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RWR Application: Disease Gene Association  



Disease Gene Association 
 Disease Gene Association is identification of causal 

genes of a disease.  
 Useful for:  

 Preventing and curing the disease.  
 Understanding the biological functions of genes 

 Traditional method popular in the early 2000 
 Genome-wide association studies (GWAS)   
 Relies on testing several hundred thousand common genetic 

variants found throughout the human genome in large-control 
cohorts (patients with same disease/phenotype). 

 Problem: Due to lack of the ability to detect ‘common disease 
by rare variants’ explains only portion of genetic risk  



Random Walk Based Methods 

 Random walk based methods are one popular alternative 
approach for associating genes with disease.  

 General idea: 
 ‘guilt by association’ principle (Wolfe et al., 2005) with respect 

to a set of known genes related to the given disease. 



Kohler et al.’s Approach  
 Gene–disease associations by using a global network distance 

measure for the definition of similarities in protein–protein 
interaction 
 a random walk analysis 

 
 Data sets  

 Disease-Gene Family Information  
 Protein-Protein Interaction Network  

 Disease-Gene Prediction Methods 
 Random Walk 
 Diffusion Kernel 
 Other methods 

 Kohler,S. et al. (2008) Walking the interactome for prioritization of candidate 
disease genes. Am. J. Hum. Genet., 82, 949–958. 

Kohler,S. et al. (2008)  



Disease-Gene Family Information  
 A total of 110 disease-gene families defined as follows:  

 Online Mendelian Inheritance inMan (OMIM) database 
 Extract genetically heterogeneous disorders - selecting mutations in distinct 

genes associated with similar or even indistinguishable phenotypes 
 Cancer syndromes comprising genes associated with hereditary cancer, 

increased risk, or somatic mutation in a given cancer type; 
 Complex (polygenic) disorders that are known to be influenced by variation 

in multiple genes.  
 Domain knowledge and literature or database searches 

 Select all genes clearly associated with the disorder at hand 

 Summary of extracted 110 disease-gene families 
 Contains 783 genes with 665 distinct genes (Some genes were 

members of more than one disease family),  
 Largest family contained 41 genes and the smallest only three genes.  
 On average, each family contained seven genes.  

Kohler,S. et al. (2008)  



Protein-Protein Interaction Data 
 PPI graph structure 

 Undirected graph: nodes representing the genes and edges representing the mapped 
interactions of the proteins encoded by the genes. 

 PPI construction 
 Entrez Gene & IntACT and DIP  

 Five networks from species comprises interaction from HPRD, BIND, and BioGrid.   
 human, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces 

cerevisiae  
 Protein interactions mapped to the genes coding for the proteins, and redundant interactions removed 

 Mapping nonhuman interactions to human  
 map to homologous human genes identified by Inparanoid analysis with a 

threshold Inparalog score of 0.8.  
 If both interaction partners could be mapped to human proteins, the interaction 

was used.  
 STRING 

 STRING: contains functional links between proteins on the basis of both experimental evidence for 
protein-protein interactions as well as interactions predicted by comparative genomics and text mining.  

 STRING uses a scoring system that is intended to reflect the evidence of predicted interactions.  
 Included interactions with a score of at least 0.4, (medium-confidence) 

Kohler,S. et al. (2008)  



Disease-Gene Prediction 
Kohler,S. et al. (2008)  

Figure 1. Disease-Gene Prioritization 

Candidate genes 

Known disease genes 

assigns a score to each of 
the candidate genes, 

1. Extract candidate genes contained in the linkage interval  
2. Map candidate genes previously known disease genes and to the 

interaction network  
3. Assigns a score to each of the candidate genes 

1. Base on relative location of the candidate to all of the known ‘‘disease 
genes’’ by the use of global network-distance measures.  

4. Rank genes in the linkage interval 



Disease-Gene Prediction Steps 

 The global distance between a hypothetical disease gene (x) and a 
candidate gene (y) is different in each case.  

 In (B), proteins x and y are connected via a hub node with many other 
connections, so that the global similarity is less than in (C),  

 In (C) x and y are connected by a protein with fewer connections than 
those of the hub.  

 Nodes that are connected by multiple paths (D) receive a higher 
similarity than do nodes connected by only one path.  

