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EXACT MATCHING OVERVIEW 



BRUTE FORCE ANALYSIS 

 Brute Force: 
 At every possible offset in the genome: 

 Do all of the characters of the query match? 

 Analysis 
 Simple, easy to understand 
 Genome length = n 
 Query length = m  
 Comparisons: (n-m+1) * m 

 Overall runtime: O(nm) 
 If we double genome or query size, takes twice as long 
 If we double both, takes 4 times as long 



SEARCHING FOR GATTACA 



SUFFIX ARRAYS 

 What if we need to check many queries? 
 Sorting alphabetically lets us immediately skip through the 

data without any loss in accuracy 

 Sorting the genome: Suffix Array (Manber & Myers, 
1991) 
 Sort every suffix of the genome 



SEARCHING THE INDEX 
 Strategy 2: Binary search 

 Compare to the middle, refine as higher or l
ower 
 

 Searching for GATTACA 
 Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
 Middle = Suffix[8] = CC  
       => Higher: Lo = Mid + 1 

 
 Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
 Middle = Suffix[12] = TACC 
       => Lower: Hi = Mid - 1 

 
 Lo = 9; Hi = 11; Mid = (9+11)/2 = 10 
 Middle = Suffix[10] = GATTACC 
     => Lower: Hi = Mid - 1 

 
 Lo = 9; Hi = 9; Mid = (9+9)/2 = 9 
 Middle = Suffix[9] = GATTACA… 
     => Match at position 2! 



SUFFIX ARRAY CONSTRUCTION 

 Searching the array is very fast, but it takes time 
to construct 
 This time will be amortized over many, many searches 
 Run it once "overnight" and save it away for all future 

queries 

 How do we store the suffix array? 
 Explicitly storing all n strings is not feasible O(n2) 

 Instead use implicit representation 
 Keep 1 copy of the genome, and a list of sorted offsets 
 Storing 3 billion offsets requires a big server (12GB) 

 Build a separate index for each chromosome 

TGATTACAGATTACC 



SUFFIX TREES 

Suffix Tree = Tree of suffixes (indexes all substrings of a sequence) 
• 1 Leaf ($) for each suffix, path-label to leaf spells the suffix 
• Nodes have at least 2 and at most 5 children (A,C,G,T,$) 



SUFFIX TREE PROPERTIES & APPLICATIONS 

 Properties 
 Number of Nodes/Edges: O(n) 
 Tree Size: O(n) 
 Max Depth: O(n) 
 Construction Time: O(n) 

 Uses suffix links to jump between nodes without rechecking 
 Tricky to implement, prove efficiency 

 Applications 
 Sorting all suffixes: O(n) 
 Check for query: O(m) 
 Find all z occurrences of a query O(m + z) 
 Find maximal exact matches O(m) 
 Longest common substring O(m) 

 Used for many string algorithms in linear time 
 Many can be implemented on suffix arrays using a little extra work 



HASHING 

 Where is GATTACA in the human genome? 
 Build an inverted index (table) of every k-mer in the genome 

 How do we access the table? 
 We can only use numbers to index 

 table[GATTACA] <- error, does not compute 
 Encode sequences as numbers 

 Easy: A = 110, C = 210, G = 310, T = 410 
 GATTACA = 314412110 

 Smart: A = 002, C = 012, G = 102, T = 112 
 GATTACA = 100011110001002 = 915610 

 Running time 
 Construction: O(n) 
 Lookup: O(1) + O(z) 
 Sorts the genome mers in linear time 



IN-EXACT ALIGNMENT 

Slide extracts from Michael Schatz’s Quantitative Biology Class @ CSHL 
http://schatzlab.cshl.edu/teaching/2010 



IN-EXACT ALIGNMENT 

 Where is GATTACA approximately in the human genome? 
 And how do we efficiently find them? 

 It depends… 
 Define 'approximately' 

 Hamming Distance, Edit distance, or Sequence Similarity 
 Ungapped vs Gapped vs Affine Gaps 
 Global vs Local 
 All positions or the single 'best'? 

 Efficiency depends on the data characteristics & goals 
 Smith-Waterman: Exhaustive search for optimal alignments 
 BLAST: Hash based homology searches 
 MUMmer: Suffix Tree based whole genome alignment 
 Bowtie: BWT alignment for short read mapping 



SEED-AND-EXTEND ALIGNMENT 

 Theorem: An alignment of a sequence of length m with at most k 
differences must contain an exact match at least s=m/(k+1) bp long (Baeza-
Yates and Perleberg, 1996) 

 Proof: Pigeon hole principle 
 

 Search Algorithm 
 Use an index to rapidly find short exact alignments to seed 

longer in-exact alignments 
 RMAP, CloudBurst, … 

 Specificity of the seed depends on length 
 Length s seeds can also seed some lower quality alignments 

 Won't have perfect sensitivity, but avoids very short seeds 



HAMMING DISTANCE LIMITATIONS 

 Hamming distance measures the 
number of substitutions (SNPs) 
 Appropriate if that’s all we 

expect/want to find 
 Illumina sequencing error model 
 Other highly constrained sequences 

 What about insertions and 
deletions? 
 At best the indel will only slightly 

lower the score 
 At worst highly similar sequences 

will fail to align 

Hamming distance=5 
: 2 matches, 5 
mismatches, 1 not 
aligned 

Edit Distance = 1 
: 7 matches, 0 
mismatches, 1 not 
aligned 



EDIT DISTANCE EXAMPLE 

 

bioalgorithms.info 



BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 

 Rapidly compare a sequence Q to a database to find 
all sequences in the database with an score above 
some cutoff S. 
 Which protein is most similar to a newly sequenced one? 
 Where does this sequence of DNA originate? 

