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RWR Application: Disease Gene Association



Disease Gene Assoclation

a Disease Gene Assoclation is 1dentification of causal
genes of a disease.

0 Useful for:
a Preventing and curing the disease.
0 Understanding the biological functions of genes

a Traditional method popular in the early 2000
0 Genome-wide association studies (GWAS)

0 Relies on testing several hundred thousand common genetic
variants found throughout the human genome in large-control
cohorts (patients with same disease/phenotype).

0 Problem: Due to lack of the ability to detect ‘common disease
by rare variants’ explains only portion of genetic risk




Random Walk Based Methods

0 Random walk based methods are one popular alternative
approach for associating genes with disease.

0 General 1dea:

Q ‘guilt by association’ principle (Wolfe et al., 2005) with respect
to a set of known genes related to the given disease.




Kohler,S. et al. (2008)

Kohler et al.’s Approach

0 Gene-disease associations by using a global network distance
measure for the definition of similarities in protein—protein
Interaction

0 a random walk analysis

a Data sets

0 Disease-Gene Family Information
a Protein-Protein Interaction Network

0O Disease-Gene Prediction Methods
a Random Walk
a Diffusion Kernel
a Other methods

Kohler,S. et al. (2008) Walking the interactome for prioritization of candidate
disease genes. Am. J. Hum. Genet., 82, 949-958.




Kohler,S. et al. (2008)

Disease-Gene Family Information

0 Atotal of 110 disease-gene families defined as follows:

a Online Mendelian Inheritance inMan (OMIM) database

0 Extract genetically heterogeneous disorders - selecting mutations in distinct
genes associated with similar or even indistinguishable phenotypes

0 Cancer syndromes comprising genes associated with hereditary cancer,
Increased risk, or somatic mutation in a given cancer type;

o Complex (polygenic) disorders that are known to be influenced by variation
In multiple genes.

o Domain knowledge and literature or database searches
0 Select all genes clearly associated with the disorder at hand
a Summary of extracted 110 disease-gene families

0 Contains 783 genes with 665 distinct genes (Some genes were
members of more than one disease family),

0 Largest family contained 41 genes and the smallest only three genes.
0 On average, each family contained seven genes.



Kohler,S. et al. (2008)

Protein-Protein Interaction Data
a PPI graph structure

0 Undirected graph: nodes representing the genes and edges representing the mapped
interactions of the proteins encoded by the genes.

a PPI construction
o Entrez Gene & IntACT and DIP

a Five networks from species comprises interaction from HPRD, BIND, and BioGrid.

o human, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces
cerevisiae

o Protein interactions mapped to the genes coding for the proteins, and redundant interactions removed
a Mapping nonhuman interactions to human

0 map to homologous human genes identified by Inparanoid analysis with a
threshold Inparalog score of 0.8.

0 If both interaction partners could be mapped to human proteins, the interaction
was used.

o STRING

0 STRING: contains functional links between proteins on the basis of both experimental evidence for
protein-protein interactions as well as interactions predicted by comparative genomics and text mining.

o STRING uses a scoring system that is intended to reflect the evidence of predicted interactions.
a Included interactions with a score of at least 0.4, (medium-confidence)



Kohler,S. et al. (2008)

Disease-Gene Prediction assigns a score to each of
Figure 1. Disease-Gene Prioritization the candidate genes,
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1. Extract candidate genes contained in the linkage interval
2. Map candidate genes previously known disease genes and to the
interaction network
3. Assigns a score to each of the candidate genes
1. Base on relative location of the candidate to all of the known ‘‘disease
genes’’ by the use of global network-distance measures.
4. Rank genes in the linkage interval



Kohler,S. et al. (2008)

Disease-Gene Prediction Steps

Example: Different net configuration consisting of the same number of nodes

B ¢=00115 © s=00181 D s, = 0.0346

0 The global distance between a hypothetical disease gene (x) and a
candidate gene (y) is different in each case.

a In(B), proteins x and y are connected via a hub node with many other
connections, so that the global similarity is less than in (C),

o In(C) x and y are connected by a protein with fewer connections than
those of the hub.

