Relational Algebraand SQL

Chapter 5

Relational Query Languages

Languages for describing querieson a
relational database

Sructured Query Language (SQL)

— Predominant application-level query language
— Declarative

Relational Algebra

— Intermediate language used within DBMS

— Procedural

What is an Algebra?

A language based on operators and a domain of values
Operators map values taken from the domain into
other domain values
Hence, an expression involving operators and
arguments produces a value in the domain
When the domain isaset of dl relations (and the
operators are as described later), we get the relational
algebra

We refer to the expression as a query and the value
produced as the query result

Relational Algebra

Domain: set of relations

Basic operators: select, project, union, set
difference, Cartesian product

Derived operators: set intersection, division, join
Procedural: Relational expression specifies query
by describing an algorithm (the sequence in which
operators are applied) for determining the result of
an expression

The Role of Relational AlgebrainaDBMS

\

SQL Query

********************* Parser

/ Relational Algebra Expression \

,,,,,,,,,,,,,,,,,,,,,, \ Quervy Opntimizer
Query Optimizer

\
- a4/

,,,,,,,,,,,,,,,,,,,,,, Code Generator

Executable Code

Select Operator

« Produce table containing subset of rows of

argument table satisfying condition
O condition (reI ation)

« Example:

Person O Hobby="stamps: (Person)

Id

Name Address Hobby Id Name Address Hobby

1123
1123
5556
9876

John 123 Main stamps 1123 John 123 Main stamps
John 123 Main coins 9876 Bat 5PineSt stamps

Mary 7LakeDr hiking
Bat 5PineSt stamps

Selection Condition

+ Operators: <, <, 2,>, =, #

« Simple selection condition:
— <attribute> operator <constant>
— <attribute> operator <attribute>

» <condition> AND <condition>
» <condition> or <condition>
« NOT <condition>

Selection Condition - Examples

O 14>3000 OR Hobby= hiking: (PErSON)
* O'16>3000 AND Id <3999 (PErSON)

* O NoT(Hobby= hiking’) (PErSON)

* O Hobbyhiking: (PErSON)

Project Operator

« Produces table containing subset of columns
of argument table
Tattribute list(" €1 @LI0N)

« Example:

Person Tiname Hobby(PErSON)
Id Name Address Hobby Name Hobby
1123 John 123 Main stamps John stamps
1123 John 123 Main coins John coins
5556 Mary 7 LakeDr hiking Mary hiking
9876 Bart 5PineSt stamps Bart stamps

Project Operator
» Example:
Person Tame, Address(PErSON)
Id Name Address Hobby Name Address

1123 John 123Main stamps John 123 Main
1123 John 123 Main coins Mary 7 Lake Dr
5556 Mary 7 LakeDr hiking Bart 5PineSt
9876 Bart 5PineSt stamps

Result is atable (no duplicates); can have fewer tuples
than the original

10

Expressions

n Id, Name (O-Hobbyz’stamps‘ OR Hobby="coins’ (Person))

Id Name Address Hobby Id Name
1123 John 123 Main stamps 1123 John
1123 John 123 Main coins 9876 Bart
5556 Mary 7 LakeDr hiking
9876 Bart 5PineSt stamps Resuilt

Person

Set Operators

« Relation isaset of tuples, so set operations
should apply: N, U, — (set difference)

* Result of combining two relations with a set
operator isarelation => all its elements
must be tuples having same structure

 Hence, scope of set operations limited to
union compatible relations

12

Union Compatible Relations

« Two relations are union compatible if
— Both have same number of columns
— Names of attributes are the same in both
— Attributes with the same name in both relations

have the same domain

+ Union compatible relations can be
combined using union, intersection, and set
difference

Example

Tables:
Person (SSN, Name, Address, Hobby)
Professor (Id, Name, Office, Phone)
are not union compatible.

But
T name (PErsON) and = .. (Professor)
are union compatible so

T name (PErSON) - 7. (Professor)
makes sense.

