

#### CSE549

# **DNN Applications to Bioinformatics Part 2: Interpretable Methods**

Sael Lee

Department of Computer Science,

SUNY Korea, Incheon 21985, Korea

### **Deep Motif Dashboard**

Goal: Motif visualization in Transcription Factor binding prediction Models Used: convolutional, recurrent, and convolutional-recurrent networks

Jack Lanchantin, Ritambhara Singh, Beilun Wang, and Yanjun Qi. 2016. Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks. In *Pacific Symposium on Biocomputing*, 1–11.

# **Models and Visualization Strategies**

- □ Three Models
  - □ CNN
  - □ RNN
  - □ CNN-RNN (best performing)
- □ Visualization
  - □ Measuring nucleotide importance with **Saliency Maps**.
  - Measuring critical sequence positions for the classifier using Temporal Output Scores.
  - Generating class-specific motif patterns with Class
    Optimization.

### **Models - Common settings**

- □ Input: one-hot encoded matrix of raw sequence
- □ Output
  - □ Output vector: linearly fed to a softmax function
  - □ Learns the mapping from the hidden space to the output class label space  $C \in [+1, -1]$ .
    - Probability indicating whether an input is a positive or a negative binding site (binary classification task).

### □ Training

- Parameters: trained end-to-end by minimizing the negative loglikelihood over the training set.
- □ Loss function optimization stochastic gradient algorithm Adam
- □ Mini-batch size of 256 sequences.
- □ Regularization Dropout.





### **RNN Model**



### **CNN-RNN Model**



### **Saliency Map of CNN**

Problem: Given a sequence  $X_0$  of length  $|X_0|$ , and class  $c \in C$ , a DNN model provides a score function  $S_c(X_0)$ . We rank the nucleotides of  $X_0$  based on their influence on the score  $S_c(X_0)$ .

Challenge: Since  $S_c(X)$  is a non-linear function of X, it is hard to directly determine the influence of each nucleotide of X on Sc.

Solution: Approximated  $S_{\rm c}\left(X\right)$  as a linear function by computing the first-order Taylor expansion

$$S_c(X) \approx w^T X + b = \sum_{i=1}^{|X|} w_i x_i + b$$
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

where w is the derivative of  $S_c$  with respect to the sequence variable X at the point  $X_0$  (w<sub>i</sub>, indicates the influence of that nucleotide position)

$$w = \frac{\partial S_c}{\partial X} \bigg|_{X_0} = saliency \ map$$

Approach is similar to the methods used on images by Simonyan et al. 2013 and Baehrens et al. 2010.

### Saliency Map of CNN cont.

□ Derivative is simply one step of backpropagation in the DNN

### □ Getting derivative values of actual sequence:

- Approach: pointwise multiplication of the saliency map with the one-hot encoded sequence
- □ Interpretation: the influence value of the character at each position on the output score.

#### □ **Visualize** important each character (saliency map):

- □ Approach: element-wise magnitude of the resulting derivative vector regardless of derivative direction.
- □ Interpretation: indicates which nucleotides need to be changed the least in order to affect the class score the most.

# **Temporal Output Scores for RNN**

### □ Description:

Visualize the output scores at each timestep (position) of a sequence.

### □ Assumption:

- □ An imaginary time direction running from left to right
- □ Each position in the sequence is a timestep

### Determine the TOS

- The input series is constructed by using subsequences of an input X running along the imaginary time coordinate, where the subsequences start from just the first nucleotide (position), and ends with the entire sequence X.
- □ TOS is calculated for each subsequences and visualized

### **Class-Specific Visualization**

- □ Goal: Find the best sequence which maximizes the probability of a positive TFBS, which we call class optimization.
- $\Box \text{ Optimize } \arg \max_X S_+(X) + \lambda \|X\|_2^2$

where  $S_+(X)$  is the probability (or score) of an input sequence X (matrix) being a positive TFBS computed by the softmax equation of our trained DNN model for a specific TF.