0 Nodes that are connected by multiple paths (D) receive a higher
similarity than do nodes connected by only one path.

0 NOTE: shortest path between x and y is identical in each case (B-D),

0 distance measures relying on shortest path cannot differentiate between these
three types of connection.



Random Walk with Restart
pl=(1-rWp'+rp"

Where W is the column-normalized adjacency matrix of the graph
and p, is a vector in which the i-th element holds the probability of
being at node i at time step t and restart probability of r

Initialization: p, = 1/|G,4| where |G,| number of known genes
assigned to disease This is equivalent to letting the random
walker begin from each of the known disease genes with equal
probability.

lteration: Candidate genes were ranked according to the values in
the steady-state probability vector p'. This was obtained at query
time by performing the iteration until the change between pt*?!
and p™*! (measured by the L1 norm) fell below 10,



Diffusion Kernel

0 The diffusion kernel K of a graph G is defined as
K=e¢FL
where, £ controls the magnitude of the diffusion.

The matrix L is the Laplacian of the graph, defined as D - A,
where A Is the adjacency matrix of the interaction graph and

D iIs a diagonal matrix containing the nodes’ degrees.
a For small g3,

0 The column vector j of the matrix K represents the steady-state
probability vector of the random walk when starting at node j.

a Diffusion Score

0 for each candidate gene j was assigned in accordance with its s
core defined as score(]) — Zi in disease gene family Kij
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(Li and Patra, 2010)

L1,Y. and Patra,J.’s Heterogeneous network

a An extension of the random
walk approach on a heteroge ]
neous network that includes LA )
protein—protein interaction, d Ay
Isease—disease and gene—dise f . 1
ase networks. e |

I
L 3 _::3._: .' q7 x:
Li,Y. and Patra,J. (2010) Genome-wide AN - z

inferring gene-phenotype relationship
by walking on the heterogeneous network.

The upper subnetwork is phenotype
Bioinformatics, 26, 1219-1224.

network, and the lower network is gene
network.



(Li and Patra, 2010)

Data source

Q The protein—protein interaction (PPI)

0 Human Protein Reference Database (HPRD).

o HPRD contains manually curated scientific information pertaining to the biology of
most of the human proteins.

0 Disease-related phenotype

0 Interpreted as a textual description of a disease’s detectable outward
manifestations. (van Driel et al., 2006; Wu et al., 2008),

0 Phenotype entry was defined as an MIM record.

0 Excluded the records with the prefix “+” and “A’. Because the prefix “«’ refers to the
record of disease gene, and ‘A’ refers to the obsoleted record.

Q The phenotypic similarity
0 Calculated using MimMiner (van Driel et al., 2006).

a Gene-phenotype relationship
0 OMIM database (Hamosh et al., 2005), extracted using BioMart (Smedley et al., 2009).

0 Disease category information
0 Manual classification concerning the physiological system affected (Goh et al., 2007).



(Li and Patra, 2010)

Construction of the heterogeneous network

0 Gene network: o Heterogeneous network
0 two genes are connected if the a A.. adjacency matrix for
proteins they encode interact with K
each other according to the HPRD gene networ
database. a A..adjacency matrix for

a Phenotype network:

a Each phenotype entity is connected R
with its five nearest neighbors, and bipartite graph,.
the edge is weighted by the
corresponding similarity score using

MimMiner. [~ J.,
Ag B
0 Gene-Phenotype network: BT A,
bipartite graph — P_

Q phenotype entity with the relevant
genes

=

T
|




RWRH

a Let p, be the initial probability vector and p, be a vector

In which the I-th element holds the probability of finding
the random walker at node I at step s.

