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Dynamic Source Routing (DSR) 
[Johnson-Maltz-96,
Broch et. al. 98-00]

g When node S wants to send a packet to node 
D, but does not know a route to D, node S 
initiates a route discovery.

g Source node S floods the network with route 
request (RREQ) packets (also called query 
packets).

g Each node appends its own address in the 
packet header when forwarding RREQ.
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Route Discovery in DSR

A

S E
F

B

C

G D

RREQ broadcast
[S]

represents a node that has received RREQ for D from S.

[X,..,..]     Represents list of addresses appended to RREQ.

A node receiving a RREQ rebroadcasts it exactly once.
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Route Discovery in DSR

represents a node that has received RREQ for D from S.

A

S E
F

B

C

G D

RREQ broadcast[S,E]

[X,..,..]     Represents list of addresses appended to RREQ.

[S,C]

[S,A]

A node receiving a RREQ rebroadcasts it exactly once.
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Route Discovery in DSR

A

S E
F

B

C

G D

RREQ broadcast

[S,E,F]

[S,C,G]
[S,A,B]

Destination D receives RREQ via G and F.

It does not broadcast it further.
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Route Discovery in DSR

g Destination D on receiving the first RREQ, 
sends a Route Reply (RREP).

g RREP is sent on a route obtained by 
reversing the route appended to received 
RREQ.

g RREP includes the reverse route from S to D 
on which RREQ was received by node D.
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Route Reply in DSR

A

S E
F

B

C

G D

RREP Unicast

[D,F,E,S]

Reverse route
in the header 
of RREP
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Route Caching in DSR

g Node S on receiving RREP, “caches” the 
route included in the RREP.

g When node S sends a data packet to D, the 
entire route is included in the packet header
n Hence the name source routing.

g Intermediate nodes use the source route
included in a packet to determine to whom a 
packet should be forwarded.
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Data Delivery in DSR

A

S E
F

B

C

G D

Cache on S:
[S,E,F,D]

DATA [S,E,F,D]

DATA packet
Unicast

Source route size grows with route length. 
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Route Error

g If the next hop link is broken when a data packet 
is being forwarded, a Route Error (RERR) is 
generate and propagated backwards.

A

S E
F

B

C

G D

Cache on S:
[S,E,F,D]

DATA [S,E,F,D]

DATA packet
Unicast
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Route Error

g If the next hop link is broken when a data packet 
is being forwarded, a Route Error (RERR) is 
generate and propagated backwards.

g RERR contains the failed link info.

A

S E
F

B

C

G D

Cache on S:
[S,E,F,D]

RERR  [F,E,S] [Failed link = FD]

RERR is
Unicast
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Route Error

g When S receives RERR, it erases any cached 
route with the failed link.

A

S E
F

B

C

G D

Cache on S:
[S,E,F,D]

RERR  [F,E,S] [Failed link = FD]

RERR is
Unicast
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Aggressive Route Caching
g Each node caches a new route it learns by any 

means
g When node S finds route [S,E,F,D] to node D, node S 

also learns route [S,E,F] to node F and so on.
g When node G receives RREQ [S,C] destined for node 

D, node G learns route [G,C,S] to node S and so on.
g When node F forwards RREP [D,F,E,S], node F learns 

route [F,D] to node D and so on.
g Basically, when forwarding any packet, the node learns 

a route to all nodes in the source route contained in the 
packet.



7

31Samir R. Das University of Cincinnati

Contents of Caches on Selected Nodes 
After one RREQ-RREP Cycle

g [P,Q,R]   represents cached route at a node P.
g More than one routes may be cached for the same 

destination.
g Compact data structures may be used to implement route 

caches (e.g., tree).

