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SCORING MATRICES



SCORING MATRICES FOR AA SEQUENCE
ALIGNMENT

Define scores for amino acid pairs in sequence alignments
Reflect “similarity” of amino acid residues

Amino acid scoring matrix/Amino acid similarity matrix =>
symmetric

Amino acid substitution matrix => not necessarily
symmetric,

reflecting the difference of the mutation probability of A to B from
B to A (A, B: two different amino acids)



SCORING MATRICES BASED ON PHYSICO-
CHEMICAL PROPERTIES T
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PAM MATRICES (DAYHOFF, 1978)

PAM: A Point Accepted Mutations.

Models the replacement of a single AA in the primary
structure of a protein with another single AA that is accepted

by natural selection.

Does not include silent mutations , mutations which are lethal, or
mutations which are rejected by natural selection in other ways.

PAM matrix: 20x20 AA substitution matrix

Each entry indicates the likelihood of the AA of that row
being replaced with the AA of that column through a series
of one or more PAM during a specified evolutionary interval,
compared to these two AA being aligned by chance.



PAM MATRIX CONT,

Different PAM matrices correspond to different lengths of
time in the evolution of the protein sequence.

EX> PAM1: one accepted mutation per 100 residues

(n in the PAM, matrix represents the number of mutations per
100 amino acids,)

Start from a set of well manually curated sequence
alignments

>85% sequence identity

71 groups of homologous sequences
Construct phylogenetic trees and estimate the history of
the mutation events in the family

1572 observed mutations in the phylogenetic trees of 71 families
of closely related proteins.



THE MODEL OF THE EVOLUTION

The probability of a mutation in a position is
iIndependent on

Position and neighbour residues
Previous mutations in the position

The biological (evolutionary) clock is assumed
(meaning constant rate of mutations)

This means that evolutionary time can be

measured in number of mutations (here
substitutions)



PAM: COLLECTION OF DATA FROM
PHYLOGENETIC TREES

PAM SCORING MATRICES
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Figure 5.4 (a) A small phylogenetic tree of four observed sequences, and two derived parent

sequences. (b) The mutations are on the edges. The numbers of different mutations are shown
in the table.
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COMPUTING PROBABILITY OF A CHANGING
TO B IN A CERTAIN TIME T

Count for each branch in the phylogenetic trees, the
number of mismatches recorded and compute
fequencey

f,, : frequency of mutation from a => b or b => a ( assume

symmetry i.e. f,, =f,,)
Compute mutability of a: f,= 2, 1.,

the total number of mutation involving a
Compute f= 21, :

twice the total number of mutations
Compute p, where 2 p_=1.:

the frequency of amino acid a,

Compute m, : the relative mutability of a
the probability that a will mutate in the evolutionary time <



CALCULATING M, AND M,z INTHE TIME T

Consider the time 1 = 1 PAM
the time while one mutation is accepted per 100 res.

The probability that mutation is from a is:

2 f/(t/2) =1 /1,

(1/2 comes from f, =1, )
Among 100 res., there are 100p_ occurrences of a
The relative mutability of a is
m_=(1/100p,) f /f
The prob. that a will be mutated to b in the time t
M,,=m,(f,/f,)forazb; M_,=1-m,



SUBSTITUTION MATRIX M?

Table 5.1 Substitution {nutation probability) matrix for the evolutionary distance of 1 PAM. To simplify the appearance. the elements are shown
multiplied by 10000, The probabilities for not changing are replaced by *, the values vary between 9822 (N) and 9976 (W). An element of this
matrix, M ;4. gives the probability that the amino acid in row a will be replaced by the amino acid in column b after a given evolutionary interval, in
this case | accepted point mutation per 100 amino acids. Thus there is a 0.56% probability that D (Asp) will be replaced by E (Glu). The amino acids
are alphabetically ordered on their names. Reproduced from Dayhoff (1978) with permission of the MNational Biomedical Research Foundation.
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CALCULATE M4 BY MATRIX MULTIPLICATION

