
AMINO ACID SEQUENCE ALIGNMENT II 

CSE 549 
Lecturer: Sael Lee 

Slides provided by courtesy of Dr. D. Kihara @ Purdue 



2 

SCORING MATRICES 
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SCORING MATRICES FOR AA SEQUENCE 
ALIGNMENT 
 Define scores for amino acid pairs in sequence alignments 
 Reflect “similarity” of amino acid residues 
 
 Amino acid scoring matrix/Amino acid similarity matrix => 

symmetric 
 Amino acid substitution matrix => not necessarily 

symmetric,  
 reflecting the difference of the mutation probability of A to B from 

B to A (A, B: two different amino acids) 
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SCORING MATRICES BASED ON PHYSICO-
CHEMICAL PROPERTIES 
 Identity Matrix 

 Same: 1, otherwise: 0 
 

 Codon based 
 Similarity of tri-nucleotides 

coding each amino acid 
(next slide) 
 

 Classification of amino 
acids 
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PAM MATRICES (DAYHOFF, 1978) 

 PAM: A Point Accepted Mutations. 
 Models the replacement of a single AA in the primary 

structure of a protein with another single AA that is accepted 
by natural selection.  
 Does not include silent mutations , mutations which are lethal,  or 

mutations which are rejected by natural selection in other ways. 

 PAM matrix: 20x20 AA substitution matrix  
 Each entry indicates the likelihood of the AA of that row 

being replaced with the AA of that column through a series 
of one or more PAM during a specified evolutionary interval, 
compared to these two AA being aligned by chance.  



PAM MATRIX CONT. 

 Different PAM matrices correspond to different lengths of 
time in the evolution of the protein sequence. 
 EX> PAM1: one accepted mutation per 100 residues 
 (n in the PAMn matrix represents the number of mutations per 

100 amino acids,) 
 Start from a set of well manually curated sequence 

alignments 
 >85% sequence identity 
 71 groups of homologous sequences 

 Construct phylogenetic trees and estimate the history of 
the mutation events in the family 
  1572 observed mutations in the phylogenetic trees of 71 families 

of closely related proteins. 
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THE MODEL OF THE EVOLUTION 

 The probability of a mutation in a position is 
independent on 
 Position and neighbour residues 
 Previous mutations in the position 

 The biological (evolutionary) clock is assumed 
(meaning constant rate of mutations) 

 This means that evolutionary time can be 
measured in number of mutations (here 
substitutions) 
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PAM: COLLECTION OF DATA FROM 
PHYLOGENETIC TREES 
 

ACGH 
DKGH 
DDIL 
CKIL 
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COMPUTING PROBABILITY OF A CHANGING 
TO B IN A CERTAIN TIME Τ 

 Count for each branch in the phylogenetic trees, the 
number of mismatches recorded and compute 
fequencey 
 fab : frequency of mutation from a => b or b => a ( assume 

symmetry i.e. fab = fba)  
 Compute mutability of a: fa = Σb≠afab 

 the total number of mutation involving a 
 Compute f = Σafa :  

 twice the total number of mutations 
 Compute pa  where Σapa =1:  

 the frequency of amino acid a, 
 Compute ma : the relative mutability of a  

 the probability that a will mutate in the evolutionary time τ 
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CALCULATING MA AND MAB IN THE TIME Τ 

 Consider the time τ = 1 PAM  
 the time while one mutation is accepted per 100 res.  

