
WHOLE GENOME SEQ. ALIGNMENT

CSE 549
Sael Lee

Slides Courtesy of Michael Schatz
Quantitative Biology Class @ CSHL

EXACT MATCHING

Slide extracts from Michael Schatz’s Quantitative Biology Class @ CSHL
http://schatzlab.cshl.edu/teaching/2010

EXACT MATCHING OVERVIEW

BRUTE FORCE ANALYSIS

 Brute Force:
 At every possible offset in the genome:

 Do all of the characters of the query match?

 Analysis
 Simple, easy to understand
 Genome length = n
 Query length = m
 Comparisons: (n-m+1) * m

 Overall runtime: O(nm)
 If we double genome or query size, takes twice as long
 If we double both, takes 4 times as long

SEARCHING FOR GATTACA

SUFFIX ARRAYS

 What if we need to check many queries?
 Sorting alphabetically lets us immediately skip through the

data without any loss in accuracy

 Sorting the genome: Suffix Array (Manber & Myers,
1991)
 Sort every suffix of the genome

SEARCHING THE INDEX
 Strategy 2: Binary search

 Compare to the middle, refine as higher or l
ower

 Searching for GATTACA
 Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
 Middle = Suffix[8] = CC
 => Higher: Lo = Mid + 1

 Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 Middle = Suffix[12] = TACC
 => Lower: Hi = Mid - 1

 Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
 Middle = Suffix[10] = GATTACC
 => Lower: Hi = Mid - 1

 Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
 Middle = Suffix[9] = GATTACA…
 => Match at position 2!

SUFFIX ARRAY CONSTRUCTION

 Searching the array is very fast, but it takes time
to construct
 This time will be amortized over many, many searches
 Run it once "overnight" and save it away for all future

queries

 How do we store the suffix array?
 Explicitly storing all n strings is not feasible O(n2)

 Instead use implicit representation
 Keep 1 copy of the genome, and a list of sorted offsets
 Storing 3 billion offsets requires a big server (12GB)

 Build a separate index for each chromosome

TGATTACAGATTACC

SUFFIX TREES

Suffix Tree = Tree of suffixes (indexes all substrings of a sequence)
• 1 Leaf ($) for each suffix, path-label to leaf spells the suffix
• Nodes have at least 2 and at most 5 children (A,C,G,T,$)

SUFFIX TREE PROPERTIES & APPLICATIONS

 Properties
 Number of Nodes/Edges: O(n)
 Tree Size: O(n)
 Max Depth: O(n)
 Construction Time: O(n)

 Uses suffix links to jump between nodes without rechecking
 Tricky to implement, prove efficiency

 Applications
 Sorting all suffixes: O(n)
 Check for query: O(m)
 Find all z occurrences of a query O(m + z)
 Find maximal exact matches O(m)
 Longest common substring O(m)

 Used for many string algorithms in linear time
 Many can be implemented on suffix arrays using a little extra work

HASHING

 Where is GATTACA in the human genome?
 Build an inverted index (table) of every k-mer in the genome

 How do we access the table?
 We can only use numbers to index

 table[GATTACA] <- error, does not compute
 Encode sequences as numbers

 Easy: A = 110, C = 210, G = 310, T = 410
 GATTACA = 314412110

 Smart: A = 002, C = 012, G = 102, T = 112
 GATTACA = 100011110001002 = 915610

 Running time
 Construction: O(n)
 Lookup: O(1) + O(z)
 Sorts the genome mers in linear time

IN-EXACT ALIGNMENT

Slide extracts from Michael Schatz’s Quantitative Biology Class @ CSHL
http://schatzlab.cshl.edu/teaching/2010

IN-EXACT ALIGNMENT

 Where is GATTACA approximately in the human genome?
 And how do we efficiently find them?

 It depends…
 Define 'approximately'

 Hamming Distance, Edit distance, or Sequence Similarity
 Ungapped vs Gapped vs Affine Gaps
 Global vs Local
 All positions or the single 'best'?

 Efficiency depends on the data characteristics & goals
 Smith-Waterman: Exhaustive search for optimal alignments
 BLAST: Hash based homology searches
 MUMmer: Suffix Tree based whole genome alignment
 Bowtie: BWT alignment for short read mapping

SEED-AND-EXTEND ALIGNMENT

 Theorem: An alignment of a sequence of length m with at most k
differences must contain an exact match at least s=m/(k+1) bp long (Baeza-
Yates and Perleberg, 1996)

 Proof: Pigeon hole principle

 Search Algorithm
 Use an index to rapidly find short exact alignments to seed

longer in-exact alignments
 RMAP, CloudBurst, …

 Specificity of the seed depends on length
 Length s seeds can also seed some lower quality alignments

 Won't have perfect sensitivity, but avoids very short seeds

HAMMING DISTANCE LIMITATIONS

 Hamming distance measures the
number of substitutions (SNPs)
 Appropriate if that’s all we

expect/want to find
 Illumina sequencing error model
 Other highly constrained sequences

 What about insertions and
deletions?
 At best the indel will only slightly

lower the score
 At worst highly similar sequences

will fail to align

Hamming distance=5
: 2 matches, 5
mismatches, 1 not
aligned

Edit Distance = 1
: 7 matches, 0
mismatches, 1 not
aligned

EDIT DISTANCE EXAMPLE

bioalgorithms.info

BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST)

 Rapidly compare a sequence Q to a database to find
all sequences in the database with an score above
some cutoff S.
 Which protein is most similar to a newly sequenced one?
 Where does this sequence of DNA originate?