14

Cartesian Product

+ If Rand Saretwo relations, R x Sisthe set of al
concatenated tuples <x,y>, wherexisatuplein R
andyisatuplein S

— Rand Sneed not be union compatible

* Rx S isexpensive to compute:

— Factor of two in the size of each row
— Quadratic in the number of rows

A B CD A B CD
x1 x2| |yl y2 x1 x2 y1 y2
x3 x4| |y3 vy4 x1 x2 y3 y4
X3 x4 y1 y2
R S x3 x4 y3 y4

RXS 15

Renaming

Result of expression evaluation isarelation
Attributes of relation must have distinct names.
Thisis not guaranteed with Cartesian product

— e.g., suppose in previous example a and c have the

same name

Renaming operator tidiesthisup. To assign the
names A, A,,... A, to the attributes of then
column relation produced by expression expr use

expr [An, Ay, .o Al

16

Example

Transcript (Studld, CrsCode, Semester, Grade)
Teaching (Profld, CrsCode, Semester)

T qudid, crscode (TTANSCript)[Studid, CrsCodel]
X T profid, crscodel T €8€hing) [Profld, CrsCode2]

Thisisarelation with 4 attributes:
Sudld, CrsCodel, Profld, CrsCode2

Derived Operation: Join

A (general or theta) join of Rand Sisthe expression
RE= join-condition S
where join-condition is a conjunction of terms:
A oper B
inwhich A isan attribute of R; B; isan attribute of S;
and oper isoneof =, <, >, > #, <.

The meaning is:

O join-condition” (R x S }
where join-condition and join-condition are the same,
except for possible renamings of attributes (next)

18

Join and Renaming

* Problem: Rand Smight have attributes with the
same name — in which case the Cartesian
product is not defined

+ Solutions:

1. Rename attributes prior to forming the product and
use new names in join-condition”.

2. Qualify common attribute names with relation names
(thereby disambiguating the names). For instance:
Transcript.CrsCode or Teaching.CrsCode

— Thissolution is nice, but doesn’t always work: consider
R ><Jjoin_condition R
In RA, how do we know which R is meant?

Theta Join — Example

Employee(Name,|d,Mngrid,Salary)
Manager(Name,|d,Salary)
Output the names of all employees that earn
more than their managers.

TEEmponee.Name (Emp|0yee B Mngrid=1d AND Salary>Salary Menager)

The join yields a table with attributes:
Employee.Name, Employee.ld, Employee.Salary, Mngrid
Manager.Name, Manager.ld, Manager.Salary

20

Equijoin Join - Example
Equijoin: Join condition is a conjunction of equalities.

Tiname,CrsCode(SUdENt =4 g 14 Ograge= - (TraNSCript))

Student Transcript
Id Name Addr Satus |Sudid CrsCode Sem Grade
111 John ... 111 CSE305 SO0 B
222 Mary ... 222 CSE306 S99 A
333 Bill 333 CSE304 F99 A
444 Joe

The equijoin is used very
M ary CSE306 frequently since it combines
Bill CSE304

21

related data in different relations.

Natural Join

* Specia case of equijoin:
— join condition equates all and only those attributes with the
same name (condition doesn’t have to be explicitly stated)
— duplicate columns eliminated from the result

Transcript (Sudld, CrsCode, Sem, Grade)
Teaching (Profld, CrsCode, Sem)

Transcript =< Teaching =
ﬂSudld, Transcript.CrsCode, Transcript.Sem, Grade, Profld
(Transcript S ¢rscode-Crocode AND So=sem T€ECHING)
[Studid, CrsCode, Sem, Grade, Profid |

22

Natural Join (cont’d)

» More generaly:
Re< S= Tlattr-list (O-join—cond (R X S))

where

attr-list = attributes (R) L attributes (S
(duplicates are eliminated) and join-cond has
the form:

A=A AND ... AND A, = A
where

{A, ... A} = attributes(R) N attributes(S

Natural Join Example

» List all Ids of students who took at least two
different courses:

Tsudid (Ocrscode = rscoden (
Transcript ><

Transcript [Sudld, CrsCode2, Sem2, Grade?]))

We don’t want to join on CrsCode, Sem, and Grade attributes,
hence renaming!