 The probability that mutation is from a is: 
  ½ fa/(f/2) = fa/f ,  

(1/2 comes from fab = fba ) 

 Among 100 res., there are 100pa occurrences of a 
 The relative mutability of a is  

 ma = (1/ 100pa) fa/f 

 The prob. that a will be mutated to b in the time τ 
 Mab = ma (fab/fa) for a≠b; Maa = 1 - ma 
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SUBSTITUTION MATRIX M1 



12 

CALCULATE MZ BY MATRIX MULTIPLICATION 
Example Z=2 
 2 mutations per 100 residues 
 A residue a can be changed to residue b after 2 PAM of following 

reasons: 
1. a is mutated to b in first PAM, unchanged in the next, with 

probability MabMbb 

2. a is unchanged in first PAM, changed in the next, probability 
MaaMab 

3. a is mutated to an amino acid x in the first PAM, and then to b 
in the next, probability MaxMxb,  x being any amino acid unequal 
(a,b) 

These three cases are disjunctive, hence 

∑∑
∈∉

=++=
Mx

xbax
bax

xbaxabaabbabab MMMMMMMMM
},{

2
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M250 
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ESTIMATED SEQUENCE DIFFERENCE 

)1(100 τ
aa

Ma
aMp∑

∈

−

 The number of 
differences in 
100residues between 
two evolutionary related 
sequences over the time 
t can be estimated as  

Amino 
acids 
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CONVERTING FROM A SUBSTITUTION MATRIX TO 
A SCORING MATRIX 
 In a substitution matrix not symmetric in general,  

 Mab ≠ Mba (a in sequence q, b in sequence d) 

 To remove the effect of the frequent occurrence of b in 
sequence d, the odds scoring matrix is 
 Oab = Mab/pb 

 Oab is symmetric (Oab = Oba , p. 110, middle) 

 Log-odds matrix R: 
 Rab = log Oab 
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1PAM 
A 7                    

R -10 9                   

N -7 -9 9                  

D -6 -17 -1 8                 

C -10 -11 -17 -21 10                

Q -7 -4 -7 -6 -20 9               

E -5 -15 -5 0 -20 -1 8              

G -4 -13 -6 -6 -13 -10 -7 7             

H -11 -4 -2 -7 -10 -2 -9 -13 10            

I -8 -8 -8 -11 -9 -11 -8 -17 -13 9           

L -9 -12 -10 -19 -21 -8 -13 -14 -9 -4 7          

K -10 -2 -4 -8 -20 -6 -7 -10 -10 -9 -11 7         

M -8 -7 -15 -17 -20 -7 -10 -12 -17 -3 -2 -4 12        

F -12 -12 -12 -21 -19 -19 -20 -12 -9 -5 -5 -20 -7 9       

P -4 -7 -9 -12 -11 -6 -9 -10 -7 -12 -10 -10 -11 -13 8      

S -3 -6 -2 -7 -6 -8 -7 -4 -9 -10 -12 -7 -8 -9 -4 7     

T -3 -10 -5 -8 -11 -9 -9 -10 -11 -5 -10 -6 -7 -12 -7 -2 8    

W -20 -5 -11 -21 -22 -19 -23 -21 -10 -20 -9 -18 -19 -7 -20 -8 -19 13   

Y -11 -14 -7 -17 -7 -18 -11 -20 -6 -9 -10 -12 -17 -1 -20 -10 -9 -8 10  

V -5 -11 -12 -11 -9 -10 -10 -9 -9 -1 -5 -13 -4 -12 -9 -10 -6 -22 -10 8 

 A R N D C Q E G H I L K M F P S T W Y V 
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PAM-250 SCORING MATRIX 
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BLOSUM  (HENIKOFF & HENIKOFF) 
 BLOSUM (BLOcks SUbstitution Matrix) matrix is a substitution 

matrix used to score alignments between evolutionarily 
divergent protein sequences introduced by  Henikoff and 
Henikoff in 1992 
 

 Make multiple alignments consist of sequences sharing more 
than X% sequence identity  

 Discover blocks not containing gaps (used over 2,000 blocks) 
           ...KIFIMK.......GDEVK... 
        ...NLFKTR       GDSKK... 
           KIFKTK       GDPKA 
           KLFESR       GDAER 
           KIFKGR       GDAAK 

 For each column in each block, counted the number of 
occurrences of each pair of AA 
 210 different pairs (combination with repetition: (20+2-1)! /(2!(20-1)!)  )  
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BLOSUM CONT 
 A block of length w from an alignment of n sequences has 