 Speed achieved by using a procedure that typically
finds “most” matches with scores > S.
 Tradeoff between sensitivity and specificity/speed

 Sensitivity – ability to find all related sequences
 Specificity – ability to reject unrelated sequences

(Altschul et al. 1990)

BLAST: SEED AND EXTEND

 Homologous sequence are likely to contain a short
high scoring word pair, a seed.
 BLAST *doesn't* make explicit guarantees

 BLAST then tries to extend high scoring word pairs to
compute maximal high scoring segment pairs (HSPs).
 Heuristic algorithm but evaluates the result statistically.

BLAST - ALGORITHM

 Step 1: Preprocess Query
 Compile the short-high scoring word list from query. The length of

query word, w, is 3 for protein scoring Threshold T is 13
 Step 2: Construct Query Word Hash Table
 Step 3: Scanning DB

 Identify all exact matches with DB sequences
 Step 4: Search optimal alignment

 For each hit-word, extend ungapped alignments in both directions.
 Let S be a score of hit-word

 Step 5: Evaluate the alignment statistically
 Stop extension when E-value (depending on score S) become less

than threshold. The extended match is called High Scoring
Segment Pair.

WHOLE GENOME ALIGNMENT WITH MUMMER

 Maximal Unique Matcher (MUM)er
 match

 exact match of a minimum length

 maximal
 cannot be extended in either direction without a mismatch

 unique
 occurs only once in both sequences (MUM)
 occurs only once in a single sequence (MAM)
 occurs one or more times in either sequence (MEM)

Slides Courtesy of Adam M. Phillippy
amp@umics.umd.edu

MUMMER

 Primary uses
 exact matching (seeding)
 dot plotting

 Pros
 very efficient O(n) time and space

 ~17 bytes per bp of reference sequence
 E. coli K12 vs. E. coli O157:H7 (~5Mbp each)

 17 seconds using 77 MB RAM
 multi-FastA input

 Cons
 exact matches only

IS IT A MAM, MEM OR MUM?

R

Q

MUM : maximal unique match
MAM : maximal almost-unique match
MEM : maximal exact match

SEED AND EXTEND

 How can we make MUMs BIGGER?
 Find MUMs
 using a suffix tree

 Cluster MUMs
 using size, gap and distance parameters

 Extend clusters
 using modified Smith-Waterman algorithm

 R

Q

SUFFIX TREE FOR ATGTGTGTC$

atgtgtgtc$ $
c$ gt t

c$ c$ gt

7

1 9

5 3

8

6

4 2

10

c$ c$

c$

gt gtc$

gtc$

gt

Drawing credit: Art Delcher

CLUSTERING

cluster length = Σmi

gap distance = C

indel factor = |B – A| / B or |B – A|

R

Q

A

B

C

m1 m2 m3

EXTENDING

R

Q

break length = A

A

B

break point = B

score ~70%

BANDED ALIGNMENT

0

G
T
C
G
T
^

G A C G T T ^

A

B

2

1

1

2

0

2

3*

1

1

3*

4

2

1

2

4

5

3

2

1

3

5

4

2

2

2

4

6

3

3*

1

3

5

2

2

2

4

3

2

3

3*

3*

SIDETRACK: PLOTS

 How can we visualize whole genome alignments?

 With an alignment dot plot
 N x M matrix

 Let i = position in genome A
 Let j = position in genome B
 Fill cell (i,j) if Ai shows similarity to Bj

 A perfect alignment between A and B would completely fill
the positive diagonal

B

A

B

A

Translocation Inversion Insertion

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf

dotplot from promer-based mummerplot

BOWTIE: ULTRAFAST AND MEMORY EFFICIENT ALIGNMENT OF
SHORT DNA SEQUENCES TO THE HUMAN GENOME

 Uses Burrows-Wheeler Transform in addition to suffix
trees

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

“BWT rearranges a character
string into runs of similar
characters. This is useful for
compression, since it tends to
be easy to compress a string
that has runs of repeated
characters by techniques such
as move-to-front
transform and run-length
encoding” (wikipedia)

https://en.wikipedia.org/wiki/Character_string_(computer_science)
https://en.wikipedia.org/wiki/Character_string_(computer_science)
https://en.wikipedia.org/wiki/Move-to-front_transform
https://en.wikipedia.org/wiki/Move-to-front_transform
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Run-length_encoding

BWT SHORT READ MAPPING

 Trim off very low quality bases & adapters from ends of
sequences

 Execute depth-first-search of the implicit suffix tree
represented by the BWT
 If we fail to reach the end, back-track and resume search
 BWT enables searching for good end-to-end matches entirely in

RAM
 100s of times faster than competing approaches

 3. Report the "best" n alignments
 Best = fewest mismatches/edit distance, possibly weighted by QV
 Some reads will have millions of equally good mapping positions
 If reads are paired, try to find mapping that satisfies both

	Whole Genome Seq. Alignment
	Exact matching
	Exact Matching Overview
	Brute Force Analysis
	Searching for GATTACA
	Suffix Arrays
	Searching the Index
	Suffix Array Construction
	Suffix Trees
	Suffix Tree Properties & Applications
	Hashing
	In-exact alignment
	In-exact alignment
	Seed-and-Extend Alignment
	Hamming Distance Limitations
	Edit Distance Example
	Basic Local Alignment Search Tool (BLAST)
	BLAST: Seed and Extend
	BLAST - Algorithm
	Whole Genome Alignment with MUMmer
	MUMmer
	is it a MAM, MEM or MUM?
	Seed and Extend
	Suffix Tree for atgtgtgtc$
	Clustering
	Extending
	Banded Alignment
	Sidetrack: Plots
	Slide Number 29
	Slide Number 30
	Bowtie: Ultrafast and memory efficient alignment of short DNA sequences to the human genome
	BWT Short Read Mapping