Example Z=2
2 mutations per 100 residues

A residue a can be changed to residue b after 2 PAM of following
reasons:

a is mutated to b in first PAM, unchanged in the next, with
probability M, M,

a is unchanged in first PAM, changed in the next, probability
I\/IaaMab

a is mutated to an amino acid x in the first PAM, and then to b

in the next, probability M,,M,, x being any amino acid unequal
(a,b)

These three cases are disjunctive, hence

Mz =M My +M M, + ZMaxbe = ZMaxbe

xe{a,b} xeM



M250

Table 5.2 The mutation probability matrix for the evolutionary distance of 250 PAMs. To simplify the appearance, the elements are shown
multiplied by 100. In comparing two sequences of average amino acid frequency at this evolutionary distance, there is a 13% probability that a
position containing A (Ala) in the first sequence will contain A in the second. There is a 3% chance that it will contain R (Arg), and so forth.
Reproduced from Dayhoff (1978) by permission of the National Biomedical Research Foundation.
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ESTIMATED SEQUENCE DIFFERENCE

% Difference

100

The number of
differences in
100residues between
two evolutionary related
sequences over the time
t can be estimated as

100(1_ Z paM ;a)

aecM

A

Amino
acids




CONVERTING FROM A SUBSTITUTION MATRIX TO

A SCORING MATRIX
In a substitution matrix not symmetric in general,
M., # M, (a in sequence g, b in sequence d)

To remove the effect of the frequent occurrence of b in
sequence d, the odds scoring matrix is

C)ab - Mab/pb
O,, is symmetric (O,, = O, , p. 110, middle)

Log-odds matrix R:
R, =108 Oy
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PAM-250 SCORING MATRIX

ble 5.3 Log-odds matix for 250 PAMs. Elements are shown multiplied by 10. The neutral score is zero. A score of — 10 means that the pair
wild be expected to occur only one-tenth as frequently in related sequences as random chance would predict, and a score of 42 means that the pair
wld be expected to occur 1.6 times as frequently. The order of the amino acids has been arranged to illustrate the patterns in the mutation data
ouped according to the chemistries of the side groups). Reproduced from Dayhoff (1978) by permission of the MNational Biomedical Research
undation.
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BLOSUM (HENIKOFF & HENIKOFF)

BLOSUM (BLOcks SUbstitution Matrix) matrix is a substitution
matrix used to score alignments between evolutionarily
divergent protein sequences introduced by Henikoff and

Henikoff in 1992

Make multiple alignments consist of sequences sharing more
than X% sequence identity
Discover blocks not containing gaps (used over 2,000 blocks)

- KIFIMK. ..o o GDEVK. ..
- - -NLFKTR GDSKK. ..
KITFKTK GDPKA
KLFESR GDAER
KIFKGR GDAAK

For each column in each block, counted the number of

occurrences of each pair of AA
210 different pairs (combination with repetition: (20+2-1)! /(2!(20-1)!) )



BLOSUM CONT

A block of length w from an alignment of n sequences has
T=w*n(n-1)/2 possible occurrences of amino acid pairs

Let h,, be the number of occurrences of the pair (ab) in
all blocks (h_,=h,,)

T total number of pairs
fab=hab/T
Constructing logodds matrix : R_,=log(f,,/€.;)

with background probabilities of finding the amino
acids a and in any protein sequence as p,

eaa=papa
€ap=PaPp T PoPa = 2 PPy fOr a #b



COMPARING PAM AND BLOSUM

PAM: based on an evolutionary model (tree)

PAM1 is multiplied to obtain PAMXx (the larger x, the
more distant)

BLOSUM: Based on common regions in protein
families

Simple to compute
BLOSUMXx (e.g. x=45, 62, 80, the larger more closer)



ANALYSIS OF SCORING MATRICES

PAMx or BLOSUMy is designed for aligning
sequences of that range

i.e. BLOSUMb5O0 cannot align very distantly related
sequences by definition

Starts from a set of pairwise (multiple) alignments
alignments > scoring matrix > alignment

Can develop a scoring matrix from any set of
alignments following the BLOSUM’s method

There are many AAindex database
http://www.genome.ad.jp/dbget/aaindex.html
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MULTIPLE ALIGNMENT



USE OF ALIGNMENTS

High sequence similarity usually means significant
structural and/or functional similarity.