A

S E
F

B

C

G D [D,F,E,S]
[D,G,C,S]

[F,E,S]
[F,D]
[F,G,C,S]
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Use of Route Caching

g Salvaging: When node S learns that a route to node 
D is broken, it uses another route from its local 
cache, if such a route to D exists in its cache. 
n Otherwise, node S initiates route discovery by sending a 

route request

g Reply from Cache: Node X on receiving a RREQ for 
some node D can send a Route Reply if node X 
knows a route to node D.

g Aggressive use of route cache 
n can speed up route discovery.
n can reduce propagation of route requests.
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Route Caching: Beware!

g Stale caches can adversely affect 
performance.

g With passage of time and host mobility, cached 
routes may become invalid.

g All cached routes containing a failed link are not 
erased by route error (RERR).
n Only that route is erased that is attempted to be used

g A sender host may try several stale routes 
(obtained from local cache, or replied from 
cache by other nodes), before finding a valid 
route.
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Dynamic Source Routing: Advantages

g Source routing: no special mechanism needed to 
eliminate loops.

g On demand routing: Routes maintained only 
between nodes who need to communicate
n Reduces overhead of route maintenance.

g Route caching can further reduce route discovery 
overhead.

g A single route discovery may yield many routes to the 
destination, due to intermediate nodes replying from 
local caches.
n Useful when route breaks. 
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Dynamic Source Routing: 
Disadvantages

g Not scalable: Packet header size grows linearly with 
route length due to source routing.

g Network-wide flood: Flood of route requests may 
potentially reach all nodes in the network. Too much 
overhead.

g Collision: Care must be taken to avoid collisions 
between route requests propagated by neighboring 
nodes
n insertion of random delays before forwarding RREQ

g Reply storm problem: Increased contention if too 
many route replies come back due to nodes replying 
using their local cache
n Reply storm may be eased by preventing a node from 

sending RREP if it hears another RREP with a shorter route.
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Dynamic Source Routing: 
Disadvantages

g Stale cache problem: An intermediate node 
may send Route Reply using a stale cached 
route, thus polluting other caches.

g This problem can be eased if some 
mechanism to purge (potentially) invalid 
cached routes is incorporated. 

g Current research: how to invalidate caches 
effectively.
n Example: Timer-based. Or propagate the route 

error widely.
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Ad Hoc On-Demand Distance Vector 
Routing (AODV)
[Perkins-Royer-Das 99,00]

g AODV retains the desirable feature of DSR 
that routes are maintained only between 
nodes which need to communicate.

g AODV attempts to improve on DSR by 
maintaining routing tables at the nodes, so that 
data packets do not have to contain routes.

g No caches are used.
n Only one route per destination in the routing table.
n Only maintain the freshest route, if multiple 

possibilities.
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AODV
g Route Requests (RREQ) are forwarded in a 

manner similar to DSR.
g When a node re-broadcasts a RREQ, it sets 

up a reverse path pointing towards the 
source.
n This is so that the RREP can get back to the 

source. 
g When the intended destination receives a 

RREQ, it replies by sending a RREP.
g RREP travels along the reverse path set up 

when RREQ is forwarded.
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AODV Route Discovery

g Source floods route request (RREQ) in the network.
g Reverse paths are formed when a node hears a route 

request.
g Each node forwards the request only once (pure 

flooding). 

A

S E
F

B

C

G D

RREQ broadcast
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AODV Route Discovery
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g Source floods route request in the network.
g Reverse paths are formed when a node hears a route 

request.
g Each node forwards the request only once (pure 

flooding). 

Reverse Path
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AODV Route Discovery

A

S E
F

B

C

G D

g Uses hop-by-hop routing.
g Reverse paths are formed when a node hears a route 

request.
g Each node forwards the request only once (pure 

flooding). 

RREQ broadcast

Reverse Path
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AODV Route Discovery
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g Uses hop-by-hop routing.
g Reverse paths are formed when a node hears a route 

request.
g Each node forwards the request only once (pure 

flooding). 

Reverse Path
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AODV Route Discovery

g Route reply (RREP) is forwarded via the 
reverse path.

A

S E
F

B

C

G D

Reverse Path
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AODV Route Discovery

g Route reply is forwarded via the reverse path
… thus forming the forward path.

g The forward path is used to route data 
packets.