T=w*n(n-1)/2 possible occurrences of amino acid pairs 
 Let hab be the number of occurrences of the pair (ab) in 

all blocks (hab=hba) 
 T total number of pairs 
 fab=hab/T 

 Constructing logodds matrix : Rab=log(fab/eab) 
 with background probabilities of finding the amino 

acids a and  in any protein sequence as pa  

 eaa=papa  
 eab=papb + pbpa = 2 papb  for a ≠b 
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COMPARING PAM AND BLOSUM 

 PAM: based on an evolutionary model (tree) 
 PAM1 is multiplied to obtain PAMx (the larger x, the 

more distant) 
 

 BLOSUM: Based on common regions in protein 
families 

 Simple to compute 
 BLOSUMx (e.g. x=45, 62, 80, the larger more closer) 
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ANALYSIS OF SCORING MATRICES 

 PAMx or BLOSUMy is designed for aligning 
sequences of that range  
 i.e. BLOSUM50 cannot align very distantly related 

sequences by definition 
 Starts from a set of pairwise (multiple) alignments 

 alignments > scoring matrix > alignment 
 Can develop a scoring matrix from any set of 

alignments following the BLOSUM’s method 
 There are many AAindex database 
 http://www.genome.ad.jp/dbget/aaindex.html 
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MULTIPLE ALIGNMENT 
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USE OF ALIGNMENTS 
 High sequence similarity usually means significant 

structural and/or functional similarity.  
 Homolog proteins (common ancestor) can vary significantly 

in large parts of the sequences, but still retain common 2D-
patterns, 3D-patterns or common active site or binding site. 

 Comparison of several sequences in a family can reveal 
what is common for the family. Conserved regions can be 
significant when regarding all of the sequences, but need 
not if regarding only two. 
 

 Multiple alignment can be used to derive evolutionary 
history. 

 Conserved positions : structurally/functionally important 
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Conserved positions Loop? Loop? Loop? 
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USE OF ALIGNMENTS 
- MAKE PATTERNS/PROFILES 

 Can make a profile or a pattern that can be used to m
atch against a sequence database and identify new fa
mily members 

 Profiles/patterns can be used to predict family memb
ership of new sequences 

 Databases of profiles/patterns 
 PROSITE 
 PFAM 
 PRINTS 
 ... 
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PATTERN FROM ALIGNMENT 

[FYL]-x-[LIVMC]-[KR]-W-x-[GDNR]-[FYWLE]-x(5,6)-[ST]-W-[ES]-[PSTDN]-x(3)-[LIVMC] 
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ALIGN BY USE OF DYNAMIC PROGRAMMING 

 Dynamic programming finds best alignment of k 
sequences with given scoring scheme 

 
 For two sequences there are three different column 

types 
 
 For three sequences there are seven different column 

types 
         x means an amino acid,   - a blank 
            Sequence1    x  -  x  x  -  -  x 
     Sequence2    x  x  -  x  -  x  - 
     Sequence3    x  x  x  -  x  -  x 
 
 Time complexity of O(nk)  (sequence lengths = n) 
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SCORING MULTIPLE SEQUENCE ALIGNMENTS 

 Sum of the pairwise  
sequence score 

 

 Sum of scores for each row  

Alignment 
AR-L 
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USE OF K-DIMENTIONAL DYNAMIC PROGRAMMING 

 Dynamic programming finds 
best alignment of k sequences 
given a scoring scheme 
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MULTI-DIMENSIONAL DP 

 3 sequences: 
 Linear gap cost: γ(d) = -gd 
 Score of the whole MSA: 
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MULTI-DIMENSIONAL DP: K SEQUENCES 
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REDUCING THE COMPUTATIONAL TIME BY A 
PRUNING ALGORITHM 

 In order to obtain the optimal alignment, it is not 
necessary to calculating cells which certainly cannot 
lie on the best alignment path in the DP matrix. 

 dynamic pruning – cells to avoid are found during the 
run 
 forward recursion 
 (backward recursion : conventional DP) 
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