24

Division
» Goal: Produce the tuplesin onerelation, r,
that match all tuplesin another relation, s

~T(Ay, ..A, By, B

-s(B; ...By)

—r/s, with attributes A, ... A,,, isthe set of all tuples
<a> such that for every tuple ins, <a,b> is
inr

» Can be expressed in terms of projection, set
difference, and cross-product

Division (cont’d)

A B
—a— B
> =
—_—a—
- o g, N —b=
Inris~ 2 5{ l _ b__
\ Y
\ SEEN
. — G —cl——
—_—a
T /
B i — = Relation s
—_Cc—
Not in r/s
o 4 T b—
> _ rp—

Relation r 2%

Division - Example

List the Ids of students who have passed all
courses that were taught in spring 2000

* Numerator:

— Studld and CrsCode for every course passed by
every student:

”Sudld, CrsCode(O-Gradez F’ (Transcript))
« Denominator:

— CrsCode of all courses taught in spring 2000

Terscode (Tsemester= so000 (T€ACHING))
Result is numerator/denominator

Schemafor Student Registration System

Student (1d, Name, Addr, Satus)

Professor (Id, Name, Deptld)

Course (Deptld, CrsCode, CrsName, Descr)
Transcript (Sudld, CrsCode, Semester, Grade)
Teaching (Profld, CrsCode, Semester)
Department (Deptld, Name)

28

Query Sublanguage of SQL

SELECT C.CrsName
FROM Course C
WHERE C.Deptld = ‘CS

 Tuplevariable C rangesover rows of Course.
+ Evaluation strategy:
— FROM clause produces Cartesian product of listed tables

— WHERE clause assigns rows to C in sequence and produces
table containing only rows satisfying condition
— SELECT clause retains listed columns

* Equivalent to: mcrnameCpeptig=cs (COUTSE)

Join Queries
SELECT C.CrsName

FROM Course C, Teaching T
WHERE C.CrsCode=T.CrsCode AND T.Semester=S2000

« List CS courses taught in S2000

Tuple variables clarify meaning.

« Join condition “C.CrsCode=T.CrsCode”
— relates facts to each other

« Selection condition ¢ T.Semester=-S2000’
— eliminatesirrelevant rows

» Equivaent (using natura join) to:

7icrsname(COUNSe <1 Ogaester= 2000 (T€2CHING))
7icrsname (Osem= so000 (COUrse =<1 Teaching))

Correspondence Between SQL and
Relational Algebra

SELECT C.CrsName
FROM Course C, Teaching T
WHERE C.CrsCode = T.CrsCode AND T.Semester = ‘S2000°

Also equivalent to:

TicrsName O-C,Crscodec T_CrsCode AND Semester= ‘S2000°
(Course [C_CrsCode, Deptld, CrsName, De]

x Teaching [Profld, T_CrsCode, Semester])

* Thisisthe simplest evaluation agorithm for SELECT.

« Relational algebra expressions are procedural.
» Which of the two equivalent expressions is more easily evaluated?
31

Self-join Queries

Find Ids of all professors who taught at least two
courses in the same semester:

SELECT T1.Profid
FROM Teaching T1, Teaching T2
WHERE T1.Profld = T2.Profld
AND T1.Semester = T2.Semester
AND T1.CrsCode <> T2.CrsCode

Tuple variables are essential in this query!
Equivalent to:

Tprofid (Or1.crscode2.crscosel TEECHING[Profld, T1.CrsCode, Semester]
=< Teaching[Profld, T2.CrsCode, Semester]))
32

Duplicates

 Duplicate rows not allowed in arelation

« However, duplicate elimination from query
result is costly and not done by default;
must be explicitly requested:

SELECT DISTINCT
FROM

Use of Expressions

Equality and comparison operators apply to
strings (based on lexical ordering)
WHERE S.Name< ‘P
Concatenate operator applies to strings
WHERE S.Name || ‘-’ || SAddress= ...

Expressions can also be used in SELECT clause:

SELECT S.Name|| *--’ || S.Address AS NmAdd
FROM Student S

Set Operators

» SQL provides UNION, EXCEPT (set difference), and
INTERSECT for union compatible tables

« Example: Find al professorsin the CS Department and
all professors that have taught CS courses

(SELECT P.Name

FROM Professor P, Teaching T
WHERE P.Id=T.Profld AND T.CrsCode LIKE ‘CS%’)
UNION

(SELECT P.Name

FROM Professor P
WHERE P.Deptld = ‘CS’)

Nested Queries
List al courses that were not taught in S2000

SELECT C.CrsName

FROM Course C

WHERE C.CrsCode NOT IN
(SELECT T.CrsCode --subquery
FROM Teaching T
WHERE T.Sem = ¢S2000°)

Evaluation strategy: subquery evaluated once to
produces set of courses taught in S2000. Each row
(as C) tested against this set.

36

Correlated Nested Queries

Output arow <prof, dept> if prof has taught a course
in dept.