# **Three Motif Extraction**

For each of the three visualization methods

- 1. Saliency map:
  - □ From each positive test sequence, select the contiguous length-9 subsequence that achieves the highest sum of contiguous length-9 saliency map values.
- 2. Temporal Output Scores:
  - □ For each positive test sequence, select the length-9 subsequence that shows the strongest score change from negative to positive output score.
- 3. Class-Specific
  - □ For each different TF, directly use the class-optimized sequence as a motif.

### Results

- Training: 30,819 sequences (with an even positive/negative split), and each sequence consists of 101 DNA-base characters (A,C,G,T).
- □ Testing: Every dataset has 1,000 sequences

| Model          | Conv.  | Conv.            | Conv. filter | Conv. Pool               | LSTM   | LSTM     |
|----------------|--------|------------------|--------------|--------------------------|--------|----------|
|                | Layers | Size $(n_{out})$ | Sizes (k)    | <b>Size</b> ( <i>m</i> ) | Layers | Size (d) |
| Small RNN      | N/A    | N/A              | N/A          | N/A                      | 1      | 16       |
| Medium RNN     | N/A    | N/A              | N/A          | N/A                      | 1      | 32       |
| Large RNN      | N/A    | N/A              | N/A          | N/A                      | 2      | 32       |
| Small CNN      | 2      | 64               | 9,5          | 2                        | N/A    | N/A      |
| Medium CNN     | 3      | 64               | 9,5,3        | 2                        | N/A    | N/A      |
| Large CNN      | 4      | 64               | 9,5,3,3      | 2                        | N/A    | N/A      |
| Small CNN-RNN  | 1      | 64               | 5            | N/A                      | 2      | 32       |
| Medium CNN-RNN | 1      | 128              | 9            | N/A                      | 1      | 32       |
| Large CNN-RNN  | 2      | 128              | 9,5          | 2                        | 1      | 32       |

Table 1: Variations of DNN Model Hyperparameters

### Results

Table 2: Mean AUC scores on the TFBS classification task

| Model              | Mean AUC | Median AUC | STDEV |
|--------------------|----------|------------|-------|
| MEME-ChIP [16]     | 0.834    | 0.868      | 0.127 |
| DeepBind [2] (CNN) | 0.903    | 0.931      | 0.091 |
| Small RNN          | 0.860    | 0.881      | 106   |
| Med RNN            | 0.876    | 0.905      | 0.116 |
| Large RNN          | 0.808    | 0.860      | 0.175 |
| Small CNN          | 0.896    | 0.918      | 0.098 |
| Med CNN            | 0.902    | 0.922      | 0.085 |
| Large CNN          | 0.880    | 0.890      | 0.093 |
| Small CNN-RNN      | 0.917    | 0.943      | 0.079 |
| Med CNN-RNN        | 0.925    | 0.947      | 0.073 |
| Large CNN-RNN      | 0.918    | 0.944      | 0.081 |

Table 3: AUC pairwise t-test

| Model Comparison <sup>3</sup> | p-value  |
|-------------------------------|----------|
| RNN vs MEME                   | 5.15E-05 |
| CNN vs MEME                   | 1.87E-19 |
| CNN-RNN vs MEME               | 4.84E-24 |
| CNN vs RNN                    | 5.08E-04 |
| CNN-RNN vs RNN                | 7.99E-10 |
| CNN-RNN vs CNN                | 4.79E-22 |

| GATA1                                                                 |                                                                     |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| JASPAR Motifs                                                         |                                                                     |  |  |
| CNN Positive Class Maximization                                       | G8_GAI IAte                                                         |  |  |
| RNN Positive Class Maximization                                       |                                                                     |  |  |
| CNN-RNN Positive Class Maximization                                   |                                                                     |  |  |
| Positive Test Sequence                                                | GGGGCCAAGAAGGGAGGGGTCAGGAGCAGGTCAGGCGCAGGTCAGGCGGCGGCGGCCGCGCCTGCCT |  |  |
| CNN Saliency (0.90)                                                   |                                                                     |  |  |
| RNN Saliency (0.96)                                                   |                                                                     |  |  |
| CNN-RNN Saliency (0.99)                                               |                                                                     |  |  |
| Positive Test Sequence                                                | GGGGCCAAGAAGGGGAGGGGTCAGGAGCAGGTCAGGCGCAGGTCAGGCGGCGGCCGGC          |  |  |
| RNN Forward Temporal Outputs<br>RNN Backward Temporal Outputs         |                                                                     |  |  |
| CNN-RNN Forward Temporal Outputs<br>CNN-RNN Backward Temporal Outputs |                                                                     |  |  |