A

S E
F

B

C

G D

Forward Path

Reverse Path
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Route Expiry on Timeout

g A routing table entry maintaining a reverse 
path is invalidated after a timeout interval
n Timeout should be long enough to allow RREP to 

come back
g A routing table entry maintaining a forward 

path is also invalidated if unused for certain 
interval.
n This means unused routes are purged.
n Note that the route may still be valid.
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Route Expiry

g Unused reverse paths expire based on a timer. 

A

S E
F

B

C

G D

Forward Path
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Link Failure Detection

g Hello messages: Neighboring nodes 
periodically exchange hello or keep-alive 
messages.

g Absence of any hello message for some time 
is used as an indication of link failure.

g Alternatively, failure to receive several link-
layer ACK for a transmitted packet may be 
used as an indication of link failure.

g Note DSR needs to use one of the above as 
well.
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Route Error

g When a node X is unable to forward packet P 
(from node S to node D) on link (X,Y), it 
generates a RERR message back to S.

g How to forward the RERR to S? X may not 
have a route to S.

g RERR is broadcast. Any node having an 
active route to D, rebroadcasts RERR after 
invalidating that route.
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Route Error Propagation

g Link breakage on an active route triggers route 
error (RERR). 

A

S E
F

B

C

G D
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Route Error Propagation

g F invalidates the route to D, and broadcasts 
RERR.

g E notes that  it has a route to D via F, and it 
continues the process.

A

S E
F

B

C

G D

RRER broadcast
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Route Error Propagation

g F invalidates the route to D, and broadcasts 
RERR.

g E notes that  it has a route to D via F, and it 
continues the process.

A

S E
F

B

C

G D
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Route Error Propagation

g The entire upstream route is erased. 
g S starts fresh route discovery if needed. 

A

S E
F

B

C

G D
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Possibility of Routing Loops!

g Useful optimization: An intermediate node 
with a route to D can reply to route request.
n Faster operation.
n Quenches route request flood.

g Wireless reality: Routing messages can get 
lost.

g It can be shown that above can cause long-
term routing loops.
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Possibility of Routing Loops!

g Assume that A does not know about failure of link C-D 
because route error sent by C is lost.

g Now C performs a route discovery for D. Node A 
receives the route request (say, via path C-E-A)

g Node A will reply since A knows a route to D via node 
B

g Results in a loop (for instance, C-E-A-B-C )

A B C D

E



19

55Samir R. Das University of Cincinnati

Possibility of Routing Loops!

g Assume that A does not know about failure of link C-D 
because route error sent by C is lost.

g Now C performs a route discovery for D. Node A 
receives the route request (say, via path C-E-A)

g Node A will reply since A knows a route to D via node 
B

g Results in a loop (for instance, C-E-A-B-C )

A B C D

E
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Use of Sequence Numbers in AODV

g Each node X maintains a sequence number
and increments it at suitable intervals. 

g Seq. no. acts like a logical clock.
g Each node Y with a route to X in the routing 

table, also maintains a destination 
sequence number for X, which is Y’s latest 
knowledge of X’s sequence number.

g Destination sequence no. can be used to 
order routing updates.
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Use of Sequence Numbers in AODV

g Loop freedom: The protocol maintains the invariant 
that the destination sequence number for any 
destination D never decreases along any valid route.
n No routing info is accepted from by a node X from any node 

Y, where Y’s destination seq. no. for D is less than X’s 
destination seq. no. for D.

g Freshest route: Given a choice of multiple routes, the 
protocol always chooses the one with the highest 
sequence number.

X Y D?

Dest seq no. = 10 Dest seq no. = 7

Needs a route 
to D

Has a route to D

Seq. no. = 15

RREQ carries 10

Y does not reply, but 
forwards the RREQ
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How Using Sequence Numbers can 
Avoid Loop?

g Link failure increments the destination seq. no. at C 
(now is 10).

g If C needs a route to D, RREQ carries the current 
dest. seq. no. (10).

g A does not reply as its own dest. seq. no. is less than 
10.