Homolog proteins (common ancestor) can vary significantly
in large parts of the sequences, but still retain common 2D-
patterns, 3D-patterns or common active site or binding site.

Comparison of several sequences in a family can reveal
what is common for the family. Conserved regions can be
significant when regarding all of the sequences, but need
not if regarding only two.

Multiple alignment can be used to derive evolutionary
history.

Conserved positions : structurally/functionally important
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USE OF ALIGNMENTS
- MAKE PATTERNS/PROFILES

Can make a profile or a pattern that can be used to m
atch against a sequence database and identify new fa
mily members

Profiles/patterns can be used to predict family memb
ership of hew sequences

Databases of profiles/patterns
PROSITE
PFAM
PRINTS



PATTERN FROM ALIGNMENT
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ALIGN BY USE OF DYNAMIC PROGRAMMING

Dynamic programming finds best alignment of k
seqguences with given scoring scheme

For two sequences there are three different column
types

For three sequences there are seven different column

types
X means an amino acid, - a blank
Sequencel X - X X - - X
Sequence?2 X X - X - X -
Sequence3 X X X - X - X

Time complexity of O(n¥) (sequence lengths = n)



SCORING MULTIPLE SEQUENCE ALIGNMENTS
Alignment

AR-L

ARSL ?D

AWTL

AWT -

Sum of scores for each row
Sum of the pairwise

sequenoe score S(MSA) = ZZ Z R,
S(MSA) Z ZS(S,, J) k=1 i=1l =i+l
=1 j=i+1

m: the number of sequences r: number of columns

S, S sequence |, |
S(s;;s;) = score of s;,s;



USE OF K-DIMENTIONAL DYNAMIC PROGRAMMING

Dynamic programming finds
best alignment of k sequences
given a scoring scheme

D--Q-LF
DNVQ- - -
- --QGL-

(a) (b)



MULTI-DIMENSIONAL DP |

3 sequences: kl\j

Linear gap cost: y(d) = -gd

Score of the whole MSA: S(m) = Zi S(m,)

F(i, J, k) = max:

(F(@i-1 j-Lk-1)+S(x,Y;,Z)

F (|1 J _11 k _1) +S (_1 yJ ’ Zk) - 'd'd"‘S(yj,Zk)

. . or
F>O-1 J,k=1)+S(x,—z) -d+s(y; z,) etc.
F>O-1J-1K)+S(X,Y;,-)

F>Gi-1 j,k)+S(x,——)~ SdTCy

F(i,j—l,k)-l-S(—, yji_) or

F(@, j,k—-1)+S(--z,) d +0 etc.



MULTI-DIMENSIONAL DP; K SEQUENCES

F(i11i21111ik) —
r:(il_]—, i2 _11111ik _1)+S(X;L1’Xi22”’xii)
=iy~ 10~ D)+ S (=2, %)

=~ Ly~ 1)+ S (K, X)

MaxXs

F(i11i211”ik _1)+S(_1_1 Xi33111xilf()

LIIII

Complexity: O (n¥); if N=3, O(n3)



REDUCING THE COMPUTATIONAL TIME BY A
PRUNING ALGORITHM

In order to obtain the optimal alignment, it is not
necessary to calculating cells which certainly cannot
lie on the best alignment path in the DP matrix.

dynamic pruning - cells to avoid are found during the
run

forward recursion
(backward recursion : conventional DP)
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