Scott A. Smolka
Teaching Statement

Throughout my teaching career | have taught courses at both the undergraduate and
graduate levels. The undergraduate courses | have primarily offerddagabase Sys-
tems Operating SystemsndUndergraduate Concurrencyl am also the co-developer,
along with Michael Kifer, of theOSP Operating System Projecburseware for under-
graduate Operating Systems. OSP has been used as the operating systems courseware in
over 100 institutions. At the graduate level, | have mainly taughQraxluate Database
Systemsgourse and a course dbomputer-Aided Verificatiothat | co-designed with
Rance Cleaveland.

In each course | teach, | strive to create an interesting and challeogimge project
so that students can see how the concepts and theory the course teaches them can be put
into practice. The project usually involves a semester-long design and implementation
effort, and the students typically work in groups of two or three in order to expose them
to a team-project environment. In the case of the graduate Verification course, | ask the
students in the course to apply an automated verification tool to a real-life application, or
to develop a new verification technique of their own. As described below, a number of
these efforts have resulted in conference and journal publications.

| am also very interested in the computer science undergraduate curriculum in gen-
eral. From 1994-1996, | was the Undergraduate Program Director for the Stony Brook
Computer Science Department. Before that, from 1992-1995, | chaired the Department’s
Committee on Undergraduate Computer Science Curriculum Reform, which implemented
an extensive revision of the computer science undergraduate curriculum. The new curricu-
lum, which featured a required two-course sequence in software engineering, took effect
in Spring, 1995.

In what follows, | summarize my approach to teaching the above-listed courses and,
in the process, elaborate on my teaching philosophy.

1 Undergraduate-Level Courses

1.1 CSE 306: Undergraduate Operating Systems

When | teach CSE 306, | center the course around Andrew S. Tanenbaum'’s tedMibdok
ern Operating Systems, 2/Br the requisite concepts and theory, and the OSP course-
ware, for the design and implementation project.

OSP (an Operating System Project) is a flexible environment for generating imple-
mentation projects appropriate for an introductory course in operating system design. Itis
intended to complement the use of most standard textbooks on operating systems and con-
tains enough projects for up to three semesters. These projects expose students to many
essential features of operating systems, while at the same time isolating them from low-
level machine-dependent concerns. Thus, even in one semester students can learn about
page-replacement strategies in virtual memory management, cpu-scheduling strategies,
disk seek time optimization, and other issues in operating system design.

OSP consists of a number of modules, each of which performs a basic operating sys-
tems service such as device scheduling, cpu scheduling, interrupt handling, file manage-

ment, memory management, process management, resource management, and interpro-
cess communication. By selectively omitting any subset of modules, an instructor can
generate a project in which the students are to implement the missing parts. This pro-
cess is completely automated by the OSP Project Generator, included in the distribution.
Projects can be organized in any desired order so as to progress in a manner consistent
with the lecture material.

The heart of OSP is a simulator that gives the illusion of a computer system with a
dynamically evolving collection of user processes to be multiprogrammed. All the other
modules of OSP are built to respond appropriately to the simulator-generated events that
drive the operating system. The simulator “understands” its interaction with the other
modules in that it can often detect an erroneous response by a module to a simulated
event. In such cases, the simulator will gracefully terminate execution of the program
by delivering a meaningful error message to the user, indicating where the error might be
found. This facility serves both as a debugging tool for the student and as teaching tool for
the instructor, as it ensures that student programs acceptable to the simulator are virtually
bug-free.

The difficulty of the job streams generated by the simulator can be dynamically ad-
justed by manipulating th&mulation parametersrThis yields a simple and effective way
of testing the quality of student programs. There are also facilities that allow students to
debug their programs by interacting with OSP during simulation.

The underlying model of OSP is not a clone of any specific operating system. Rather
it is an abstraction of the features commonly found in several systems (although a bias
towards UNIX can be seen, at times). With the exception of the OSP modules for inter-
process communication, the OSP modules were designed to hide many of the low-level
concerns one encounters in operating system design and implementation, yet still encom-
pass the most salient aspects of their real-life counterparts in modern systems.

OSP is thoroughly documented and explained from a student perspective in the follow-
ing book: OSP: An Environment for Operating System Projebtehael Kifer and Scott
A. Smolka, Addison-Wesley (Dec. 1990). There is alsdrestructors Manuakvailable
from Addison Wesley as a Computer Science supplement. The Instructors manual con-
tains detailed instructions on how to use the OSP Project Generator. It also contains a
number of carefully designed sample projects an instructor could assign over the course
of one or two semesters. The OSP courseware itself is available to instructors via anony-
mousftp from Addison-Wesley.