| MAFK                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| JASPAR Motifs                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CNN Positive Class Maximization     | I ACGETQGETCAG AN TARGE CONSIGNATION TO A TARGE CONSIGNATION OF A TARGE CONSIG |  |
| RNN Positive Class Maximization     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CNN-RNN Positive Class Maximization |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Positive Test Sequence              | CCAAGTGAATTCTATCCTTCACACCAGATGATA <mark>/</mark> CCTGAGTCAGCATTT <mark>/</mark> CCTAAATCAGGATAAAAAATTGTATTTAATTATTGTCTTTCTGATGATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| CNN Saliency (0.96)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| RNN Saliency (0.96)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CNN-RNN Saliency (0.99)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Positive Test Sequence              | CCAAGTGAATTCTATCCTTCACACCAGATGATAA GCTGAGTCAGCATTTT GCTAAATCAGGATAAAAAATTGTATTTAATTATTGTCTTTCTGATGATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| RNN Forward Temporal Outputs        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| RNN Backward Temporal Outputs       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CNN-RNN Forward Temporal Outputs    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CNN-RNN Backward Temporal Outputs   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| NFYB                                                                  |                                                                                                      |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| JASPAR Motifs                                                         | Forward: Backward:                                                                                   |  |
| CNN Positive Class Maximization                                       | AAG                                                                                                  |  |
| RNN Positive Class Maximization                                       | Co. 484_1_000_0000CI28IIdaz9999999664660000000II                                                     |  |
| CNN-RNN Positive Class Maximization                                   | TICAADO TO                                                       |  |
| Positive Test Sequence                                                | CCCAACTGACTITGCTTCGCTCTCATTAGCCGGTGGTCCTCCAGGAAAGCGGGGCCGCCTCTCCGCTGTGCTCTCATAGGCCCAGGTTCTTGCGTTCGTG |  |
| CNN Saliency (0.30)                                                   |                                                                                                      |  |
| RNN Saliency (0.12)                                                   |                                                                                                      |  |
| CNN-RNN Saliency (0.91)                                               |                                                                                                      |  |
| Positive Test Sequence                                                | CCCAACTGACTTTGCTTCGCTCTCATTAGCCGGTGGTCCTCCAGGAAAGCGGGGCCGCCTCTCCGCTGTGCTCTCATAGGCCCAGGTTCTTGCGTTCGTG |  |
| RNN Forward Temporal Outputs<br>RNN Backward Temporal Outputs         |                                                                                                      |  |
| CNN-RNN Forward Temporal Outputs<br>CNN-RNN Backward Temporal Outputs |                                                                                                      |  |

### **References and Other Good Reads**

- 1. Zhengping Che, Sanjay Purushotham, Robinder Khemani, and Yan Liu. 2016. Interpretable Deep Models for ICU Outcome Prediction. *AMIA* ... *Annual Symposium proceedings*. *AMIA Symposium* 2016: 371–380.
- 2. Jack Lanchantin, Ritambhara Singh, Beilun Wang, and Yanjun Qi. 2016. Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks. In *Pacific Symposium on Biocomputing*, 1–11. Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv preprint arXiv:150302531. 2015;.
- 3. Buciluă C, Caruana R, Niculescu-Mizil A. Model compression. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2006. p. 535--541.
- 4. Korattikara A, Rathod V, Murphy K, Welling M. Bayesian Dark Knowledge. arXiv preprint arXiv:150604416. 2015;.
- 5. Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. 2015. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. *Nature Biotechnology* 33, 8: 831–838.