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ABSTRACT

Motivation: Several kernel-based methods have been recently introduced for
the classification of small molecules. Most available kernels on molecules
are based on 2D representations obtained from chemical structures, but far
less work has focused so far on the definition of effective kernels that can
also exploit 3D information.

Results: We introduce new ideas for building kernels on small molecules
that can effectively use and combine 2D and 3D information. We tested
these kernels in conjunction with support vector machines for binary
classification on the 60 NCI cancer screening datasets as well as on the NCI
HIV data set. Our results show that 3D information leveraged by these
kernels can consistently improve prediction accuracy in all datasets.

Availability: An implementation of the small molecule classifier is available
from http://www.dsi.unifi.it/neural/src/3DDK



METHODS:;
BACKGROUND ON KERNEL METHODS FOR STRUCTURED DATA

A major challenge is to define an effective quantitative measure of similarity

Base Learner: SVM
classification function f(x) is obtained from data

M

fix)= Zcf,-lr,-K[_r,-k x).
i=1

Kernels on structured data

X € x, suppose (xXi....,Xp)

K(x,x) = Z ]_[mu X))
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where R'(x) = (x1.. . xXp) @ R(xy.....xp, x)} denote the set of

all possible decompositions of x.



A WEIGHTED DECOMPOSITION KERNEL (WDK) FOR 2D
CHEMICAL STRUCTURES

The basic idea behind WDK is that each substructure in which a graph is
decomposed is enriched with its graphical context.

characterized by a decomposition R(s,z,x) where s is a subgraph of x called the
selector and z is a subgraph of x called the context of occurrence of s in x
(generally a subgraph containing s).

This setting results in the following general form of the kernel:

Kop(x, x) = Z 8(s, s (z, 2)
(x.zpe R (x)

i ek {(x"y

where, § is the exact matching kernel applied to selectors and k is a kernel on
contexts.



Fig. 1. Comparing substructures in a weighed decomposition kernel.
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WDK PARAMETER USED IN THE ARTICLE

IDEA

o Selectors are always single atoms and the match
 6(s,s’) is defined by the coincidence between the type of s and s’.
 The context kernel k is based on soft match between substructures, defined by

the distributions of label contents after discarding topology.

SPECIFICS
1. Let L denote the total number of attributes labeling vertices and edges and for
[=1,...,L

2. Letp;(j) be the observed frequency of value j for the [ — th attribute in a

substructure z.
3. Then compare substructures by means of a histogram intersection kernel

iy

ki(z,2) = Zmin{‘mU'LFZU'J}
_,":J

L
k(z,z') = ZH*{:‘ z').
F=1

Where m; is the number of possible values of attribute .
shall use L = 3: 1) atom type, 2) atom charge and 3) bond type, while atom

coordinates are discarded for computing the WDK.



CONTEXTS ARE FORMED AS FOLLOWS

Given a vertex v € V and an integerr > 0,

 Letx(v,r):substructure of x obtained by retaining all the vertices that are
reachable from v by a path of length at most r, and all the edges that touch at
least one of these vertices.

The decomposition relation R,., dependent on the context radius r, is then
defined as

R, = {(s,z, x): x € x,s={v}, z=x(v, ), vE V}.

where s is the selector and z is the context for vertex v.

Weighted Decomposition Kernel (WDK)

Kop(x, x') = Z 8(s, s e(z, )
ix.ziER™ I {x)

s ek (=)



THREE-DIMENSIONAL DECOMPOSITION KERNELS

A 3D molecular structure is interpreted here as a special kind of relational data
object where atoms are related by chemical bonds but also by their spatial
distances

The molecule is first decomposed into a set of overlapping 3D substructures of
varied geometry, called shapes.

Given a molecule x = (V, E), a shape of ordern is a set
of n distinct vertices

o={u,u,...,u;}, u; € V,fori=1,...n

kernel between two molecules Kip(x, x') = Z Z K shapes(c, @)

adeSr(x) o'eSHx)

nin—=1)/2

kernels between all pairs of shapes  j,,..c(0, o) n A



KERNELS BETWEEN ALL PAIRS OF SHAPES

Given a shape of order n and two vertices u, v € o,
e lete = (t[u], t[v], b[u, v]) denote a labeled edge of the shape, formed by
considering the two atom types t[u] and t[v] and the bond type b[u,V].

Then, let < ey,...,exm-1),2 > denote the lexicographically ordered sequence

of all labeled edges in .

For example, the shape (C1,C2,C3,01)
for the molecule NSC_1027 yields
lexicographically ordered sequence of all
labeled edges (C.2,C.3,1) (C.2,C.3,1)
(C.2,0.2,2) (C.3,C.3,0) (C.3,0.2,0)
(C.3,0.2,0).

--------
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Fig. 2. Illustration of the definition of 2D-supported shapes. The three
2D-supported shapes of radius 1, anchored to atom C3 in the molecule
NSC_1027 are (Br3,C3), (Br2,C3) and (C1.C2.,C3,01). Atom identifiers
and types (in parentheses) are formatted according to the Tripos Sybyl
MOL2 conventions.


Presenter
Presentation Notes
* Since atom and bond types both take values on a finite alphabet, labeled edges can be sorted lexicographically



KERNELS BETWEEN A PAIR OF SHAPES

The kernel between two shapes ¢ and ¢ ' of equal order n is defined as:

nn—1)/2

JIL".h 1[‘!{"-,.{ 0, U ]_I [!}{ ;. {, — iy — ':?I;'}'

o. < €1, ..,en(n_l)/z >
Where y is a kernel hyperparameter

and d; = ||{[w;] — {[v]|| is the o': <le'y,..., enm-1)/2 >
length of edge ¢;, i.e. the Euclidean
distance between atoms ui and vi.