A B C D

E
109

9

7

5 All seq no’s are for D
(called destination seq. 
no.)
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Summary: AODV

g No source routing. Based on routing tables.
g Use of sequence numbers to prevent loops.
g At most one route per destination maintained 

at each node
n Only the freshest one is maintained (via 

destination seq. no.) 
n Stale route problem is less severe.
n After link break, all routes using the failed link are 

erased.
g Unused routes expire even if valid.
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Flood Control Optimizations for 
DSR and AODV

g Note that the whole network is flooded by 
Route Request (RREQ) packets when 
route is needed.
n Large overhead.
n Intermediate nodes with routes may quench the 

flood, but not guaranteed and may not happen 
in all directions.

g Need techniques to control flood.
g Two different sets of techniques

n Limit the extent of flood to a region where the 
destination is likely to be found.

n Eliminate redundant broadcasts.



22

61Samir R. Das University of Cincinnati

Flood Control Optimizations
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Route Discovery

S

D
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Query Flooding

S

D
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Query Flooding

S

D
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Query Flooding

S

D
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Query Flooding

S

D
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Whole Network is Flooded

S

D
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Use of Max Hop Count (TTL) Field

D

S

g Limits query propagation 
within a certain number of 
hops from the source. 

g Expanding ring search.
g Can still flood a substantial 

part of the network if 
destination is far away.  
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Use of Max Hop Count (TTL) Field

D

S

g Limits query propagation 
within a certain number of 
hops from the source. 

g Expanding ring search.
g Can still flood a substantial 

part of the network if 
destination is far away.  
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Using Location Information

g Uses geographic location 
info to direct query 
propagation towards 
destination (LAR). 
[Ko-Vaidya-98]

g Or flood data packets 
directly in the cone rooted at 
source (DREAM). 
[Basagni-Chlamtac-Syrotiuk-98]

g Needs additional hardware 
(GPS). 

D

S
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Query Localization
[Das-Castenada-99]

D

S

g Exploit “spatial locality.”
g Propagate query only in a 

topological neighborhood
of  the last valid route 
between S and D.  

g Several heuristics to define 
neighborhood possible. 

72Samir R. Das University of Cincinnati

B

D

C

A

Broadcast Storm Problem
[Ni et. al. – 98]

g When node A broadcasts a Route Request, nodes B 
and C both receive it

g B and C both rebroadcasts (forwards) the request.
g D receives two copies – from B and C. One is 

sufficient.
g Since B and C can hear each other, can they 

coordinate so that only one will rebroadcast?
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Coverage Question

g Suppose, B decides not to rebroadcast after hearing 
C’s rebroadcast. 

g RREQ will never reach D.
g B need to be somewhat confident that C’s rebroadcast 

is covering all of B’s neighbors before deciding not to 
rebroadcast.

g How?

B

D

C

A

E

F

Now a different topology!
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Idea: Incremental Coverage is Small

g Suppose, node 1 broadcasts a 
RREQ. 

g Additional nodes randomly 
located in the coverage area of 
node 1 will only incrementally 
add to the total coverage.

g Benefit very small beyond 5 
nodes.

g Idea: need not rebroadcast the 
RREQ if already heard a few 
broadcasts for the same 
RREQ in the neighborhood.

1 2

3

4

5
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Solution for Broadcast Storm

g Counter-Based Scheme: If node X hears 
more than k neighbors broadcasting a given 
route request, before it can itself rebroadcast 
it, then node X will not forward the request

g Intuition: k neighbors together have probably 
already forwarded the request to all of X’s 
neighbors. Thus re-broadcasting by X will not 
have any added benefit.

g Heuristic parameters: Value of k, how long to 
wait before rebroadcasting?
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Proactive Protocols
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Link State Routing
g Each node floods the network with the status of its 

links
n Flood can be periodic.
n Or, when a neighborhood change is detected.

g Each node keeps track of link state information 
received from other nodes
n Thus builds its own view of the network connectivity.

