Query Processing: The Basics

Chapter 10

External Sorting

» Sorting is used in implementing many relationa
operations
« Problem:
— Relations are typically large, do not fit in main memory
— So cannot use traditional in-memory sorting algorithms
Approach used:
— Combine in-memory sorting with clever techniques aimed at
minimizing 1/0
— 1/O costs dominate => cost of sorting algorithm is measured
in the number of page transfers

External Sorting (cont’d)

« External sorting has two main components:

— Computation involved in sorting records in
buffersin main memory

— /O necessary to move records between mass
store and main memory

Simple Sort Algorithm

* M = number of main memory page buffers
* F = number of pagesin file to be sorted
« Typical agorithm has two phases:

— Partial sort phase: sort M pages at atime; create F/M
sorted runs on mass store, cost = 2F

Original file

@

SHQ6“”110”157‘”2011” 84“ 75 |

l Partially sorted file

Hz3“56‘3”17”1015‘”45Huzo‘%” 5 7]

S —

un Example: M=2,F=7

Simple Sort Algorithm

— Merge Phase: merge all runsinto asingle run
using M-1 buffers for input and 1 output buffer
* Merge step: divide runsinto groups of size M-1 and
merge each group into arun; cost = 2F
each step reduces number of runs by a factor of M-1

Buffer
T N M pages
i % A\

uput
fe

o J gt e
bufer il

o 1
LAY EL ™ butteca-t |

Merge: An Example

Simple Sort Algorithm

« Cost of merge phase:
— (FIM)/(M-1)k runs after k merge steps

—[Log y,(F/M) | merge steps needed to merge an
initial set of F/M sorted runs

—cost=[2F Log ,,4(FIM) 1 ~2F(Log y,F -1)

« Total cost = cost of partia sort phase + cost
of merge phase ~ 2F Log ,,F

Duplicate Elimination

« A major step in computing projection,
union, and difference relational operators
« Algorithm:
— Sort

— At the last stage of the merge step eliminate
duplicates on the fly

— No additional cost (with respect to sorting) in
terms of 1/0

Duplicate elimination During Merge

Key 3 ignored: duplicate
Key 5ignored: duplicate

9

Sort-Based Projection

« Algorithm:;

— Sort rows of relation at cost of 2F Log y,.,F

— Eliminate unwanted columns in partial sort
phase (no additional cost)

— Eliminate duplicates on completion of last
merge step (no additional cost)

+ Cost: the cost of sorting

10

Hash-Based Projection

+ Phasel:
— Input rows
— Project out columns

— Hash remaining columns using a hash function with range 1...M-1
creating M-1 buckets on disk

— Cost = 2F
+ Phase2:

— Sort each bucket to eliminate duplicates

— Cost (assuming abucket fitsin M-1 buffer pages) = 2F
+ Total cost = 4F

M pages /i:lj—»

7

- “Hash
butter_[™function

whle

\\~|:| A

Buffer

Computing Selection O(attr op value)

» Noindex on attr:

— If rows are not sorted on attr:

« Scan al data pages to find rows satisfying selection
condition

e Cost=F
— If rows are sorted on attr and opis =, >, < then:

+ Usebinary search (atlog, F) tolocate first data
page containing row in which (attr = value)

« Scan further to get all rows satisfying (attr op value)
+ Cost =log, F + (cost of scan)

12

Computing Selection 6, op vaiue)

» Clustered B* treeindex on attr (for “=" or range search):
— Locatefirst index entry corresponding to arow in which
(attr = value). Cost = depth of tree
— Rows satisfying condition packed in sequencein
successive data pages; scan those pages.
Cost: number of pages occupied by qualifying rows

B* tree

- index entries
(containing rows)
that satisfy
condition

o

Computing Selection 64, op value)

» Unclustered B* treeindex on attr (for “=" or range search):
— Locatefirst index entry corresponding to arow in which (attr
= value).
Cost = depth of tree

— Index entries with pointers to rows satisfying condition are
packed in sequence in successive index pages
« Scan entries and sort record Ids to identify table data pages
with qualifying rows
Any page that has at least one such row must be fetched
once.