SELECT P.Name, D.Name --outer query
FROM Professor P, Department D
WHERE P.Id IN
-- set of all Profld’s who have taught a course in D.Deptld
(SELECT T.Profld --subquery

FROM Teaching T, Course C
WHERE T.CrsCode=C.CrsCode AND
C.Deptld=D.Deptld --correlation

)

Correlated Nested Queries (con’t)

» Tuplevariables T and C arelocal to subquery

» Tuplevariables P and D are global to subquery

« Correlation: subquery usesaglobal variable, D

« Thevalue of D.Deptld parameterizes an evaluation of
the subquery

» Subquery must (at least) be re-evaluated for each
distinct value of D.Deptld

Correlated queries can be expensive to evaluate

38

Divisionin SQL
* Query type: Find the subset of itemsin one set that
arerelated to all itemsin another set

« Example: Find professors who taught coursesin all
departments
— Why does thisinvolve division?

Profld Deptld Deptld
Contains row All department Ids
<p,d> if professor DR
p taught a
coursein
department d

rrrrrrrrrrr >

an”d,qud(Tea:hing >J Course) / nDep,ld(Department)
39

Divisionin SQL

 Srategy for implementing division in SQL:

—Find set, A, of al departmentsin which a
particular professor, p, has taught a course

—Find set, B, of al departments
—Output pif A o B, or, equivaently, if B-A is
empty

Division — SQL Solution

SELECT P.Id
FROM Professor P
WHERE NOT EXISTS

(SELECT D.Deptld -- set B of all dept Ids
FROM Department D

EXCEPT
SELECT C.Deptld -- set A of dept Ids of deptsin

-- which P taught a course
FROM Teaching T, Course C
WHERE T.Profld=P.Id -- global variable
AND T.CrsCode=C.CrsCode)

41

Aqggregates

 Functions that operate on sets:
— COUNT, SUM, AVG, MAX, MIN
* Produce numbers (not tables)
» Not part of relational algebra (but not hard to add)

SELECT COUNT(*) SELECT MAX (Salary)
FROM Professor P FROM Employee E

42

Aggregates (cont’d)

Count the number of courses taught in S2000

SELECT COUNT (T.CrsCode)
FROM Teaching T
WHERE T.Semester = <S2000°

But if multiple sections of same course
are taught, use:
SELECT COUNT (DISTINCT T.CrsCode)

FROM Teaching T
WHERE T.Semester = <S2000°

Grouping

« But how do we compute the number of courses
taught in S2000 per professor?
— Strategy 1: Fire off a separate query for each
professor:
SELECT COUNT(T.CrsCode)
FROM Teaching T
WHERE T.Semester = *S2000° AND T.Profld = 123456789
+ Cumbersome
« What if the number of professors changes? Add another query?
— Strategy 2: define a special grouping operator:
SELECT T.Profld, COUNT(T.CrsCode)
FROM Teaching T

WHERE T.Semester = *S2000°
GROUPBY T.Profld

GROUP BY

1*37 Each row
Groups| | I = ———————+———— | describes

T
/); I a group
7 / ———
2~/ Atributes in Aggregates
== a; ggregate:
Y a4 the GROUP over rows in
I " / BY list GROUP BY
[— / list
— /
/
— /
——
- \ All rows in a
Attributes in the group agree on 3
GROUP BY list all attributes in the

GROUP BY list
45

44
GROUP BY - Example
Transcript
T~ Attributes:
. —student’s Id
1234 1234|334 —
oo IS I avg grade
1234 —number of courses
1234
SELECT T.Sudld, AVG(T.Grade), COUNT (*)
FROM Transcript T
GROUP BY T.Sudld %

HAVING Clause

+ Eliminates unwanted groups (analogous to
WHERE clause, but works on groups instead of
individual tuples)

* HAVING condition is constructed from attributes
of GROUP BY list and aggregates on attributes
not in that list

SELECT T.Sudld,
AVG(T.Grade) AS CumGpa,
COUNT (*) AS NumCrs
FROM Transcript T
WHERE T.CrsCode LIKE ‘CS%’
GROUP BY T.Sudld
HAVING AVG (T.Grade) > 3.5

47

Evaluation of GroupBy with Having

~ SELECT Attrs

FROM Relations

g — WHERE Condition ;