g Each node uses its view of network connectivity to 
construct a routing table for each destination.
n For example, each node can run a shortest-path algorithm 

(e.g., Dijkstra’s)  on its own view of the connectivity graph.
n Different nodes can use different objective for routing.
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Overhead Reduction in Link-State 
Protocols

g Pure flooding is high overhead. Do not use pure 
flooding. How?

g Method 1: Flood all nodes. But require fewer nodes to 
do the forwarding. For example, maintain a tree 
structure rooted at the source of the update.

g Method 2: Flood only a connected dominating set of 
nodes and maintain routes only among this dominating 
set. 
n Dominating set: A subset of nodes such that each node in the 

network is in this set or a neighbor of some node in the set. 
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TBRPF: Topology Broadcast with 
Reverse Path Forwarding 

[Bellur-Ogier-Templin-99,00]

g Send link-state updates only via the minimum-hop 
spanning tree  rooted at the source of the update.

g Little cost for maintaining the spanning tree. In a link-
state protocol each node has the network connectivity 
information. 

B

E

C

A Source of update 

D
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TBRPF: Topology Broadcast with 
Reverse Path Forwarding 

[Bellur-Ogier-Templin-99,00]

g Send link-state updates only via the minimum-hop 
spanning tree  rooted at the source of the update.

g Little cost for maintaining the spanning tree. In a link-
state protocol each node has the network connectivity 
information. 

B

E

C

A Source of update 

D

2 transmissions 
instead of 4
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OLSR: Optimized Link-State Routing
[Jacket, Qayyaum et. al.-99-01]

g Only multipoint relays (MPR) participate in 
routing. Similar to connected dominating set.

g Multipoint relays of node X are its neighbors 
such that each two-hop neighbor of X is a 
one-hop neighbor of at least one multipoint 
relay of X.
n Each node transmits its neighbor list in periodic 

beacons, so that all nodes know their 2-hop 
neighbors, in order to choose the multipoint relays.

n Select as few multipoint relays as possible.
g Only multipoint relays are used for routing. 
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Multipoint Relays

24 retransmissions
needed to flood
the network
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Multipoint Relays (contd.)

11 retransmissions
needed to flood
the network
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Optimized Link State Routing (OLSR)
g OLSR floods link-state information only through 

multipoint relays.
g Routes used by OLSR only include multipoint relays 

as intermediate nodes . 
n Routes are still optimal!

g Each node maintains information about its MPR 
(multipoint relay) selector set, i.e., set of neighbors 
that have selected itself as MPR.

g Each node with non-empty MPR selector set 
periodically floods the network with topology control 
(TC) messages containing own MPR selector set. 
n This information is used to construct the topology database 

used for routing calculations.
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Distance Vector Routing

g Each node maintains <next hop, #hops> for 
each destination. This is called distance 
vector. Same as routing table.

g Each node exchanges its distance vector with 
its neighbors periodically.

g Upon receiving the distance vector from a 
neighbor, each node updates its own 
distance vector. 

g Example: Distributed Bellman Ford.
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Characteristics of Distance Vector 
Routing

g Typically cheaper update cost than link-state. 
n In generic link-state routing, each update needs to be sent to 

ALL nodes. 

g Counting to Infinity Problem
n Takes too long to determine that a destination is 

unreachable or to an alternative, but much longer route.

g Loops possible because of lack of synchronism in 
update propagation.

g Both problems can be handled by exchanging 
additional information or by enforcing 
synchronization.
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Destination-Sequenced 
Distance-Vector (DSDV)

[Perkins-Bhagwat-94]

g Uses sequence numbers to avoid counting to infinity 
or looping problems.

g Each node increments and appends its own 
sequence number when broadcasting its distance 
vector.

g Each distance vector also includes the destination 
sequence no. 
n <next hop, #hops, dest. seq. no.> for each destination.

g No update if the dest. seq. no. in the distance vector  
in the incoming packet is less than the dest. seq. no. 
in the node’s own distance vector.
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Hybrid Protocols
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Zone Routing Protocol (ZRP)
[Haas-Pearlman-98]