OSP, which was developed in the late 1980s, was written in the C programming lan-
guage. Due to the rising popularity of Java within the Computer Science undergraduate
curriculum, and because we wanted to modernize the basic organization of OSP, Michael
Kifer and | have developed and implemented a successor to OSP wesRik OSP-

2 is an object-oriented operating system in the truest sense of the term. Being written
in the object-oriented programming language Java, system resources and data structures
are represented by classes, thereby providing well-defined method-call interfaces between
objectsa la Windows 2000. Also subclassing is used to specialize objects; for example,
the 1/0 Request Block (IORB) is a subclasskofent so that threads can wait on it and

be notified of its occurrence.

OSP-2 is currently in beta-test mode and Michael Kifer and | have written a 200-page
textbook about the system. Each chapter of the book contains a thorough yet succinct

discussion of the requisite conceptual material for the project (subsystem) the chapter is
targeting. Discussions to publish the book either in print or electronic form are underway
with several Computer Science publishers.

1.2 CSE 305: Undergraduate Database Systems

| have taught CSE 305 on eight different occasions. Prior to 2005, the textbook | used
for this course wa®atabase Management SystebysR. Ramakrishnan and J. Gehrke.
Starting in the Spring of 2005, | switched Batabase Systems: An Application Oriented
Approachby M. Kifer, A. Bernstein and P. Lewis. My motivation for switching textbooks
was twofold. First, Kifer, Bernstein and Lewis are all colleagues of mine at Stony Brook,
with Kifer being my collaborator on the OSP and OSP-2 courseware projects. Secondly,
their book devotes an entire chapter to using SQL in applications, with extensive coverage
in particular of JDBC, a call-level interface for the execution of SQL statements from a
Java program.

Each time | teach CSE 305, | assign a semester-long design and implementation
project for which the students are required to develop, in order, an E-R model of their
database system, a relational model complete with integrity constraints expressed as func-
tional dependencies, an implementation of the queries in SQL, and finally a web-based
interface using Java, JDBC, HTML, and Javascript or JSP. Specific course projects that |
have assigned include a “mini eBay” system complete with eBay-ptgbey bidding an
online airline-reservation and car-rental system (in collaboration with Himanshu Gupta);
and a university course registration system.

1.3 CSE 375: Undergraduate Concurrency

| am the Stony BrookCourse Coordinatoffor CSE 375. The textbook | use to teach

this course iConcurrency: State Models & Java Prograndeff Magee and Jeff Kramer,
Wiley (1999). This is an excellent book for upper-division undergraduates that introduces
them to the concept dflodel-Based DevelopmefiiBD): the use of executable models to
drive the design and specification phases of a software-development project. Such models
can be simulated, tested and verified, allowing design flaws to be discovered much earlier
in the development process than traditional methods allow. Many large companies are
using MBD processes to develop their software, including those in the automotive (Ford,
GM, Toyota), aerospace (Honeywell, Northrup-Grumman), and medical-device sectors
(Guidant, Medtronic).

CSE 375 teaches students about MBD through the FSP modeling language, in which
processes communicate via message passing. FSP is a simple yet formal modeling lan-
guage, making it very amenable to formal verification techniques. The target implemen-
tation language is Java, with particular emphasis placed on Java’s thread-programming
constructs. | usually again offer a course project so that students can get hands-on MBD
experience using FSP and Java. | also give bi-weekly homework assignments that require
the students in the course to design a concurrent system using FSP and then implement
the model in Java.

| would also like to design a version of CSE 375 that uses MATLAB, Simulink,
and Stateflow instead of FSP, so that students can gain experience using these industry-

standard modeling notations. Course projects would focus on automated control, such as
the control software for a cruise-control or flight-guidance system. Due to the technical
sophistication of these modeling languages, such a course might be more appropriate as
an undergraduate Honors course, or even as a graduate-level course, rather than a standard
upper-division undergraduate course.

1.4 CSE 532: Graduate Database Systems

As in the case of the undergraduate database systems course, | have taught CSE 532
on eight different occasions. The textbook | have most recently used for this course is
Database Management Systems (Third EditionR. Ramakrishnan and J. Gehrke. Af-

ter a brief introduction to the relational model, | focus on the following advanced top-

ics in database systems: Object-Oriented Database Systems, Knowledge Bases, Internet
Databases, Data Warehousing & OLAP, Parallel DBMS, Distributed Databases, Database
Design, Database Tuning, and Data Mining.

Each time | teach CSE 532, | assign a semester-long design and implementation
project for which the students are required to develop an advanced object-oriented or
object-relational database system using the SQL3 Object Model and DB2. As part of
the project, they are asked to implement a web-based interface for their system using
Java, JDBC, HTML, and JSP. Specific course projects | have assigned include a stream-
ing Video on Demand (VoD) web site; a “mini eBay” system complete with eBay-style
proxy bidding an on-line job/resumposting servica lahotjobs.com ; and an on-line
MP3 music store.

