Query Processing: The Basics

Chapter 10

External Sorting (cont'd)

- External sorting has two main components:
- Computation involved in sorting records in buffers in main memory
- I/O necessary to move records between mass store and main memory

External Sorting

- Sorting is used in implementing many relational operations
- Problem:
- Relations are typically large, do not fit in main memory
- So cannot use traditional in-memory sorting algorithms
- Approach used:
- Combine in-memory sorting with clever techniques aimed at minimizing I/O
$-\mathrm{I} / \mathrm{O}$ costs dominate $=>$ cost of sorting algorithm is measured in the number of page transfers

Simple Sort Algorithm

- $M=$ number of main memory page buffers
- $F=$ number of pages in file to be sorted
- Typical algorithm has two phases:
- Partial sort phase: sort M pages at a time; create F / M sorted runs on mass store, cost $=2 F$
\qquad
run
Example: $M=2, F=7$

Simple Sort Algorithm

- Cost of merge phase:
$-(F / M) /(M-1)^{k}$ runs after k merge steps
$-\left\lceil\log _{M-1}(F / M)\right\rceil$ merge steps needed to merge an initial set of F / M sorted runs
- cost $=\left\lceil 2 F \log _{M-l}(F / M)\right\rceil \approx 2 F\left(\log _{M-1} F-1\right)$
- Total cost $=$ cost of partial sort phase + cost of merge phase $\approx 2 F \log _{M-1} F$

Duplicate Elimination

- A major step in computing projection, union, and difference relational operators
- Algorithm:
- Sort
- At the last stage of the merge step eliminate duplicates on the fly
- No additional cost (with respect to sorting) in terms of I/O

Hash-Based Projection

- Phase 1:
- Input rows
- Project out columns
- Hash remaining columns using a hash function with range $1 \ldots M-1$ creating $M-1$ buckets on disk
- Cost $=2 F$
- Phase 2:
- Sort each bucket to eliminate duplicates
- Cost (assuming a bucket fits in $M-1$ buffer pages) $=2 F$
- Total cost $=4 F$

Sort-Based Projection

- Algorithm:
- Sort rows of relation at cost of $2 F \log _{M-1} F$
- Eliminate unwanted columns in partial sort phase (no additional cost)
- Eliminate duplicates on completion of last merge step (no additional cost)
- Cost: the cost of sorting

Computing Selection $\sigma_{(a t t r}$ op value)

- No index on attr:
- If rows are not sorted on attr:
- Scan all data pages to find rows satisfying selection condition
- Cost $=F$
- If rows are sorted on attr and op is $=,>,<$ then:
- Use binary search (at $\left.\log _{2} F\right)$ to locate first data page containing row in which $(a t t r=v a l u e)$
- Scan further to get all rows satisfying (attr op value)
- Cost $=\log _{2} F+($ cost of scan $)$

Computing Selection $\sigma_{(a t t r ~ o p ~ v a l u e) ~}$

- Clustered B^{+}tree index on $a t t r$ (for " $=$ " or range search):
- Locate first index entry corresponding to a row in which (attr = value). Cost $=$ depth of tree
- Rows satisfying condition packed in sequence in successive data pages; scan those pages.
Cost: number of pages occupied by qualifying rows

B^{+}tree

Unclustered B ${ }^{+}$Tree Index

Computing Selection $\sigma_{(a t t r}=$ value $)$

- Unclustered hash index on attr (for equality search)

data pages

Computing Selection $\sigma_{(a t t r ~ o p ~ v a l u e) ~}$

- Unclustered B^{+}tree index on attr (for " $=$" or range search):
- Locate first index entry corresponding to a row in which (attr = value).
Cost $=$ depth of tree
- Index entries with pointers to rows satisfying condition are packed in sequence in successive index pages
- Scan entries and sort record Ids to identify table data pages with qualifying rows
Any page that has at least one such row must be fetched once.
- Cost: number of rows that satisfy selection condition

Computing Selection $\sigma_{(a t t r}=$ value

- Hash index on attr (for "=" search only):
- Hash on value. Cost ≈ 1.2
- 1.2 - typical average cost of hashing (> 1 due to possible overflow chains)
- Finds the (unique) bucket containing all index entries satisfying selection condition
- Clustered index - all qualifying rows packed in the bucket (a few pages) Cost: number of pages occupies by the bucket
- Unclustered index - sort row Ids in the index entries to identify data pages with qualifying rows
Each page containing at least one such row must be fetched once Cost: min(number of qualifying rows in bucket, number of pages in file)