0 The probability vector at step s+1 can be given by
ps+1=(1—y)M" ps+ypo.

where M is the transition matrix of the graph. M;; is the transition
probability from node i to node j. The parameter y €(0,1) Is the re

start probability. At each step, the random walker can return to see
d nodes with probability y.

a Initialization

. The parameter n€(0,1) is used to weight
po = [( 1= H]“D} the importance of each subnetwork
uO and vO represent the initial probability of gene
network and phenotype network

nvo



Transition matrix

Q Transition matrix of the heterogeneous network
M — [ Mg MGP]
Mpc Mp

Let A be the jumping probability: probability of the random walker jumping from gene
network to phenotype network or vise versa

AB:/S B if "B 40
fMGPh4=.qu|gg>={ i/ B, i YBi#

0, otherwise.

(Mpg)ij=plgilpi)= { ABji/ 3 ;Bji- if > ;Bji #0

0, otherwise.
(Mg); i = (A)ij/ 2 j(AG)i, if > ;Bij=0
B O l)(ﬂc]e'.jfij{ﬂcjg_j, otherwise.

(Apij/2_j(Ap)ij, if 3. Bji=0

(Mp)ij= (1 —?»J{APJJ.HZ;(APJI'J: otherwise.



Results

0 Disclose hidden disease—disease associations
0 Accuracy comparison
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Fig. 2. ROC curve of RWR and RWRH.



Classification of small molecules by two- and three-
dimensional decomposition kernels

Ceroni, A., Costa, F., & Frasconi, P. (2007). Bioinformatics, 23(16), 2038-45.
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ABSTRACT

Motivation: Several kernel-based methods have been recently introduced for
the classification of small molecules. Most available kernels on molecules
are based on 2D representations obtained from chemical structures, but far
less work has focused so far on the definition of effective kernels that can
also exploit 3D information.

Results: We introduce new ideas for building kernels on small molecules
that can effectively use and combine 2D and 3D information. We tested
these kernels in conjunction with support vector machines for binary
classification on the 60 NCI cancer screening datasets as well as on the NCI
HIV data set. Our results show that 3D information leveraged by these
kernels can consistently improve prediction accuracy in all datasets.

Availability: An implementation of the small molecule classifier is available
from http://www.dsi.unifi.it/neural/src/3DDK



Methods:

Background on kernel methods for structured data
A major challenge is to define an effective quantitative
measure of similarity

Base Learner: SVM
classification function f(x) is obtained from data

m

= Z o Vi K( X, X).
i=1

Kernels on structured data

X € x, suppose (xi.....Xp)
K(x, x') = E ]_Iﬁ:’n.'[ Xy X
| X .".:' i 1 Ey]
:'.II.. ” e~y
where R'(x) = {(xy.....xp) : R(x.....xp, x)} denote the set of

all possible decompositions of x.



A weighted decomposition kernel (WDK) for 2D
chemical structures

Idea: each substructure in which a graph is decomposed is
enriched with its graphical context characterized by a
decomposition R(s,z,x) where s iIs a subgraph of x called the
selector and z iIs a subgraph of x called the context of occurrence
of s in x (generally a subgraph containing s).

This setting results in the following general form of the kernel:

Kop(x, x') = Z 8(s. 5 Wl(z, 2)

5, z)ER I {xl

i ek~ {x")
where, ¢ is the exact matching kernel applied to selectors and
K is a kernel on contexts.



Fig. 1. Comparing substructures in a weighed decomposition kernel.

Kap(x, x') = E 8(s, s (z, )

s,y 1{x)
2 er—1 (2"



WDK parameter used In the article

IDEA

« Selectors are always single atoms and the match
e §(s,s’) is defined by the coincidence between the type of s
and s’'.
* The context kernel x 1s based on soft match between

substructures, defined by the distributions of label contents after
discarding topology.