Zone routing protocol combines
g Proactive protocol: which pro-actively 

updates network state and maintains route 
regardless of whether any data traffic exists 
or not, and 

g Reactive protocol: which only determines 
route to a destination if there is some data to 
be sent to the destination.
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Zones in ZRP

g All nodes within d hops from a node X are 
said to be in the routing zone of node X.

g All nodes at hop distance exactly d are said to 
be peripheral nodes of node X’s routing zone.

g Bordercasting: The operation of sending a 
route request query to some or all of a node’s 
peripheral nodes.
n Full bordercasting
n Selective bordercasting
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Intra and Inter-zone Routing

g Intra-zone routing: Proactively maintain 
routes to all nodes within the source nodes 
own zone.
n Can use link-state or distance-vector protocols. 

g Inter-zone routing: Use an on-demand 
protocol (similar to DSR or AODV) to 
determine routes to outside zone.
n Route request query is propagated efficiently from 

zone to zone via bordercasting.
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Route Discovery in ZRP

g S bordercasts route request to A,B, and C.
g They in turn bordercast their zone periphery.
g G recognizes that D is in its zone, and replies to route 

request.
g G knows route to D via intra-zone routing.

S

B

A C

F

G ED

Multihop path
linkE

Zone
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Issues in ZRP

g ZRP tries to balance best of both worlds.
n Lower route discovery latency than purely on-demand as 

route request propagates in “quantum” of zone radius.
n Lower routing packet overhead than proactive, as only 

routes within zone are proactively maintained. 
g Zone radius must be chosen carefully!
g ZRP includes techniques to improve inter-zone route 

discovery process
n Preventing loopback: prevent route request coming back to 

the zone that it already queried. 
n Selective bordercasting: only a subset of peripheral nodes 

are bordercasted to such that all next stage zones are 
covered.
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Choice of Link Cost Metric

g Usually in MANET protocols, each link is considered 
unit cost. 
n The shortest path is in number of hops.
n Reasonable choice as delay in each hop is usually high and 

each transmission depletes power budget.
g But other interesting cost metrics are also possible

n Based on some link stability metric
n Don’t use a node as a next hop that changes neighborhood 

frequently. It may be moving fast.
n Based on signal strength.

n Rely more on links with strong signal strength.

g Also, sometimes load balancing helps.
n Avoid nodes on congested routes.
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Performance Matters
1. Latency of route discovery

n Proactive protocols may have lower latency since routes are 
maintained at all times

n Reactive protocols may have higher latency because a route 
from X to Y will be found only when X attempts to send to Y
n Typically equal to round-trip time between source and destination.
n Need to buffer packets while route discovery in progress. Buffer

overflow -> packet loss.

2. Routing overhead
n Any packets transmitted for route discovery/maintenance 

purposes are counted as overheads.
n Example, RREQ, RREP, RERR packets in on-demand; route 

update packets in proactive.
n Reactive protocols may have lower overhead since routes are 

determined only if needed
n Proactive protocols may result in higher overhead due to 

continuous route updating
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3. Quality of routes

n Proactive protocols will typically guarantee shortest 
path.

n On-demand protocols may not always guarantee 
shortest path.
n May be shortest path initially. But a new shorter path won’t 

be used until a new route discovery, which won’t happen 
unless the original route breaks.

n Sub-optimal paths increases data packet latency.

g Lot of performance study in literature via 
simulations [Broch et al. 98, Das et. al. 98,00,01]
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g Actual trade-off depends a lot on traffic and mobility 

patterns.
g Traffic:

n Higher traffic diversity (more source-destination pairs) 
increases overhead in on-demand protocols, as more 
routes need to be discovered.

g Mobility:
n Higher mobility will always increase overhead in all 

protocols.
n But may not matter much with low traffic diversity for on-

demand protocols.
g For very high mobility, no protocol will do well.

n For example, if the route changes by the time it takes to 
discover a route …