SELECT Attr
~ eroM =
WHERE Condition
—— _~ GROUPBY GroupAtrList

SELECT Atrrs
FROM Relations
~— WHERE Condition :“> —
Group Attr List

/— GROUP BY
HAVING Group Condition

SELECT Attrs, Aggregates

e FROM Relations T ~ uer
WHERE Condition - S \,‘/
e GROUP BY Group AttrList ==-===" - esult

HAVING ~ Group Condition 48

Example

 Output the name and address of al seniors
on the Dean’s List

SELECT S.Id, S.Name
FROM Student S, Transcript T
WHERE S.Id=T.Sudld AND S.Satus= ‘senior’

S.Id --wrong...-—" i—ix}eryarlnbmethat occursin N
GROUPBYC i shame —right+ Srdeess

i must be an aggregate.

HAVING AVG (T.Grade) > 3.5 AND SUM (T.Credit) > 90

49

Aggregates: Proper and Improper
Usage

SELECT COUNT (T.CrsCode), T. Profid
— makes no sense (in the absence of
GROUP BY clause)

SELECT COUNT (*), AVG (T.Grade)
— but thisisOK

WHERE T.Grade > COUNT (SELECT)
— aggregate cannot be applied to result
of SELECT statement

50

ORDER BY Clause

 Causes rowsto be output in a specified order

SELECT T.Sudld, COUNT (*) AS NumCrs,
AVG(T.Grade) AS CumGpa

FROM Transcript T

WHERE T.CrsCode LIKE ‘CS%’

GROUP BY T.Sudld

HAVING AVG (T.Grade) > 3.5

ORDER BY DESC CumGpa, ASC Sudid

As before

Query Evaluation with GROUP BY,
HAVING, ORDER BY

Evaluate FROM: produces Cartesian product, A, of tablesin
FROM list

Evaluate WHERE: produces table, B, consisting of rows of
A that satisfy WHERE condition

3 Evauate GROUP BY: partitions B into groups that agree on
attribute valuesin GROUP BY list

4 Evauate HAVING: eliminates groupsin B that do not
satisfy HAVING condition

Evaluate SELECT: produces table C containing arow for

[y

N

(53]

each group. Attributesin SELECT list limited to those in
GROUP BY list and aggregates over group
Evauate ORDER BY: ordersrows of C

(o))

52

Views

+ Used asarelation, but rows are not physically
stored.
— The contents of aview is computed when it is used

within an SQL statement

» View istheresult of aSELECT statement over
other views and base relations

* When used in an SQL statement, the view
definition is substituted for the view namein the
Statement
— As SELECT statement nested in FROM clause

View - Example

CREATE VIEW CumGpa (Sudld, Cum) AS
SELECT T.Sudld, AVG (T.Grade)
FROM Transcript T
GROUP BY T.Sudld

SELECT S.Name, C.Cum
FROM CumGpaC, Student S
WHERE C.Sudld = S.Sudld AND C.Cum> 3.5

54

View Benefits

 Access Control: Users not granted access to
base tables. Instead they are granted access
to the view of the database appropriate to
their needs.

— External schema is composed of views.

— View alows owner to provide SELECT access
to a subset of columns (anal ogous to providing
UPDATE and INSERT access to a subset of
columns)

Views— Limiting Visibility

—_—
CREATE VIEW PartOf Transcript (Sudld, CrsCode, Semester) AS

SELECT T. Sudld, T.CrsCode, T.Semester -- limit columns
FROM Transcript T
WHERE T.Semester = ‘S2000° - limit rows

Give permissions to access data through view:
GRANT SELECT ON PartOfTranscript TO joe

This would have been anal ogous to:

GRANT SELECT (Sudld,CrsCode,Semester)
ON Transcript TO joe

on regular tables, if SQL allowed attribute listsin GRANT SELECT

56

View Benefits (cont’d)

« Customization: Users need not see full
complexity of database. View createsthe
illusion of asimpler database customized to
the needs of a particular category of users

« A view issimilar in many waysto a
subroutine in standard programming

— Can bereused in multiple queries

Nulls

» Conditions: xopy (whereopis<, >, <>, =, etc.)
has value unknown (U) when either x or y is null
— WHERE T.cost > T.price

« Arithmetic expression: x opy (whereopis+, —, *,
etc.) hasvalue NULL if x or y isNULL
— WHERE (T. price/T.cost) > 2