Context Kernel Specifics

1. Let L denote the total number of attributes labeling vertices and
edgesand forl =1,...,L

2. Let p;(j) be the observed frequency of value j for the [ — th
attribute in a substructure z.

3. Then compare substructures by means of a histogram
Intersection kernel

iy

ke(z,2') = Z min{p.(). p,(/)}

J= |
L

Kz, z2) = Zm{:. z).

=

Where m; is the number of possible values of attribute L.
shall use L = 3: 1) atom type, 2) atom charge and 3) bond type, while
atom coordinates are discarded for computing the WDK.



Contexts are formed as follows

Givenavertex v € V and an integer r > 0,

e Letx(v,r) : substructure of x obtained by retaining all the
vertices that are reachable from v by a path of length at most
r, and all the edges that touch at least one of these vertices.

The decomposition relation R,., dependent on the context
radius r, Is then defined as

R, = {(s5,z, x): X € x,s={v}, z=x(v, 1), veE V}.

where s Is the selector and z Is the context for vertex v.

Weighted Decomposition Kernel (WDK)
Kap(x, x') = Z 8(s, s wl(z, 2)

5. zER Ijl._l
(.2 yek—1 (="




Three-dimensional decomposition kernels

A 3D molecular structure is interpreted as a special kind of
relational data object where atoms are related by chemical bonds
but also by their spatial distances

The molecule is first decomposed into a set of overlapping 3D
substructures of varied geometry, called shapes.

Given a molecule x = (V, E), ashape of order nisasetofn
distinct vertices
o={uy,uy...,u;}, u; € V,fori=1,...n

kernel between two Kip(t, /)= Y Y Kenapes(0, @)
molecules dESH(x) o ESHx)

nn—1)/2

kernels between all pairs of . d—d )
P 'E'-hhit'!-:."'s{ﬂ- 'j ]_I ole;, LJ y(di—d)

shapes



Kernels between all pairs of shapes

Given a shape of order n and two vertices u, v € o,
o lete = (t[u], t[v], b[u,v]) denote a labeled edge of the shape, formed
by considering the two atom types t[u] and t[v] and the bond type b[u,v].

Then, let < ey, ..., epm-1)/2 > denote the lexicographically ordered
sequence of all labeled edges in .

--------

L]
) Br2(Br)
L]

For example, the shape
(C1,C2,C3,01) for the molecule ] T
NSC_1027 yields ".'..'.?:.'..':.'..'..‘. ....... "_':‘~ .
lexicographically ordered 3 '
sequence of all labeled edges
(C.2,C.3,1) (C.2,C.3,1) (C.2,0.2,2)
(C.3,C.3,0) (C.3,0.2,0)
(CB,OZ,O) Fig. 2. Illustration of the definition of 2D-supported shapes. The three

2D-supported shapes of radius 1, anchored to atom C3 in the molecule
NSC_1027 are (Br3,C3), (Br2,C3) and (C1.C2.C3,01). Atom identifiers
and types (in parentheses) are formatted according to the Tripos Sybyl
MOL2 conventions.

C5 (C.3) (Cz‘
(C.3,0.2 O)



Kernels between a pair of shapes

The kernel between two shapes o and o’ of equal order n is
defined as:

nn—1)/2
IE'-':-;hu[k*:-;{ﬂﬂ f]-ll:J — ]—[ ae;. rL*:-}t* y(d;—d, n
i=1
o: < eq, o €n(n—-1)/2 >
Where y is a kernel hyperparameter
and d; = ||f[ul-] — f[vl-]|| is the length 0': <€, enm-1y2 >
of edge e;, i.e. the Euclidean distance
between atoms ui and Vvi.
* The kernel between two shapes of
different order is null.



kernels between all pairs of shapes cont.

3D decomposition kernels (3DDK)

Select just the adjacent list of vertices that are within distance r from x.

Given a vertex v € IV and an integer r, jommnnan ;
a 2D-supported shape anchored in v Br1. (81
Is a set of vertices o = {v,w} U
adj[w] such that w € x(v,r) and _
adj[w] is the adjacency list of w. Let 7 St
S, (x) denote shape set of radius r of :
X.

