
1

1

Query Processing: The Basics

Chapter 10

2

External Sorting

Sorting is used in implementing many relational
operations

Problem:
Relations are typically large, do not fit in main memory

So cannot use traditional in-memory sorting algorithms

Approach used:
Combine in-memory sorting with clever techniques aimed at
minimizing I/O

I/O costs dominate => cost of sorting algorithm is measured
in the number of page transfers

3

External Sorting (cont d)

External sorting has two main components:
Computation involved in sorting records in
buffers in main memory

I/O necessary to move records between mass
store and main memory

4

Simple Sort Algorithm
M = number of main memory page buffers
F = number of pages in file to be sorted
Typical algorithm has two phases:

Partial sort phase: sort M pages at a time; create F/M
sorted runsruns on mass store, cost = 2F

Example: M = 2, F = 7
run

Original file

Partially sorted file

5 3 2 6 1 10 15 7 20 11 8 4 7 5

2 3 5 6 1 7 10 15 4 8 11 20 5 7

5

Simple Sort Algorithm
Merge Phase: merge all runs into a single run
using M-1 buffers for input and 1 output buffer

Merge step: divide runs into groups of size M-1 and
merge each group into a run; cost = 2F

each step reduces number of runs by a factor of M-1

M pages
Buffer

6

Merge: An Example

2 3 5 6

1 7 10 15

Input buffers
Output buffer

1 2 3 5 6 7 10 15

2 3

1 7

5 6

10 15

1 23 56 710 15

Output runInput runs

2

7

Simple Sort Algorithm

Cost of merge phase:
(F/M)/(M-1)k runs after k merge steps

Log M-1(F/M) merge steps needed to merge an
initial set of F/M sorted runs

cost = 2F Log M-1(F/M) 2F(Log M-1F -1)

Total cost = cost of partial sort phase + cost
of merge phase 2F Log M-1F

8

Duplicate Elimination

A major step in computing projection,
union, and difference relational operators

Algorithm:
Sort

At the last stage of the merge step eliminate
duplicates on the fly

No additional cost (with respect to sorting) in
terms of I/O

9

Duplicate elimination During Merge

2 3 5 6

1 3 5 15

Input buffers
Output buffer

1 2 3 5 6 15

2 3

1 3

5 6

5 15

1 23 56 15

Output runInput runs Last key used

1215356

Key 3 ignored: duplicate

Key 5 ignored: duplicate

10

Sort-Based Projection

Algorithm:
Sort rows of relation at cost of 2F Log M-1F

Eliminate unwanted columns in partial sort
phase (no additional cost)

Eliminate duplicates on completion of last
merge step (no additional cost)

Cost: the cost of sorting

11

Hash-Based Projection
Phase 1:

Input rows
Project out columns
Hash remaining columns using a hash function with range 1 M-1
creating M-1 buckets on disk
Cost = 2F

Phase 2:
Sort each bucket to eliminate duplicates
Cost (assuming a bucket fits in M-1 buffer pages) = 2F

Total cost = 4F

M pages

Buffer 12

Computing Selection (attr op value)

No index on attr:
If rows are not sorted on attr:

Scan all data pages to find rows satisfying selection
condition

Cost = F

If rows are sorted on attr and op is =, >, < then:
Use binary search (at log2 F) to locate first data
page containing row in which (attr = value)

Scan further to get all rows satisfying (attr op value)

Cost = log2 F + (cost of scan)

3

13

Computing Selection (attr op value)

Clustered B+ tree index on attr (for = or range search):

Locate first index entry corresponding to a row in which
(attr = value). CostCost = depth of tree

Rows satisfying condition packed in sequence in
successive data pages; scan those pages.

CostCost: number of pages occupied by qualifying rows

B+ tree
index entries
(containing rows)
that satisfy
condition

14

Computing Selection (attr op value)

Unclustered B+ tree index on attr (for = or range search):

Locate first index entry corresponding to a row in which (attr
= value).

CostCost = depth of tree

Index entries with pointers to rows satisfying condition are
packed in sequence in successive index pages

Scan entries and sort record Ids to identify table data pages
with qualifying rows

Any page that has at least one such row must be fetched
once.

CostCost: number of rows that satisfy selection condition

15

Unclustered B+ Tree Index

index entries (containing
row Ids) that satisfy
condition

data page

Data
file

B+ Tree

16

Computing Selection (attr = value)

Hash index on attr (for = search only):
Hash on value. CostCost 1.2

1.2 typical average cost of hashing (> 1 due to possible overflow
chains)

Finds the (unique) bucket containing all index entries satisfying selection
condition

Clustered index all qualifying rows packed in the bucket (a few pages)

CostCost: number of pages occupies by the bucket

Unclustered index sort row Ids in the index entries to identify data
pages with qualifying rows

Each page containing at least one such row must be fetched once

CostCost: min(number of qualifying rows in bucket, number of pages in file)

17

Computing Selection (attr = value)

Unclustered hash index on attr (for equality search)

buckets

data pages

18

Access Path
Access pathAccess path is the notion that denotes algorithm +
data structure used to locate rows satisfying some
condition
Examples:

File scan: can be used for any condition
Hash: equality search; all search key attributes of hash
index are specified in condition
B+ tree: equality or range search; a prefix of the search
key attributes are specified in condition

B+ tree supports a variety of access paths

Binary search: Relation sorted on a sequence of
attributes and some prefix of that sequence is specified
in condition

4

19

Access Paths Supported by B+ tree

Example: Given a B+ tree whose search key is the
sequence of attributes a2, a1, a3, a4

