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Deep Motif Dashboard 

Jack Lanchantin, Ritambhara Singh, Beilun Wang, and Yanjun Qi. 2016. Deep Motif 
Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural 
Networks. In Pacific Symposium on Biocomputing, 1–11.  

Goal: Motif visualization in Transcription Factor binding prediction 
Models Used: convolutional, recurrent, and convolutional-recurrent networks 
 



Models and Visualization Strategies 

 Three Models 
 CNN 
 RNN 
 CNN-RNN (best performing) 

 Visualization 
 Measuring nucleotide importance with Saliency Maps.  
 Measuring critical sequence positions for the classifier using 

Temporal Output Scores. 
 Generating class-specific motif patterns with Class 

Optimization. 



Models - Common settings 
 
 Input: one-hot encoded matrix of raw sequence 
 Output 

 Output vector: linearly fed to a softmax function  
 Learns the mapping from the hidden space to the output class 

label space C ∈ [+1,−1]. 
 Probability indicating whether an input is a positive or a negative 

binding site (binary classification task).  

 Training 
 Parameters: trained end-to-end by minimizing the negative log-

likelihood over the training set.  
 Loss function optimization stochastic gradient algorithm Adam 
 Mini-batch size of 256 sequences.  
 Regularization - Dropout. 

 



CNN Model 



RNN Model 



CNN-RNN Model 



Saliency Map of CNN 

Approach is similar to the methods used on images by Simonyan et al. 2013 and 
Baehrens et al. 2010. 

Problem: Given a sequence X0 of length |X0|, and class c ∈ C, a DNN model 
provides a score function Sc (X0). We rank the nucleotides of X0 based on 
their influence on the score Sc (X0).  
Challenge: Since Sc (X) is a non-linear function of X, it is hard to directly 
determine the influence of each nucleotide of X on Sc. 
Solution: Approximated Sc (X) as a linear function by computing the first-
order Taylor expansion  
 
 
 
where w is the derivative of Sc with respect to the sequence variable X at the 
point X0 (wi, indicates the influence of that nucleotide position)  
 
 
 
 

<- a weighted sum of 
the input nucleotides 



Saliency Map of CNN cont. 

 Derivative is simply one step of backpropagation in the DNN 
 

 Getting derivative values of actual sequence:  
 Approach: pointwise multiplication of the saliency map with the 

one-hot encoded sequence  
 Interpretation:  the influence value of the character at each position 

on the output score. 
 

 Visualize important each character (saliency map):  
 Approach: element-wise magnitude of the resulting derivative vector 

regardless of derivative direction.  
 Interpretation:  indicates which nucleotides need to be changed the 

least in order to affect the class score the most.  
 



Temporal Output Scores for RNN 

 Description: 
 Visualize the output scores at each timestep (position) of a 

sequence. 
 Assumption: 

  An imaginary time direction running from left to right 
 Each position in the sequence is a timestep 

 Determine the TOS 
 The input series is constructed by using subsequences of an 

input X running along the imaginary time coordinate, where 
the subsequences start from just the first nucleotide (position), 
and ends with the entire sequence X. 

 TOS is calculated for each subsequences and visualized 
 



Class-Specific Visualization 

 Goal: Find the best sequence which maximizes the 
probability of a positive TFBS, which we call class 
optimization. 

 Optimize 
where S+(X) is the probability (or score) of an input sequence X 
(matrix) being a positive TFBS computed by the softmax equation 
of our trained DNN model for a specific TF. 



Three Motif Extraction 

For each of the three visualization methods 
1. Saliency map:  

 From each positive test sequence, select the contiguous 
length-9 subsequence that achieves the highest sum of 
contiguous length-9 saliency map values.  

2. Temporal Output Scores:   
 For each positive test sequence, select the length-9 

subsequence that shows the strongest score change from 
negative to positive output score.  

3. Class-Specific  
 For each different TF, directly use the class-optimized 

sequence as a motif. 



Results 

 Training: 30,819 sequences (with an even 
positive/negative split), and each sequence consists of 
101 DNA-base characters (A,C,G,T).  

 Testing: Every dataset has 1,000 sequences 
 



Results 
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