Access Path

- Access path is the notion that denotes algorithm + data structure used to locate rows satisfying some condition
- Examples:
- File scan: can be used for any condition
- Hash: equality search; all search key attributes of hash index are specified in condition
- B^{+}tree: equality or range search; a prefix of the search key attributes are specified in condition
- B^{+}tree supports a variety of access paths
- Binary search: Relation sorted on a sequence of attributes and some prefix of that sequence is specified in condition

Access Paths Supported by B^{+}tree

- Example: Given a B ${ }^{+}$tree whose search key is the sequence of attributes $a 2, a 1, a 3, a 4$
- Access path for search $\sigma_{a l>5 \wedge a 2=3 \wedge a 3=x^{\prime}}(R)$: find first entry having $a 2=3 \wedge a 1>5 \wedge a 3=' x$ ' and scan leaves from there until entry having $a 2>3$ or $a 3 \neq ' x$ '. Select satisfying entries
- Access path for search $\sigma_{a 2=3 \wedge a 3>x^{\prime}}(R)$: locate first entry having $a 2=3$ and scan leaves until entry having $a 2>3$. Select satisfying entries
- Access path for search $\sigma_{a l>5 \wedge a 3=x^{\prime}}(R)$: Scan of R

Choosing an Access Path

- Selectivity of an access path = number of pages retrieved using that path
- If several access paths support a query, DBMS chooses the one with lowest selectivity
- Size of domain of attribute is an indicator of the selectivity of search conditions that involve that attribute
- Example: $\sigma_{\text {CrsCode }=‘ \mathrm{CS} 305}{ }^{\prime} \wedge$ Grade $=$ ' B ' ${ }^{\text {(Transcript) }}$
- a B ${ }^{+}$tree with search key CrsCode has lower selectivity than a B^{+}tree with search key Grade

Computing Joins

- The cost of joining two relations makes the choice of a join algorithm crucial
- Simple block-nested loops join algorithm for computing $\mathbf{r} \bowtie_{\mathrm{A}=\mathrm{B}} \mathrm{S}$
foreach page p_{r} in r do
foreach page p_{s} in s do
output $\mathrm{p}_{\mathrm{r}} \varliminf_{\mathrm{A}=\mathrm{B}} \mathrm{P}_{\mathrm{S}}$

Block-Nested Loops Join

- If β_{r} and β_{s} are the number of pages in r and s , the cost of algorithm is
$\beta_{\mathrm{r}}+\beta_{\mathrm{r}}{ }^{*} \beta_{\mathrm{s}}+$ cost of outputting final result
- If \mathbf{r} and \mathbf{s} have 10^{3} pages each, cost is $10^{3}+10^{3} * 10^{3}$
- Choose smaller relation for the outer loop:
- If $\beta_{\mathrm{r}}<\beta_{\mathrm{s}}$ then $\beta_{\mathrm{r}}+\beta_{\mathrm{r}} * \beta_{\mathrm{s}}<\beta_{\mathrm{s}}+\beta_{\mathrm{r}} * \beta_{\mathrm{s}}$

Block-Nested Loops Join

- Cost can be reduced to

$\beta_{\mathbf{r}}+\left(\beta_{\mathbf{r}} /(\mathrm{M}-2)\right) * \beta_{\mathbf{s}}+$ cost of outputting final result by using M buffer pages instead of 1 .

Block-Nested Loop Illustrated

Index-Nested Loop Join $\mathbf{r} \bowtie_{\mathrm{A}=\mathrm{B}} \mathbf{S}$

- Use an index on \mathbf{s} with search key B (instead of scanning \mathbf{s}) to find rows of \mathbf{s} that match $\mathrm{t}_{\mathbf{r}}$
- Cost $=\beta_{\mathrm{r}}+\tau_{\mathrm{r}} * \omega+$ cost of outputting final result

Number of
Number of
rows in \mathbf{r}
avg cost of retrieving all rows in \mathbf{s} that match $\mathrm{t}_{\mathbf{r}}$

- Effective if number of rows of \mathbf{s} that match tuples in \mathbf{r} is small (i.e., ω is small) and index is clustered
foreach tuple $\mathrm{t}_{\mathbf{r}}$ in \mathbf{r} do \{
use index to find all tuples t_{s} in s satisfying $\mathrm{t}_{\mathrm{r}} \cdot \mathrm{A}=\mathrm{t}_{\mathrm{s}} \cdot \mathrm{B}$; output $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{s}}\right)$
\}