 NOTE: shortest path between x and y is identical in each case (B–D),  
 distance measures relying on shortest path cannot differentiate between these 

three types of connection.  

Example: Different net configuration consisting of the same number of nodes 

Kohler,S. et al. (2008)  



Random Walk with Restart 

Where W is the column-normalized adjacency matrix of the graph 
and pt is a vector in which the i-th element holds the probability of 
being at node i at time step t and restart probability of r 
 
Initialization: p0 = 1/|Gd| where |Gd| number of known genes 
assigned to disease This is equivalent to letting the random 
walker begin from each of the known disease genes with equal 
probability.  
 
Iteration: Candidate genes were ranked according to the values in 
the steady-state probability vector pinf. This was obtained at query 
time by performing the iteration until the change between pt+1

 
and pt+1 (measured by the L1 norm) fell below 10-6. 



Diffusion Kernel 
 The diffusion kernel K of a graph G is defined as 

 𝐊 = 𝑒−𝛽𝑳 
where, 𝛽 controls the magnitude of the diffusion.   
The matrix L is the Laplacian of the graph, defined as D - A, 
where A is the adjacency matrix of the interaction graph and  
D is a diagonal matrix containing the nodes’ degrees. 

 For small 𝛽, 
 The column vector j of the matrix K represents the steady-state 

probability vector of the random walk when starting at node j. 
 Diffusion Score 

 for each candidate gene j was assigned in accordance with its s
core defined as score(j) = ∑ 𝑲𝑖𝑖𝑖 𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓  



Results 

Comparison of different data 
sources with RWR analysis 

Comparison of different methods for the 
all-interactions network without STRING 
text-mining data 



Li,Y. and Patra,J.’s Heterogeneous network 

 An extension of the random 
walk approach on a heteroge
neous network that includes 
protein–protein interaction, d
isease–disease and gene–dise
ase networks. 

Li,Y. and Patra,J. (2010) Genome-wide 
inferring gene-phenotype relationship 
by walking on the heterogeneous network. 
Bioinformatics, 26, 1219–1224. 

(Li and Patra, 2010) 

The upper subnetwork is phenotype 
network, and the lower network is gene 
network. 



Data source 
 The protein–protein interaction (PPI) 

 Human Protein Reference Database (HPRD).  
 HPRD contains manually curated scientific information pertaining to the biology of 

most of the human proteins.  

 Disease-related phenotype  
 Interpreted as a textual description of a disease’s detectable outward 

manifestations. (van Driel et al., 2006; Wu et al., 2008),  
 Phenotype entry was defined as an MIM record.  
 Excluded the records with the prefix ‘∗’ and ‘∧’. Because the prefix ‘∗’ refers to the 

record of disease gene, and ‘∧’ refers to the obsoleted record.  

 The phenotypic similarity  
 Calculated using MimMiner (van Driel et al., 2006).  

 Gene–phenotype relationship  
 OMIM database (Hamosh et al., 2005), extracted using BioMart (Smedley et al., 2009).  

 Disease category information  
 Manual classification concerning the physiological system affected (Goh et al., 2007). 

(Li and Patra, 2010) 



Construction of  the heterogeneous network 
 Gene network:  

 two genes are connected if the 
proteins they encode interact with 
each other according to the HPRD 
database. 

 Phenotype network: 
 Each phenotype entity is connected 

with its five nearest neighbors, and 
the edge is weighted by the 
corresponding similarity score using 
MimMiner. 

 Gene–Phenotype network: 
bipartite graph 
 phenotype entity with the relevant 

genes 

 Heterogeneous network 
 AG(n×n) adjacency matrix for 

gene network  
  AP(m×m) adjacency matrix for 

ork, phenotype network  
 B(n×m) adjacency matrix for 

bipartite graph,. 
 

(Li and Patra, 2010) 



RWRH 

 Let po be the initial probability vector and ps be a vector 
in which the i-th element holds the probability of finding 
the random walker at node i at step s.  

 The probability vector at step s+1 can be given by 
 
where M is the transition matrix of the graph. Mij is the transition 
probability from node i to node j.  The parameter γ ∈(0,1) is the re
start probability. At each step, the random walker can return to see
d nodes with probability γ. 