« Cost: number of rows that satisfy selection condition

14

Unclustered B* Tree Index

index entries (containing
row |ds) that satisfy
condition

} data page

N

Computing Selection 6, = vaue

+ Hash index on attr (for “=" search only):
— Hash onvalue. Cost~ 1.2

« 1.2—typical average cost of hashing (> 1 due to possible overflow
chains)

« Finds the (unique) bucket containing all index entries satisfying selection
condition

« Clustered index — all qualifying rows packed in the bucket (a few pages)
Cost: number of pages occupies by the bucket

« Unclustered index — sort row Ids in the index entries to identify data
pages with qualifying rows
Each page containing at |east one such row must be fetched once
Cost: min(number of qualifying rowsin bucket, number of pagesin file)

16

Computing Selection 6 = vae

« Unclustered hash index on attr (for equality search)

buckets

Hne

data pages

Access Path

 Access path isthe notion that denotes algorithm +
data structure used to locate rows satisfying some
condition

* Examples:

— Filescan: can be used for any condition

— Hash: equality search; all search key attributes of hash
index are specified in condition

— B* tree: equality or range search; a prefix of the search
key attributes are specified in condition

+ B* tree supports avariety of access paths

— Binary search: Relation sorted on a sequence of
attributes and some prefix of that sequence is specified
in condition

18

Access Paths Supported by B* tree

« Example: Given aB* tree whose search key isthe
sequence of attributes a2, al, a3, a4
— Access path for search o155 1 42-3 » aa= - (R): find
first entry having a2=3 A a1>5 A a3= X" and scan
leaves from there until entry having a2>3 or a3 = X’
Select satisfying entries
— Access path for search o 453, 43>+ (R): locate first
entry having a2=3 and scan leaves until entry having
a2>3. Select satisfying entries
— Access path for search o 4155, a3= « (R): Scan of R

19

Choosing an Access Path

« Selectivity of an access path = number of pages

retrieved using that path

+ If several access paths support aquery, DBMS

chooses the one with lowest selectivity

« Sizeof domain of attributeis an indicator of the

selectivity of search conditions that involve that
attribute

* Example! o crscoge=csaos 1 Grade=s (Transcript)

— aB* tree with search key CrsCode has lower selectivity
than a B* tree with search key Grade

20

Computing Joins

« The cost of joining two relations makes the
choice of ajoin agorithm crucial

« Simple block-nested loopsjoin algorithm
for computing r <1 ,_g S

foreach pagep, inr do
foreach page p,insdo

output p; [><J a=p Ps

Block-Nested Loops Join

« If B, and B are the number of pagesinr and s,

i Number of scansof |
relation s

—1If r and s have 103 pages each,
cost is 108 + 103* 108
— Choose smaller relation for the outer loop:
o If B, <P then B, + B* Bs < B+ By* Bs

22

Block-Nested Loops Join

| Number of scans
- ofrelations !

+ Costcanbereducedto .

B + "(’ﬁr/(M '2))* ”Bs + cost of outputting final result

by using M buffer pagesinstead of 1.

r
Loput buffer for T
.
~ Output buffer | _—
s &~
1
Input buffer for §

Block-Nested Loop Illustrated

Input buffer for r

24

Index-Nested Loop Join r =< 43S

+ Useanindex on swith search key B (instead of
scanning s) to find rows of sthat match t,
- Cost = B, + 1, * 0+ cost of outpuitti

rowsin s that match t

— Effective if number of rows of sthat match tuplesinr is
small (i.e., o issmall) and index is clustered

foreach tuplet, in r do {
useindexto find al tuplestgin ssatisfying t,.A=t.B;
output (t,, t)

avg cost of retrieving all

T

Sort-Merge Join r ~<j,5S

sort r on A;

sort s on B;

while !eof(r) and !eof(s) do {
Scan r and s concurrently until t, A=t.B=c;
OUtpUt GA:c(r)XGBzc (S)

