
948 Java code. Once interference is detected, DIAL updates
949 the routing tables to remap segments that were initially
950 assigned to the worker(s) under interference to other repli-
951 cas, based on the theoretically-derived optimal fractions, q	

952 (see Section 2.4.2). Likewise, once interference ceases, the
953 routing tables are updated to the default balanced weights.

954 5.2 Cloud Environment
955 We use several blade servers (PMs) from a HP Proliant
956 C7000 Chassis. Each PM has 2 sockets with 4-core CPUs
957 each, and 32 GB memory. The host OS is Ubuntu 16.04. The
958 servers are connected through 1Gb/s network links. We use
959 KVM (on top of Ubuntu 16.04) to deploy VMs on these
960 PMs. We deploy 6 Pinot worker nodes on 1 vCPU, 16GB
961 memory VMs; each VM is on a separate PM. We deploy the
962 Pinot Controller and 2 Pinot Brokers using VMs with 8
963 vCPUs and 16GB memory, on different PMs.
964 We experiment with CPU and LLC contention for Pinot.
965 For CPU contention, we use a 1 vCPU bg VM that is stati-
966 cally pinned to the same core as the fg VM (via hyper-
967 threading). For LLC contention, we use a 3 vCPU bg VM
968 that is pinned to the remaining 3 cores of the 4-core socket
969 that hosts the fg VM; in this way, we do not share the same
970 core as the fg VM to avoid CPU contention.

971 5.3 Workload and Benchmark
972 We implement a query generator for Pinot based on our
973 tables. For each table, we create several realistic queries. An
974 example query for the ProfileView table is “SELECT COUNT
975 (*) FROMProfileViewWHEREViewedProfileID=ID”, where
976 ID is a (randomized) query parameter. Our table and query
977 design is based on LinkedIn’s Pinot deployment [11]. Our
978 benchmark is implemented in �2000 lines of code, and is
979 open-sourced [30].

980 5.4 Evaluation
981 We use a warm-up time of 120s for all our experiments in
982 this section. We focus on 95%ile response times for Pinot.

983 5.4.1 Evaluating Detection, Classification,

984 and Estimation

985 Detection. The crosses in Fig. 16a show the impact of CPU
986 and LLC contention on Pinot response times. The detection
987 rule of T95 > 61ms is obtained based on the discussion in
988 Section 2.3.1. We run several experiments using the bg test
989 workloads and find that our detection rule results in a low
990 false positive rate of 3.3 percent.

991Classification. We monitor total CPU usage, cpu, and the
992system space CPU utilization, sys; we normalize these val-
993ues using predicted values to distinguish from workload
994variations, as discussed in Section 2.3.2. Our decision tree
995for Pinot is shown in Fig. 16b. The classification rules in
996Fig. 16b closely resemble those for the web application in
997Fig. 6. Our 10-fold cross-validation error is 2.3 percent.
998We also evaluate our classifier using test workloads
999that were not seen during training. We run 10 experi-
1000ments each for SPEC (CPU contention) and STREAM
1001(LLC contention), and 10 experiments under varying
1002Pinot workload. Our decision tree classifier is able to
1003accurately classify all instances, except one CPU interfer-
1004ence instance which is misclassified as LLC interference.
1005Our classification accuracy based on these 30 experiments
1006is 96.7 percent.
1007Estimation. The solid lines in Fig. 16a show our modeling
1008results for Pinot interference estimation (as discussed in
1009Section 2.3.3) under different resource contentions via train-
1010ing. Our average modeling error is 11.5 percent.

10115.4.2 Evaluating DIAL for Pinot under Real bg

1012Workloads

1013Fig. 17 shows our experimental results for Pinot under our
1014KVM setup for CPU and LLC contentions created using test
1015workloads SPEC and STREAM, respectively. Here, the
1016request rate for Pinot is set to 200 queries/sec, which results
1017in a CPU load of about 60 percent. We consider 6 worker
1018nodes with a replication factor of 3. The contention is cre-
1019ated in bg VMs on one of the six PMs hosting the Pinot
1020worker VMs. We show the tail response time values for no
1021contention, baseline (with contention), DIAL, using theoreti-
1022cally optimal interference-aware weights from Section 2.4.2,
1023and Weighted Round Robin (WRR), which uses propor-
1024tional interference-aware weights, as discussed in Section
10252.4. The response time is the query completion time moni-
1026tored at the Broker, and depends on the performance of all
1027workers.
1028We see that DIAL significantly improves tail response
1029times when compared to baseline; the average reduction in
103095%ile response times for CPU and LLC contention is 40.5
1031and 25.8 percent, respectively. Compared toWRR, DIAL pro-
1032vides an average reduction in 95%ile response times for CPU
1033and LLC contention of 16.1 and 16.5 percent, respectively.

