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SCORING MATRICES 
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SCORING MATRICES FOR AA SEQUENCE 
ALIGNMENT 
 Define scores for amino acid pairs in sequence alignments 
 Reflect “similarity” of amino acid residues 
 
 Amino acid scoring matrix/Amino acid similarity matrix => 

symmetric 
 Amino acid substitution matrix => not necessarily 

symmetric,  
 reflecting the difference of the mutation probability of A to B from 

B to A (A, B: two different amino acids) 
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SCORING MATRICES BASED ON PHYSICO-
CHEMICAL PROPERTIES 
 Identity Matrix 

 Same: 1, otherwise: 0 
 

 Codon based 
 Similarity of tri-nucleotides 

coding each amino acid 
(next slide) 
 

 Classification of amino 
acids 
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PAM MATRICES (DAYHOFF, 1978) 

 PAM: A Point Accepted Mutations. 
 Models the replacement of a single AA in the primary 

structure of a protein with another single AA that is accepted 
by natural selection.  
 Does not include silent mutations , mutations which are lethal,  or 

mutations which are rejected by natural selection in other ways. 

 PAM matrix: 20x20 AA substitution matrix  
 Each entry indicates the likelihood of the AA of that row 

being replaced with the AA of that column through a series 
of one or more PAM during a specified evolutionary interval, 
compared to these two AA being aligned by chance.  



PAM MATRIX CONT. 

 Different PAM matrices correspond to different lengths of 
time in the evolution of the protein sequence. 
 EX> PAM1: one accepted mutation per 100 residues 
 (n in the PAMn matrix represents the number of mutations per 

100 amino acids,) 
 Start from a set of well manually curated sequence 

alignments 
 >85% sequence identity 
 71 groups of homologous sequences 

 Construct phylogenetic trees and estimate the history of 
the mutation events in the family 
  1572 observed mutations in the phylogenetic trees of 71 families 

of closely related proteins. 
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THE MODEL OF THE EVOLUTION 

 The probability of a mutation in a position is 
independent on 
 Position and neighbour residues 
 Previous mutations in the position 

 The biological (evolutionary) clock is assumed 
(meaning constant rate of mutations) 

 This means that evolutionary time can be 
measured in number of mutations (here 
substitutions) 
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PAM: COLLECTION OF DATA FROM 
PHYLOGENETIC TREES 
 

ACGH 
DKGH 
DDIL 
CKIL 
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COMPUTING PROBABILITY OF A CHANGING 
TO B IN A CERTAIN TIME Τ 

 Count for each branch in the phylogenetic trees, the 
number of mismatches recorded and compute 
fequencey 
 fab : frequency of mutation from a => b or b => a ( assume 

symmetry i.e. fab = fba)  
 Compute mutability of a: fa = Σb≠afab 

 the total number of mutation involving a 
 Compute f = Σafa :  

 twice the total number of mutations 
 Compute pa  where Σapa =1:  

 the frequency of amino acid a, 
 Compute ma : the relative mutability of a  

 the probability that a will mutate in the evolutionary time τ 
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CALCULATING MA AND MAB IN THE TIME Τ 

 Consider the time τ = 1 PAM  
 the time while one mutation is accepted per 100 res.  

 The probability that mutation is from a is: 
  ½ fa/(f/2) = fa/f ,  

(1/2 comes from fab = fba ) 

 Among 100 res., there are 100pa occurrences of a 
 The relative mutability of a is  

 ma = (1/ 100pa) fa/f 

 The prob. that a will be mutated to b in the time τ 
 Mab = ma (fab/fa) for a≠b; Maa = 1 - ma 

 
 

 
 
 

 
 