+ Aggregates: COUNT counts NULLS like any other
value; other aggregates ignore NULLS

SELECT COUNT (T.CrsCode), AVG (T.Grade)
FROM Transcript T
WHERE T.Sudld = ‘1234’

58

Nulls (cont’d)

* WHERE clause uses athree-valued logic— T, F,
U(ndefined) — to filter rows. Portion of truth table:

|C1 C2 C1ANDC2 C1ORC2

T U u T
F U F U
u u u U

» Rowsare discarded if WHERE condition is F(alse)
or U(nknown)

* EX: WHERE T.CrsCode= ‘CS305" AND T.Grade>2.5

59

Modifying Tables— Insert

« Inserting asingle row into atable

— Attribute list can be omitted if it isthe same as
in CREATE TABLE (but do not omit it)

— NULL and DEFAULT values can be specified

INSERT INTO Transcript(Sudld, CrsCode, Semester, Grade)
VALUES (12345, ‘CSE305’, ‘S2000°, NULL)

60

10

Bulk Insertion
* Insert the rows output by a SELECT

CREATE TABLE DeansL.ist (
Sudid INTEGER,
Credits INTEGER,
CumGpa FLOAT,
PRIMARY KEY Sudid)

INSERT INTO DeansList (Studld, Credits, CumGpa)
SELECT T.Sudld, 3* COUNT (*), AVG(T.Grade)
FROM Transcript T

GROUP BY T.Sudld

HAVING AVG (T.Grade) >3.5 AND COUNT(*) > 30

Modifying Tables— Delete

 Similar to SELECT except:
— No project list in DELETE clause

— No Cartesian product in FROM clause (only 1 table
name)

— Rows satisfying WHERE clause (general form,
including subqueries, allowed) are deleted instead of
output

DELETE FROM Transcript T
WHERE T.GradelS NULL AND T.Semester <> ‘S2000°

62

Modifying Data - Update

UPDATE Employee E
SET E.Salary = E.Salary * 1.05
WHERE E.Department = ‘R&D’

« Updatesrowsin asingle table

« All rows satisfying WHERE clause (genera
form, including subqueries, allowed) are
updated

Updating Views

» Question: Since viewslook like tablesto users, can
they be updated?

« Answer: Yes—aview update changesthe
underlying base table to produce the requested
change to the view

CREATE VIEW CsReg (Studld, CrsCode, Semester) AS
SELECT T.Sudld, T. CrsCode, T.Semester
FROM Transcript T

WHERE T.CrsCodeLIKE ‘CS%’ AND T.Semester=‘S2000’

Updating Views - Problem 1

INSERT INTO CsReg (Studld, CrsCode, Semester)
VALUES (1111, ‘CSE305’, *S2000°)

* Question: What value should be placed in
attributes of underlying table that have been
projected out (e.g., Grade)?

« Answer: NULL (assuming null allowed in the
missing attribute) or DEFAULT

Updating Views - Problem 2

INSERT INTO CsReg (Studld, CrsCode, Semester)
VALUES (1111, ‘EC0105’, <S2000%)

« Problem: New tuple not in view

« Solution: Allow insertion (assuming the
WITH CHECK OPTION clause has not
been appended to the CREATE VIEW
statement)

66

11

Updating Views - Problem 3

+ Update to a view might not uniquely specify the
change to the base table(s) that resultsin the desired
modification of the view (ambiguity)

CREATE VIEW ProfDept (PrName, DeName) AS
SELECT P.Name, D.Name

FROM Professor P, Department D

WHERE P.Deptld = D.Deptld

Updating Views - Problem 3 (cont’d)

Tuple <Smith, CS> can be deleted from

ProfDept by:

— Deleting row for Smith from Professor (but this
isinappropriate if heistill at the University)

— Deleting row for CS from Department (not
what isintended)

— Updating row for Smith in Professor by setting
Deptld to null (seems like agood idea, but how
would the computer know?)

68

Updating Views - Restrictions

» Updatable views are restricted to those in which
— No Cartesian product in FROM clause
— no aggregates, GROUP BY, HAVING

For example, if we allowed:
CREATE VIEW AvgSdary (Deptld, Avg_Sal) AS
SELECT E.Deptld, AVG(E.Salary)
FROM EmployeeE
GROUP BY E.Deptld

then how do we handle:

UPDATE AvgSalary
SET Avg_Sal =1.1* Avg_Sal

12

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