C4(C.3)

h‘ ¥
Br3(Br) wa*

:' 01 (0.2)
\

Kip(x,x') = Z Z JI!*_-~h:Lr:|;_--~f4.'}f,4:}fr] Tesssses ’

aeds x) a'edsx")



Data Set: &

NCI cancer dataset
National Cancer Institute public dataset of screening results for the ability

of more than 70,000 compounds to suppress or inhibit the growth of a panel
of 60 human tumor cell lines.

Subset of NCI dataset corresponding to the parameter G150, the
concentration that causes 50% growth inhibition is used.

Binary classification: cancer-inhibiting (1) or not (-1).

NCI HIV dataset

Contains 42,687 compounds evaluated for evidence of anti HIV activity
from the DTP AIDS antiviral screen program of the National Cancer

Institute.
Compounds are divided in three classes: 1) 422 compounds are confirmed

active (CA), 2) 1081 are moderately active (CM) and 3) 41 184 are confirmed
inactive (ClI).



Three Class classification with SVM

Three classification problems are formulated on this dataset:

1. (CA verses CM): positive examples are confirmed active
compounds, while moderately active compounds forms the
negative class;

2. (CA+CM verses Cl): the positive class is formed by the
combination of moderately active and confirmed active
compounds and in

3. (CA verses Cl): the positive examples are confirmed active
compounds and the negative class is formed by confirmed
Inactive compounds.



Combining Kernels— WDK & 3DDK

NCI cancer dataset

The WDK and 3DDK used in this experiment had both the radius r = 3 and no
graph complement was used for the WDK. y parameter in pair-wise shape
kernel was settn 2 5

Kix, x)=1(14xix, x))
i 1s either K>p or Ky or k(x,x') = K> plx,x') + Kiplx,x').
These measures were estimated by a 10-folds cross-validation

NCI HIV dataset

For the WDK, graph complement and context radius r = 4 is used.
For the 3DDK.-the radius to r = 3 Is used. y parameter in pair-wise shape

kernelwassettoﬁ.S. . T
Y. x') = ol x) = 2ulx

AUC performance was estimated by a 5-folds cross-validation



ROC vs Precision Recall
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ROC (“Receiver Operating Characteristic”) curves

plot TPR vs. FPR as the classifier goes from

“conservative” to “liberal”
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You could get the best of the red and
green curves by making a hybrid or
“Frankenstein” classifier that switches
between strategies at the cross-over

points.

The University of Texas at Austin, CS 395T, Spring 2008, Prof. Willlam H. Press



Precisim

Precision-Recall curves overcome this issue by comparing TP with FN and FP
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Continue our toy example:
note that P and N now enter

prec = tpr*100./(tpr*100+fpr+*9900);

prec(l) = prec(2); % fix up 0/0
reca = tpr;
plot(reca,prec)

The University of Texas at Austin, C5 395T, Spring 200w, « vwr. wvum

By the way, this shape “cliff" is what the
ROC convexity constraint looks like in
a Precision-Recall plot. It's not very

intuitive. \
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Result: NCI Anti-HIV screening dataset

Table 1. Results of the experiments on the NCI Anti-HIV screening dataset

Method CA versus CM CAHCM versus Cl CA versus Cl
FSG 0.786 0.786 0914
FSG43D 0811 0819 0.940
yCPK 0.840 £ 0.010 0.837 £ 0.012 0.947 £ 0.008
WDKK 0854 £ 0.019 0,841 & 0.006 0.945 £ 0.009
pADDE 0.833 £ 0.040 0.844 & 0.007 0.951 £ 0.006

MWDK +3DDK)

b6l + 002

(84l 4= 000

0951 £ 0.7

The 3DDE and WDKK are compared to the frequent subgraphs approach and to the cyclic pattern kernel. The table reports the value of AUC for the vanous methods.
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