Access path for search a1>5 a2=3 a3= x (R): find
first entry having a2=3 a1>5 a3= x and scan
leaves from there until entry having a2>3 or a3 x .
Select satisfying entries

Access path for search a2=3 a3 > x (R): locate first
entry having a2=3 and scan leaves until entry having
a2>3. Select satisfying entries

Access path for search a1>5 a3 = x (R): Scan of R
20

Choosing an Access Path

SelectivitySelectivity of an access path = number of pages
retrieved using that path

If several access paths support a query, DBMS
chooses the one with lowest selectivity

Size of domain of attribute is an indicator of the
selectivity of search conditions that involve that
attribute

Example: CrsCode= CS305 Grade= B (TranscriptTranscript)

a B+ tree with search key CrsCode has lower selectivity
than a B+ tree with search key Grade

21

Computing Joins
The cost of joining two relations makes the
choice of a join algorithm crucial
SimpleSimple blockblock--nested loopsnested loops join algorithm
for computing r A=B s

foreach page pr in r do
foreach page ps in s do

output pr A=B ps

22

Block-Nested Loops Join

If r and s are the number of pages in r and s,
the cost of algorithm is

r + r s + cost of outputting final result

If r and s have 103 pages each,

cost is 103 + 103 * 103

Choose smaller relation for the outer loop:
If r < s then r + r s < s + r s

Number of scans of
relation s

23

Block-Nested Loops Join

Cost can be reduced to

r + (r/(M-2)) s + cost of outputting final result

by using M buffer pages instead of 1.

Number of scans
of relation s

24

Block-Nested Loop Illustrated

Output
buffer

s

r

Input buffer for s

Input buffer for r

and so on

r s

5

25

Index-Nested Loop Join r A=B s

Use an index on s with search key B (instead of
scanning s) to find rows of s that match tr

Cost Cost = r + r + cost of outputting final result

Effective if number of rows of s that match tuples in r is
small (i.e., is small) and index is clustered

foreach tuple tr in r do {
use index to find all tuples ts in s satisfying tr.A=ts.B;
output (tr, ts)

}

Number of
rows in r

avg cost of retrieving all
rows in s that match tr

26

Sort-Merge Join r A=B s

sort r on A;
sort s on B;
while !eof(r) and !eof(s) do {

Scan r and s concurrently until tr.A=ts.B=c;
Output A=c(r) B=c (s)

}

r

s

B=c (s)

A=c(r)

27

Join During Merge Illustrated

1 3
p p

r

s

D
A

B
E

p p
4 0

0 9
q q

r
9

8 7 3
s s s

s
7

t t
2 5

u u u
2 5 0

5 7
u u

1 1
v v

x
0

1 3 1 3
p p p p
p p p p
4 0 0 4

8 7 3
s s s
s s s
7 7 7

5 7 5 7 5 7
u u u u u u
u u u u u u
2 2 5 5 0 0

r A=B s

28

Cost of Sort-Merge Join
CostCost of sorting assuming M buffers:

2 r log M-1 r + 2 s log M-1 s

CostCost of merging:
Scanning A=c(r) and B=c (s) can be combined with the last step
of sorting of r and s --- costs nothing
Cost of A=c(r) B=c (s) depends on whether A=c(r) can fit in the

buffer
If yes, this step costs 0
In no, each A=c(r) B=c (s) is computed using block-nested join, so the
cost is the cost of the join. (Think why indexed methods or sort-merge
are inapplicable to Cartesian product.)

Cost of outputting the final result depends on the size of the
result

29

Hash-Join r A=B s

Step 1: Hash r on A and s on B into the same set of
buckets

Step 2: Since matching tuples must be in same
bucket, read each bucket in turn and output the
result of the join

CostCost:: 3 (r + s) + cost of output of final result
assuming each bucket fits in memory

30

Hash Join

6

31

Star Joins

r cond1
r1 cond2 condn

rn

Each cond i involves only the attributes of ri and r

r

r1

r2

r3

r4

r5

cond1 cond2

cond3

cond4

cond5

Star
relationSatellite

relations

32

Star Join

33

Computing Star Joins

Use join index join index (Chapter 11)
Scan r and the join index {<r,r1, ,rn>} (which is
a set of tuples of rids) in one scan

Retrieve matching tuples in r1, ,rn

Output result

34

Computing Star Joins

Use bitmap indicesbitmap indices (Chapter 11)
Use one bitmapped join index, Ji , per each partial join
r condi

ri

Recall: Ji is a set of <v, bitmap>, where v is an rid of a
tuple in ri and bitmap has 1 in k-th position iff k-th tuple
of r joins with the tuple pointed to by v

1. Scan Ji and logically OR all bitmaps. We get all rids in r
that join with ri

2. Now logically AND the resulting bitmaps for J1, , Jn.
3. Result: a subset of r, which contains all tuples that can

possibly be in the star join
Rationale: only a few such tuples survive, so can use indexed loops

35

Choosing Indices

DBMSs may allow user to specify
Type (hash, B+ tree) and search key of index
Whether or not it should be clustered

Using information about the frequency and type of
queries and size of tables, designer can use cost
estimates to choose appropriate indices
Several commercial systems have tools that
suggest indices

Simplifies job, but index suggestions must be verified

36

Choosing Indices Example

If a frequently executed query that involves selection or a
join and has a large result set, use a clustered B+ tree
index

Example: Retrieve all rows of TranscriptTranscript for StudId

If a frequently executed query is an equality search and
has a small result set, an unclustered hash index is best

Since only one clustered index on a table is possible,
choosing unclustered allows a different index to be
clustered

Example: Retrieve all rows of TranscriptTranscript for (StudId, CrsCode)

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