Join During Merge Illustrated

\nearrow
r $\bowtie_{\mathrm{A}=\mathrm{B}} \mathbf{s}$

Sort-Merge Join $\mathbf{r} \bowtie_{A=B} \mathbf{S}$

sort \mathbf{r} on A ;

sort \mathbf{s} on B ;
while !eof(r) and !eof(s) do \{
Scan \mathbf{r} and \mathbf{s} concurrently until $\mathrm{t}_{\mathrm{r}} \cdot \mathrm{A}=\mathrm{t}_{\mathrm{s}} \cdot \mathrm{B}=\mathrm{c}$;
Output $\sigma_{\mathrm{A}=\mathrm{c}}(\mathbf{r}) \times \sigma_{\mathrm{B}=\mathrm{c}}(\mathbf{s})$
\}

Cost of Sort-Merge Join

- Cost of sorting assuming M buffers:

$$
2 \beta_{\mathrm{r}} \log _{M-1} \beta_{\mathrm{r}}+2 \beta_{\mathrm{s}} \log _{M-1} \beta_{\mathrm{s}}
$$

- Cost of merging:
- Scanning $\sigma_{A=c}(\mathbf{r})$ and $\sigma_{B=c}(\mathbf{s})$ can be combined with the last step of sorting of \mathbf{r} and $\mathbf{s}---$ costs nothing
- Cost of $\sigma_{A=c}(\mathbf{r}) \times \sigma_{B=c}(\mathbf{s})$ depends on whether $\sigma_{A=c}(\mathbf{r})$ can fit in the buffer
- If yes, this step costs 0
- In no, each $\sigma_{A=c}(\mathbf{r}) \times \sigma_{\mathrm{B}-\mathrm{c}}(\mathbf{s})$ is computed using block-nested join, so the cost is the cost of the join. (Think why indexed methods or sort-merge are inapplicable to Cartesian product.)
- Cost of outputting the final result depends on the size of the result

Hash-Join $\mathbf{r} \bigotimes_{\mathrm{A}=\mathrm{B}} \mathbf{S}$

- Step 1: Hash r on A and \mathbf{s} on B into the same set of buckets
- Step 2: Since matching tuples must be in same bucket, read each bucket in turn and output the result of the join
- Cost: $3\left(\beta_{\mathrm{r}}+\beta_{\mathrm{s}}\right)+$ cost of output of final result - assuming each bucket fits in memory

Hash Join

Computing Star Joins

- Use join index (Chapter 11)
- Scan \mathbf{r} and the join index $\left.\left\{<r, r_{l}, \ldots, r_{n}\right\rangle\right\}$ (which is a set of tuples of rids) in one scan
- Retrieve matching tuples in $\mathbf{r}_{l}, \ldots, \mathbf{r}_{n}$
- Output result

Choosing Indices

- DBMSs may allow user to specify
- Type (hash, B+ tree) and search key of index
- Whether or not it should be clustered
- Using information about the frequency and type of queries and size of tables, designer can use cost estimates to choose appropriate indices
- Several commercial systems have tools that suggest indices
- Simplifies job, but index suggestions must be verified

Computing Star Joins

- Use bitmap indices (Chapter 11)
- Use one bitmapped join index, J_{i}, per each partial join \mathbf{r} cond $_{i} \mathbf{r}_{i}$
- Recall: \mathbf{J}_{i} is a set of $\langle v$, bitmap>, where v is an rid of a tuple in \mathbf{r}_{i} and bitmap has 1 in k-th position iff k-th tuple of \mathbf{r} joins with the tuple pointed to by v

1. Scan J_{i} and logically OR all bitmaps. We get all rids in \mathbf{r} that join with \mathbf{r}_{i}
2. Now logically AND the resulting bitmaps for $\mathrm{J}_{l}, \ldots, \mathrm{~J}_{n}$.
3. Result: a subset of \mathbf{r}, which contains all tuples that can possibly be in the star join

- Rationale: only a few such tuples survive, so can use indexed loops

Choosing Indices - Example

- If a frequently executed query that involves selection or a join and has a large result set, use a clustered B^{+}tree index
Example: Retrieve all rows of Transcript for StudId
- If a frequently executed query is an equality search and has a small result set, an unclustered hash index is best
- Since only one clustered index on a table is possible, choosing unclustered allows a different index to be clustered
Example: Retrieve all rows of Transcript for (StudId, CrsCode)

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