}

: Oa=d(r)
‘ D@—Dﬂ

6= (9) %

Join During Merge Illustrated

D 13 09 873 57 11
A |PP Q9 Sss uu vv
A A A A A

1313 873 575757

N" pppp Sss uuuuuu

pppp SSS uuuuuu

v vvv v vv 4004 777 225500
B|pp r s tt uuu x
E‘40 9 7 25 250 0

S/ r MXa=s$S

Cost of Sort-Merge Join

« Cost of sorting assuming M buffers:

2B 10g .y By + 2Bs10g .1 Bs
« Cost of merging:
— Scanning o,_(r) ad o, (s) can be combined with the last step
of sorting of r and s --- costs nothing
— Cost of 6,-(r)xcp- () depends on whether ,_(r) can fit in the
buffer
« If yes, this step costs 0

« Inno, each 6,_((r)xog_, (s) is computed using block-nested join, so the
cost isthe cost of thejoin. (Think why indexed methods or sort-merge
are inapplicable to Cartesian product.)

» Cost of outputting the final result depends on the size of the
result

28

Hash-Join r <1 ,_;S

+ Step 1: Hashr on A and son B into the same set of
buckets

» Sep 2: Since matching tuples must be in same
bucket, read each bucket in turn and output the
result of thejoin

» Cost: 3 (B, +Bs) + cost of output of final result
— assuming each bucket fitsin memory

Input Buffer for r L5} L]

,,,,,, 1 > UL B —_—
S1 BN _— A=B (7 =00
Hash . Hash . .
~ Function . Table Buckets
s —» . »
[Pl [
Input Bufer for § o B B Y B)
e i N v

30

Star Joins

T ><]C0nd1 I’1Mcond2 andn rn

— Each cond; involvesonly theattributesof r; and r

E

{ satellite |
i _relati

Ty

CouRsE TEACHING
CrsCode ‘ Deptld ‘ CrsName | Description Profld CrsCode | Semester
TRANSCRIPT -
T — T i T
Studid ‘ CrsCode ‘ Semester ‘ Grade
STUDENT

Id | Name

Status | Address

32

Computing Star Joins

« Usejoinindex (Chapter 11)
—Scan r andthejoinindex {<r,ry,...,r;>} (whichis
aset of tuples of rids) in one scan
— Retrieve matching tuplesin r,....r,
— Output result

Computing Star Joins

» Usebitmap indices (Chapter 11)

— Useonebitmapped joinindex, J, per each partia join
r ><] condj ri

— Recall: J isasetof <v, bitmap>, wherevisanridof a
tupleinr; and bitmap has 1 in k-th position iff k-th tuple
of r joinswith the tuple pointed to by v

1. ScanJ andlogically OR al bitmaps. We get all ridsinr
that joinwithr;

2. Now logically AND the resulting bitmaps for J, ..., J,.

3. Result: asubset of r, which contains all tuples that can
possibly bein the star join

Rationale: only afew such tuples survive, so can use indexed loops

34

Choosing Indices

+ DBMSsmay alow user to specify
— Type (hash, B* tree) and search key of index
— Whether or not it should be clustered

+ Using information about the frequency and type of
queries and size of tables, designer can use cost
estimates to choose appropriate indices

» Several commercia systems have tools that
suggest indices
— Simplifiesjob, but index suggestions must be verified

Choosing Indices— Example

« If afrequently executed query that involves selection or a
join and has alarge result set, use a clustered B* tree
index

Example: Retrieve all rows of Transcript for Sudld

« If afrequently executed query is an equality search and
has a small result set, an unclustered hash index is best

— Since only one clustered index on atableis possible,
choosing unclustered alows a different index to be
clustered

Example: Retrieve al rows of Transcript for (Sudid, CrsCode)

36

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