11 

SUBSTITUTION MATRIX M1 
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CALCULATE MZ BY MATRIX MULTIPLICATION 
Example Z=2 
 2 mutations per 100 residues 
 A residue a can be changed to residue b after 2 PAM of following 

reasons: 
1. a is mutated to b in first PAM, unchanged in the next, with 

probability MabMbb 

2. a is unchanged in first PAM, changed in the next, probability 
MaaMab 

3. a is mutated to an amino acid x in the first PAM, and then to b 
in the next, probability MaxMxb,  x being any amino acid unequal 
(a,b) 

These three cases are disjunctive, hence 

∑∑
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M250 
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ESTIMATED SEQUENCE DIFFERENCE 

)1(100 τ
aa

Ma
aMp∑

∈

−

 The number of 
differences in 
100residues between 
two evolutionary related 
sequences over the time 
t can be estimated as  

Amino 
acids 
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CONVERTING FROM A SUBSTITUTION MATRIX TO 
A SCORING MATRIX 
 In a substitution matrix not symmetric in general,  

 Mab ≠ Mba (a in sequence q, b in sequence d) 

 To remove the effect of the frequent occurrence of b in 
sequence d, the odds scoring matrix is 
 Oab = Mab/pb 

 Oab is symmetric (Oab = Oba , p. 110, middle) 

 Log-odds matrix R: 
 Rab = log Oab 
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1PAM 
A 7                    

R -10 9                   

N -7 -9 9                  

D -6 -17 -1 8                 

C -10 -11 -17 -21 10                

Q -7 -4 -7 -6 -20 9               

E -5 -15 -5 0 -20 -1 8              

G -4 -13 -6 -6 -13 -10 -7 7             

H -11 -4 -2 -7 -10 -2 -9 -13 10            

I -8 -8 -8 -11 -9 -11 -8 -17 -13 9           

L -9 -12 -10 -19 -21 -8 -13 -14 -9 -4 7          

K -10 -2 -4 -8 -20 -6 -7 -10 -10 -9 -11 7         

M -8 -7 -15 -17 -20 -7 -10 -12 -17 -3 -2 -4 12        

F -12 -12 -12 -21 -19 -19 -20 -12 -9 -5 -5 -20 -7 9       

P -4 -7 -9 -12 -11 -6 -9 -10 -7 -12 -10 -10 -11 -13 8      

S -3 -6 -2 -7 -6 -8 -7 -4 -9 -10 -12 -7 -8 -9 -4 7     

T -3 -10 -5 -8 -11 -9 -9 -10 -11 -5 -10 -6 -7 -12 -7 -2 8    

W -20 -5 -11 -21 -22 -19 -23 -21 -10 -20 -9 -18 -19 -7 -20 -8 -19 13   

Y -11 -14 -7 -17 -7 -18 -11 -20 -6 -9 -10 -12 -17 -1 -20 -10 -9 -8 10  

V -5 -11 -12 -11 -9 -10 -10 -9 -9 -1 -5 -13 -4 -12 -9 -10 -6 -22 -10 8 

 A R N D C Q E G H I L K M F P S T W Y V 
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PAM-250 SCORING MATRIX 
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BLOSUM  (HENIKOFF & HENIKOFF) 
 BLOSUM (BLOcks SUbstitution Matrix) matrix is a substitution 

matrix used to score alignments between evolutionarily 
divergent protein sequences introduced by  Henikoff and 
Henikoff in 1992 
 

 Make multiple alignments consist of sequences sharing more 
than X% sequence identity  

 Discover blocks not containing gaps (used over 2,000 blocks) 
           ...KIFIMK.......GDEVK... 
        ...NLFKTR       GDSKK... 
           KIFKTK       GDPKA 
           KLFESR       GDAER 
           KIFKGR       GDAAK 

 For each column in each block, counted the number of 
occurrences of each pair of AA 
 210 different pairs (combination with repetition: (20+2-1)! /(2!(20-1)!)  )  
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BLOSUM CONT 
 A block of length w from an alignment of n sequences has 