 Speed achieved by using a procedure that typically 
finds “most” matches with scores > S. 
 Tradeoff between sensitivity and specificity/speed 

 Sensitivity – ability to find all related sequences 
 Specificity – ability to reject unrelated sequences 

(Altschul et al. 1990) 



BLAST: SEED AND EXTEND 

 Homologous sequence are likely to contain a short 
high scoring word pair, a seed. 
 BLAST *doesn't* make explicit guarantees 

 BLAST then tries to extend high scoring word pairs to 
compute maximal high scoring segment pairs (HSPs). 
 Heuristic algorithm but evaluates the result statistically. 



BLAST - ALGORITHM 

 Step 1: Preprocess Query 
 Compile the short-high scoring word list from query. The length of 

query word, w, is 3 for protein scoring Threshold T is 13 
 Step 2: Construct Query Word Hash Table 
 Step 3: Scanning DB  

 Identify all exact matches with DB sequences 
 Step 4: Search optimal alignment 

 For each hit-word, extend ungapped alignments in both directions. 
 Let S be a score of hit-word 

 Step 5: Evaluate the alignment statistically 
 Stop extension when E-value (depending on score S) become less 

than threshold. The extended match is called High Scoring 
Segment Pair. 



WHOLE GENOME ALIGNMENT WITH MUMMER 

 Maximal Unique Matcher (MUM)er 
 match 

 exact match of a minimum length 

 maximal 
 cannot be extended in either direction without a mismatch 

 unique 
 occurs only once in both sequences (MUM) 
 occurs only once in a single sequence (MAM) 
 occurs one or more times in either sequence (MEM) 

 

Slides Courtesy of Adam M. Phillippy 
amp@umics.umd.edu 



MUMMER 

 Primary uses 
 exact matching (seeding) 
 dot plotting 

 Pros 
 very efficient O(n) time and space 

 ~17 bytes per bp of reference sequence 
 E. coli K12 vs. E. coli O157:H7 (~5Mbp each) 

 17 seconds using 77 MB RAM 
 multi-FastA input 

 Cons 
 exact matches only 



IS IT A MAM, MEM OR MUM? 

R 

Q 

MUM : maximal unique match 
MAM : maximal almost-unique match 
MEM : maximal exact match 



SEED AND EXTEND 

 How can we make MUMs BIGGER? 
 Find MUMs 
 using a suffix tree 

 Cluster MUMs 
 using size, gap and distance parameters 

 Extend clusters 
 using modified Smith-Waterman algorithm 

 R 

Q 



SUFFIX TREE FOR ATGTGTGTC$ 
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Drawing credit: Art Delcher 



CLUSTERING 

cluster length = Σmi 

gap distance = C 

indel factor = |B – A| / B   or   |B – A| 

R 

Q 

A 

B 

C 

m1 m2 m3 



EXTENDING 

R 

Q 

break length = A 

A 

B 

break point = B 

score ~70% 



BANDED ALIGNMENT 
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SIDETRACK: PLOTS 

 How can we visualize whole genome alignments? 
 

 With an alignment dot plot 
 N x M matrix 

 Let i = position in genome A 
 Let j = position in genome B 
 Fill cell (i,j) if Ai shows similarity to Bj 

 A perfect alignment between A and B would completely fill 
the positive diagonal 



B 

A 

B 

A 

Translocation Inversion Insertion 

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf 

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf


dotplot from promer-based mummerplot 



BOWTIE: ULTRAFAST AND MEMORY EFFICIENT ALIGNMENT OF 
SHORT DNA SEQUENCES TO THE HUMAN GENOME 

 Uses Burrows-Wheeler Transform in addition to suffix 
trees 

Slides Courtesy of Ben Langmead 
(langmead@umiacs.umd.edu) 

“BWT rearranges a character 
string into runs of similar 
characters. This is useful for 
compression, since it tends to 
be easy to compress a string 
that has runs of repeated 
characters by techniques such 
as move-to-front 
transform and run-length 
encoding” (wikipedia) 

https://en.wikipedia.org/wiki/Character_string_(computer_science)
https://en.wikipedia.org/wiki/Character_string_(computer_science)
https://en.wikipedia.org/wiki/Move-to-front_transform
https://en.wikipedia.org/wiki/Move-to-front_transform
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Run-length_encoding


BWT SHORT READ MAPPING 

 Trim off very low quality bases & adapters from ends of 
sequences 

 Execute depth-first-search of the implicit suffix tree 
represented by the BWT 
 If we fail to reach the end, back-track and resume search 
 BWT enables searching for good end-to-end matches entirely in 

RAM 
 100s of times faster than competing approaches 

 3. Report the "best" n alignments 
 Best = fewest mismatches/edit distance, possibly weighted by QV 
 Some reads will have millions of equally good mapping positions 
 If reads are paired, try to find mapping that satisfies both 
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