1.5 CSE 535: Computer-Aided Verification

CSE 535 is a course on the computer-aided verification of asynchronous and concur-
rent systems. Rance Cleaveland and | co-developed CSE 535 while he was on the Stony
Brook faculty. The course has both a theory component, focusing on the semantics of pro-
cess logics and process algebras and corresponding verification algorithms, and a practice
component, stressing verification tools and their application to real-life systems.

For the theory component, | use a collection of slides that Rance and | authored;
the following topics are covered in the slides: the semantics of temporal-logic, both
linear-time (LTL) and branching-time (CTL, CTL*, modal mu-calculus); algorithms for
temporal-logic model checking; process algebra, with the primary focus on Milner's CCS;
structured operational semantics; bisimulation and algorithms for computing strong and
weak bisimulation equivalence; and axiomatizations of bisimulation.

To complement the slides, reading assignments are given from the following books:
Logic in Computer Science: Modelling and Reasoning about Systdimduth and M.

D. Ryan (Cambridge University Press); ahlde Formal Semantics of Programming Lan-
guagesG. Winskel (MIT Press).

For the practice component, the students in the course are asked to carry out a semester-
long project on specifying and verifying a real-life asynchronous/concurrent system using
an automated verification tool. Rance and | maintain a repository of verification tools for
this purpose, including the Concurrency Workbench [1], the XMC model checker [10, 11],
Murp [2], and Spin [7]. A number of these course projects reached a level of sophistica-

tion that warranted publication in respected Computer Science conferences and journals,
including the Rether real-time Ethernet protocol case study [5, 6]; the GNU i-protocol
case study [4, 8, 3]; and the VISA/Mastercard Secure Electronic Transactions (SET) pro-
tocol [9].

References

[1] R. Cleaveland, J. Parrow, and B. U. Steffen. The Concurrency Workbench: A
sematics-based tool for the verification of concurrent syst&@d TOPLAS15(1),
1993.

[2] D. L. Dill. The Murg verification system. In R. Alur and T. A. Henzinger, editors,
Computer Aided Verification (CAV '96Jolume 1102 of_ecture Notes in Computer
Sciencepages 390-393, New Brunswick, New Jersey, July 1996. Springer-Verlag.

[3] Y.Dong, X. Du, G. Holzmann, and S. A. Smolka. Fighting livelock in the i-Protocol:
A case study in explicit-state model checkit@pftware Tools for Technology Trans-
fer, 4(2), 2003.

[4] Y. Dong, X. Du, Y. S. Ramakrishna, C. R. Ramakrishnan, I.V. Ramakrishnan, S. A.
Smolka, O. Sokolsky, E. W. Stark, and D. S. Warren. Fighting livelock in the i-
Protocol: A comparative study of verification tools. Tools and Algorithms for the
Construction and Analysis of Algorithms (TACAS '99%cture Notes in Computer
Science, Amsterdam, March 1999. Springer-Verlag.

[5] X. Du, K. T. McDonnel, E. Nanos, Y. S. Ramakrishna, and S. A. Smolka. Software
design, specification, and verification: Lessons learned from the Rether case study.
In Proceedings of the Sixth International Conference on Algebraic Methodology and
Software Technology (AMAST'97%ydney, Australia, December 1997. Springer-
Verlag.

[6] X.Du, S. A. Smolka, and R. Cleaveland. Local model checking and protocol anal-
ysis. Software Tools for Technology Transf@(3):219-241, November 1999.

[7] G. J. Holzmann. The model checker SPINEEE Transactions on Software Engi-
neering 23(5):279-295, May 1997.

[8] G. J. Holzmann. The engineering of a model checker: The Gnu i-protocol case
study revisited. In D. Dams, R. Gerth, S. Leue, and M. Massink, edifbiespretical
and Practical Aspects of SPIN Model Checkirnglume 1680 ofLecture Notes in
Computer Sciencé&pringer-Verlag, 1999.

[9] S. Luand S. A. Smolka. Model checking the Secure Electronic Transactions (SET)
protocol. InProc. Seventh Intnl. Symp. on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOT.SA@HY Press, October
1999.

[10] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. W.
Swift, and D. S. Warren. Efficient model checking using tabled resolutioirdn
ceedings of CAV '97LNCS \ol. 1254, 1997. Springer-Verlag.

[11] C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, et al. XMC: A logic-
programming-based verification toolset. Pnoceedings of the 12th International
Conference on Computer Aided Verification (CAV 2008pringer-Verlag, June
2000.