T=w*n(n-1)/2 possible occurrences of amino acid pairs 
 Let hab be the number of occurrences of the pair (ab) in 

all blocks (hab=hba) 
 T total number of pairs 
 fab=hab/T 

 Constructing logodds matrix : Rab=log(fab/eab) 
 with background probabilities of finding the amino 

acids a and  in any protein sequence as pa  

 eaa=papa  
 eab=papb + pbpa = 2 papb  for a ≠b 
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COMPARING PAM AND BLOSUM 

 PAM: based on an evolutionary model (tree) 
 PAM1 is multiplied to obtain PAMx (the larger x, the 

more distant) 
 

 BLOSUM: Based on common regions in protein 
families 

 Simple to compute 
 BLOSUMx (e.g. x=45, 62, 80, the larger more closer) 
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ANALYSIS OF SCORING MATRICES 

 PAMx or BLOSUMy is designed for aligning 
sequences of that range  
 i.e. BLOSUM50 cannot align very distantly related 

sequences by definition 
 Starts from a set of pairwise (multiple) alignments 

 alignments > scoring matrix > alignment 
 Can develop a scoring matrix from any set of 

alignments following the BLOSUM’s method 
 There are many AAindex database 
 http://www.genome.ad.jp/dbget/aaindex.html 
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MULTIPLE ALIGNMENT 
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USE OF ALIGNMENTS 
 High sequence similarity usually means significant 

structural and/or functional similarity.  
 Homolog proteins (common ancestor) can vary significantly 

in large parts of the sequences, but still retain common 2D-
patterns, 3D-patterns or common active site or binding site. 

 Comparison of several sequences in a family can reveal 
what is common for the family. Conserved regions can be 
significant when regarding all of the sequences, but need 
not if regarding only two. 
 

 Multiple alignment can be used to derive evolutionary 
history. 

 Conserved positions : structurally/functionally important 
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Conserved positions Loop? Loop? Loop? 
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USE OF ALIGNMENTS 
- MAKE PATTERNS/PROFILES 

 Can make a profile or a pattern that can be used to m
atch against a sequence database and identify new fa
mily members 

 Profiles/patterns can be used to predict family memb
ership of new sequences 

 Databases of profiles/patterns 
 PROSITE 
 PFAM 
 PRINTS 
 ... 
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PATTERN FROM ALIGNMENT 

[FYL]-x-[LIVMC]-[KR]-W-x-[GDNR]-[FYWLE]-x(5,6)-[ST]-W-[ES]-[PSTDN]-x(3)-[LIVMC] 
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ALIGN BY USE OF DYNAMIC PROGRAMMING 

 Dynamic programming finds best alignment of k 
sequences with given scoring scheme 

 
 For two sequences there are three different column 

types 
 
 For three sequences there are seven different column 

types 
         x means an amino acid,   - a blank 
            Sequence1    x  -  x  x  -  -  x 
     Sequence2    x  x  -  x  -  x  - 
     Sequence3    x  x  x  -  x  -  x 
 
 Time complexity of O(nk)  (sequence lengths = n) 
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SCORING MULTIPLE SEQUENCE ALIGNMENTS 

 Sum of the pairwise  
sequence score 

 

 Sum of scores for each row  

Alignment 
AR-L 
ARSL 
AWTL 
AWT- 
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USE OF K-DIMENTIONAL DYNAMIC PROGRAMMING 

 Dynamic programming finds 
best alignment of k sequences 
given a scoring scheme 
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MULTI-DIMENSIONAL DP 

 3 sequences: 
 Linear gap cost: γ(d) = -gd 
 Score of the whole MSA: 
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MULTI-DIMENSIONAL DP: K SEQUENCES 
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REDUCING THE COMPUTATIONAL TIME BY A 
PRUNING ALGORITHM 

 In order to obtain the optimal alignment, it is not 
necessary to calculating cells which certainly cannot 
lie on the best alignment path in the DP matrix. 

 dynamic pruning – cells to avoid are found during the 
run 
 forward recursion 
 (backward recursion : conventional DP) 
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