 Initialization  
The parameter η∈(0,1) is used to weight 
the importance of each subnetwork 
u0 and v0 represent the initial probability of gene 
network and phenotype network 



Transition matrix 

 Transition matrix of the heterogeneous network 
 

Let λ be the jumping probability: probability of the random walker jumping from gene 
network to phenotype network or vise versa 



Results 

 Disclose hidden disease–disease associations 
 Accuracy comparison  

 

RWR on gene network 



Ceroni, A., Costa, F., & Frasconi, P. (2007). Bioinformatics, 23(16), 2038–45.  

Classification of small molecules by two- and three-
dimensional decomposition kernels 

 





ABSTRACT 
 
Motivation: Several kernel-based methods have been recently introduced for 
the classification of small molecules. Most available kernels on molecules 
are based on 2D representations obtained from chemical structures, but far 
less work has focused so far on the definition of effective kernels that can 
also exploit 3D information.  
 
Results: We introduce new ideas for building kernels on small molecules 
that can effectively use and combine 2D and 3D information. We tested 
these kernels in conjunction with support vector machines for binary 
classification on the 60 NCI cancer screening datasets as well as on the NCI 
HIV data set. Our results show that 3D information leveraged by these 
kernels can consistently improve prediction accuracy in all datasets.  
 
Availability: An implementation of the small molecule classifier is available 
from http://www.dsi.unifi.it/neural/src/3DDK 



Methods: 
Background on kernel methods for structured data 

Base Learner: SVM 
classification function f(x) is obtained from data 

Kernels on structured data 

A major challenge is to define an effective quantitative 
measure of similarity 



A weighted decomposition kernel (WDK) for 2D 
chemical structures 

where,  𝛿 is the exact matching kernel applied to selectors and  
             𝜅 is a kernel on contexts. 

Idea: each substructure in which a graph is decomposed is 
enriched with its graphical context characterized by a 
decomposition R(s,z,x) where s is a subgraph of x called the 
selector and z is a subgraph of x called the context of occurrence 
of s in x (generally a subgraph containing s).  
 
 
This setting results in the following general form of the kernel: 



selector  

context  



WDK parameter used in the article 

• Selectors are always single atoms and the match  
• 𝛿 𝑠, 𝑠′  is defined by the coincidence between the type of 𝑠 

and 𝑠′.  
• The context kernel 𝜅  is based on soft match between 

substructures, defined by the distributions of label contents after 
discarding topology. 

IDEA 



Context Kernel Specifics  
1. Let L denote the total number of attributes labeling vertices and 

edges and for 𝑙 = 1, . . . , 𝐿   
2. Let 𝑝𝑙(𝑗) be the observed frequency of value j for the 𝑙 − 𝑡𝑡 

attribute in a substructure 𝑧. 
3. Then compare substructures by means of a histogram 

intersection kernel 
 

Where 𝑚𝑙 is the number of possible values of attribute 𝑙.  
shall use 𝐿 =  3: 1) atom type, 2) atom charge and 3) bond type, while 
atom coordinates are discarded for computing the WDK. 



Contexts are formed as follows 
Given a vertex 𝑣 ∈  𝑉 and an integer 𝑟 ≥ 0,  
• Let 𝑥(𝑣, 𝑟) : substructure of x obtained by retaining all the 

vertices that are reachable from v by a path of length at most 
r, and all the edges that touch at least one of these vertices.  

 
The decomposition relation 𝑅𝑟, dependent on the context 
radius r, is then defined as  
 
 
where s is the selector and z is the context for vertex v.  
 
Weighted Decomposition Kernel (WDK) 



Three-dimensional decomposition kernels 
A 3D molecular structure is interpreted as a special kind of 
relational data object where atoms are related by chemical bonds 
but also by their spatial distances 

The molecule is first decomposed into a set of overlapping 3D 
substructures of varied geometry, called shapes. 
Given a molecule 𝑥 = (𝑉,𝐸), a shape  of order n is a set of n 
distinct vertices 

 𝜎 = 𝑢1,𝑢2, . . . ,𝑢𝑖 ,  𝑢𝑖  ∈  𝑉, for 𝑖 = 1, . . .𝑛. 
kernel between two 
molecules  

kernels between all pairs of 
shapes 



Kernels between all pairs of shapes 
Given a shape  of order n and two vertices 𝑢, 𝑣 ∈ 𝜎,  
•  let 𝑒 = (𝑡[𝑢], 𝑡[𝑣], 𝑏[𝑢, 𝑣]) denote a labeled edge of the shape,  formed 

by considering the two atom types t[u] and t[v] and the bond type b[u,v].  