10345.4.3 Evaluating DIAL for Pinot under Dynamic

1035Conditions

1036Fig. 18 shows the 95%ile response time (tail latency) for
1037Pinot under DIAL and baseline for our dynamic workload
1038experiment. Here, we start with a load of 200 queries/s
1039(or, qps) and no interference; as before, we have 6 Pinot
1040workers and a replication factor of 3. Then, in the next

Fig. 16. Interference modeling and classification for Pinot.
Fig. 17. Comparison of DIAL with other heuristics for Pinot.
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of1041 phase (yellow shaded region), one of the fg worker VMs

1042 experiences CPU interference due to a colocated VM run-
1043 ning SPEC. DIAL responds, after monitoring and detec-
1044 tion, by setting the theoretically optimal load balancing
1045 weights for the 3 replicas of segments hosted on the under-
1046 interference worker (see Section 5.1). For this experiment,
1047 the theoretically optimal weights in this phase are
1048 f0:16; 0:42; 0:42g, obtained via the analysis discussed in
1049 Section 2.4.2. By setting these weights, the tail latency low-
1050 ers from about 147ms under the baseline to 88ms (39.9 per-
1051 cent improvement).
1052 In the next phase (green shaded region), Pinot experi-
1053 ences an increase in load to 300 qps, severely impacting
1054 tail latency. DIAL detects this load change via request
1055 rate monitoring (see Section 2.5), and updates the load
1056 balancing weights to f0:2; 0:4; 0:4g, thus lowering tail
1057 latency from 266ms under the baseline to 189ms (28.2
1058 percent improvement). Our theoretically derived weights
1059 from Section 2.4.2 already take request rate into account
1060 (via the a parameter), and thus the updated weights can
1061 be easily obtained.
1062 To handle the increased load, Pinot eventually scales-out
1063 by adding 3 new workers and redistributing data segments
1064 across all workers. We assume that the scale-out and data
1065 segment mapping is handled by an external autoscaling
1066 entity (e.g., MLscale [30] or other similar works [31], [32]).
1067 With the additional workers, the tail latency of Pinot
1068 decreases, as seen in the last phase (gray shaded region).
1069 DIAL again updates the weights for this new configuration,
1070 by updating the n parameter (that represents the number of
1071 workers), resulting in a further lowering of tail latency from
1072 about 123ms under the baseline to 87ms (28.8 percent
1073 improvement).
1074 We repeated the experiments for a total of 5 runs. The
1075 results were qualitatively similar to Fig. 18, with the aver-
1076 age improvement in 95%ile response time across all runs
1077 afforded by DIAL in the three shaded phases being about
1078 33.1, 29.8, and 30.7 percent. We also repeated the experi-
1079 ment with LLC contention, and obtained qualitatively
1080 similar results with an average improvement of up to
1081 20 percent.

1082 6 PRIOR WORK IN THE CONTEXT OF DIAL

1083 Interference Detection. Recent work has emphasized the need
1084 for user-centric interference detection [1], [2], [33], [34].
1085 IC2 [2] employs decision trees using VM-level statistics to
1086 detect interference at the cache; this information is then
1087 used to tune the configuration of web servers in co-located
1088 environments. Casale et al. [33] focus on CPU interference

1089and present a user-centric technique to detect contention
1090by analyzing the CPU steal metric. CRE [35] makes use of
1091collaborative filtering to detect interference in web services
1092by monitoring response times. While we also monitor
1093response time, we go beyond detection and also estimate
1094the amount of interference. CPI2 [26] employs statistical
1095approaches to analyze an application’s CPI metric to detect
1096and mitigate processor interference between different jobs.
1097While CPI2 can be used in virtual environments, public
1098cloud VMs (e.g., AWS) do not always expose performance
1099counters.
1100There have also been prior works on hypervisor-centric
1101interference detection (e.g., ILA [3]). While effective, such
1102techniques require hypervisor access for monitoring host-
1103level metrics, making them infeasible for cloud users.
1104Interference-Aware Performance Management. ICE [1] pro-
1105poses interference-aware load balancing by limiting the
1106CPU utilization of the affected VM below a certain thresh-
1107old. While effective, we find, via experiments (see Section
11084.3.6), that this strategy is not adaptive to different levels of
1109interference. Mukherjee et al. [34] propose a tenant-centric
1110interference estimation technique that employs a software
1111probe periodically on all tenant VMs, and compares the per-
1112formance of the probe at runtime versus that in isolation to
1113quantify interference. The authors later extended this work
1114to PRIMA [37], which is an interference-aware load balanc-
1115ing and auto-scaling technique that leverages the above-
1116described probing technique to make load balancing deci-
1117sions. However, PRIMA only focuses on mean response
1118time (as opposed to the more practical tail response time
1119metric) and limits itself to network interference. Bubble-
1120Up [37], Tarcil [7], Quasar [8], and ESP [38] profile workload
1121classes and carefully colocate workloads that do not signifi-
1122cantly impact each others’ performance due to their specific
1123resource requirements. By contrast, DIAL does not control
1124colocation (VM placement is not in the user’s control);
1125instead, DIAL globally adjusts the fg LB policy to reroute
1126some of the requests directed at affected VMs.

11277 CONCLUSION

1128We presented DIAL, a user-centric dynamic Interference-
1129Aware Load Balancing framework that can be employed
1130directly by cloud users without requiring any assistance
1131from the hypervisor or cloud provider to reduce tail
1132response times during interference. DIAL works by leverag-
1133ing two important components: (i) An accurate user-centric,
1134response time-monitoring based interference detector, clas-
1135sifier, and estimator, and (ii) A framework for deriving theo-
1136retically optimal load balancer weights under interference.
1137Our experimental results for web and OLAP applications
1138on several cloud platforms, under interference from realistic
1139benchmarks, demonstrate the benefits of DIAL.
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