Then, let  < 𝑒1, . . . , 𝑒𝑛(𝑛−1)/2 > denote the lexicographically ordered 
sequence of all labeled edges in .  

For example, the shape 
(C1,C2,C3,O1) for the molecule 
NSC_1027 yields 
lexicographically ordered 
sequence of all labeled edges 
(C.2,C.3,1) (C.2,C.3,1) (C.2,O.2,2) 
(C.3,C.3,0) (C.3,O.2,0) 
(C.3,O.2,0). 

(C.2,C.3,1)  
(C.2,C.3,1)  

(C.2,O.2,2)  

(C.3,C.3,0)  

(C.3,O.2,0)  (C.3,O.2,0). 



Kernels between a pair of shapes 

The kernel between two shapes 𝝈 and 𝝈 ′ of equal order n is 
defined as: 

Where 𝛾 is a kernel hyperparameter 
and 𝑑𝑖 = | 𝜁 𝑢𝑖 − 𝜁 𝑣𝑖 | is the length 
of edge 𝑒𝑖, i.e. the Euclidean distance 
between atoms ui and vi. 
* The kernel between two shapes of 
different order is null. 

  𝜎:  < 𝑒1, . . . , 𝑒𝑛(𝑛−1)/2 >  

𝜎′:  < 𝑒′1, . . . , 𝑒′𝑛(𝑛−1)/2 >  



kernels between all pairs of shapes cont.  

Select just the adjacent list of vertices that are within distance r from x. 

Given a vertex 𝑣 ∈ 𝑉 and an integer r, 
a 2D-supported shape anchored in v 
is a set of vertices σ = {𝑣,𝑤}  ∪
 adj[𝑤] such that 𝑤 ∈ 𝑥(𝑣, 𝑟) and 
adj[w] is the adjacency list of w. Let 
𝑆𝑟 𝑥  denote shape set of radius r of 
x. 

3D decomposition kernels (3DDK) 



Data Set: & 

National Cancer Institute public dataset of screening results for the ability 
of more than 70,000 compounds to suppress or inhibit the growth of a panel 
of 60 human tumor cell lines. 
Subset of NCI dataset corresponding to the parameter GI50, the 
concentration that causes 50% growth inhibition is used.  

Binary classification: cancer-inhibiting (1) or not (-1). 

NCI cancer dataset  

NCI HIV dataset 

Contains 42,687 compounds evaluated for evidence of anti HIV activity 
from the DTP AIDS antiviral screen program of the National Cancer 
Institute.  
Compounds are divided in three classes: 1) 422 compounds are confirmed 
active (CA), 2) 1081 are moderately active (CM) and 3)  41 184 are confirmed 
inactive (CI). 



Three Class classification with SVM  

Three classification problems are formulated on this dataset:  
 
1. (CA verses CM): positive examples are confirmed active 

compounds, while moderately active compounds forms the 
negative class; 

2. (CA+CM verses CI): the positive class is formed by the 
combination of moderately active and confirmed active 
compounds and in  

3. (CA verses CI): the positive examples are confirmed active 
compounds and the negative class is formed by confirmed 
inactive compounds. 



Combining Kernels– WDK & 3DDK 

The WDK and 3DDK used in this experiment had both the radius r = 3 and no 
graph complement was used for the WDK. 𝛾 parameter in pair-wise shape 
kernel was set to 2.5.  

For the WDK, graph complement and context radius r = 4 is used.  
For the 3DDK, the radius to r = 3 is used. 𝛾 parameter in pair-wise shape 
kernel was set to 2.5.  
 

NCI cancer dataset  

NCI HIV dataset 

AUC performance was estimated by a 5-folds cross-validation 

These measures were estimated by a 10-folds cross-validation 



ROC vs Precision Recall 

Slide from The UT Austin, CS 395T, Spring 2008, Prof. William H. Press 

precision recall curve 

ROC (AUC)  







Results: NCI Cancer screening dataset. 

ROC AUC values 



Results: NCI Cancer screening dataset. 

precision/recall curve values 



Result: NCI Anti-HIV screening dataset 
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