* The kernel between two shapes of
different order is null.



KERNELS BETWEEN ALL PAIRS OF SHAPES CONT.

3D decomposition kernels (3DDK)

Select just the adjacent list of vertices that are within distance r from x.

Given a vertex v € IV and an integer r, a fopccin

Brl (Br) Br2(Er)

2D-supported shape anchored in v is a
C4 (C.3)

set of vertices o = {v,w} U adj[w] such
thatw € x(v,7) and adjlw] isthe T
adjacency list of w. Let S,.(x) denote ; :;‘;‘

shape set of radius r of Xx.

Eiplx, x') = Z Z Kuhapes(r, o) Wil ;

TES x) a'eSx")



DATA SET: &

NCI cancer dataset

National Cancer Institute public dataset of screening results for the ability of more
than 70,000 compounds to suppress or inhibit the growth of a panel of 60 human

tumor cell lines.

Subset of NCI dataset corresponding to the parameter GI50, the concentration
that causes 50% growth inhibition is used.

Binary classification: cancer-inhibiting (1) or not (-1).

NCI HIV dataset

Contains 42,687 compounds evaluated for evidence of anti HIV activity from
the DTP AIDS antiviral screen program of the National Cancer Institute.

Compounds are divided in three classes: 1) 422 compounds are confirmed active
(CA), 2) 1081 are moderately active (CM) and 3) 41 184 are confirmed inactive (Cl).



THREE CLASS CLASSIFICATION WITH SVM

Three classification problems are formulated on this dataset:

1.

2.

(CA verses CM): positive examples are confirmed active compounds,
while moderately active compounds forms the negative class;

(CA+CM verses Cl): the positive class is formed by the combination of
moderately active and confirmed active compounds and in

(CA verses Cl): the positive examples are confirmed active compounds
and the negative class is formed by confirmed inactive compounds.



COMBINING KERNELS- WDK & 3DDK

NCI cancer dataset

The WDK and 3DDK used in this experiment had both the radius r = 3 and no
graph complement was used for the WDK. y parameter in pair-wise shape kernel
was set to 2.5.

- 1
K(x, x") = (1 + k(x, X))
k18 either K>p or Kyp or k(x,x') = Ky plx,x') + Kipl(x,x').
These measures were estimated by a 10-folds cross-validation

NCI HIV dataset

For the WDK, graph complement and context radius r = 4 is used.
For the 3DDK, the radius to r = 3 is used. y parameter in pair-wise shape kernel was

setto 2.5.
ﬁ:l[ X "L"I} — o o, ) 4ud 2 x ) =2 x x)

AUC performance was estimated by a b-folds cross-validation



Kernel-based methods

MULTIPLE KERNEL

Combine multiple canonical kernels to generate one “multiple kernel” to
solve one classification problem.

Data 1 Data 2 Data m-1 Data m
Canohlcal kernel k(x.x;) k(x:,x;) k(x,.x;)  k(x:,X;)
functions
Multitkernel Jony (%4, X;)
function
Combination p: # features
function ; representations
) . P Jn: R =R,
AH(X:,XJ}:ﬁ]({ﬂm(ﬂaxf}}m':l} ﬁ’] . RD” RD"’ R P
Combination {on XRT = Rp .
parameters Dm: Dim. of feature
repre. m

Gonen, M., & Alpaydin, E. (2011). Multiple kernel learning algorithms. Journal of Machine Learning Research, 12, 2211-2268.

ig Data Seminar



Kernel-based methods

MULTIPLE KERNEL CONT,

Two usage of multiple kernels:

1. Using multiple kernels to evaluate data from one source
* Type of kernel functions and parameters are important but non-trivial to
select

2. Using multiple kernels to combine data from multiple sources and types

Two type of kernel combination parameter learning strategies:

1. Learn each kernel para. -> learn combination para.

Part of
I (%1, %5) = iy ({kn (X7, X7) 1o s M) combination
process
2. Learn each kernel para. & combination para at all at once

o (x5, X;) = Sy (Lo (X7, X I) Joe
n X% (Vo (37, X7 110 ) Part of each

canonical
kernels

2012 Fall Big Data Seminar



KEY PROPERTIES OF MULTIPLE KERNEL LEARNING

The Combination parameter learning method

Fixed rules

Heuristic

Optimization

Bayesian inference

Iteratively adding in new kernels

The kernel combination functional form

Linear
Nonlinear
Data-dependent - different weights for different data

The base learner
Support vector machines(SVM)

support vector regression (SVR)

Kernel Fisher discriminant analysis (KFDA)
Regularized kernel discriminant analysis (RKDA),
kernel ridge regression (KRR)

Multinomial probit and

Gaussian process (GP)

2012 Fall Big Data Seminar 21 5/22/2013



MULTIPLE KERNEL LEARNING ALGORITHMS

Fixed Rules: functions without any parameters and do not need any training.

A valid kernel can be formed by taking the summation or multiplication of two valid

kernels. P .
J‘TI’T] (X:,X;) = Z Fom (X X}”)
oy (51, %,) = by (x1, X)) e (2, 2) "
fn (Xi,X;) = R*l{xi-l,x}]ﬁ*g{x?,x;}. fn (X2, %;) = llﬂ’m(x?,x?).

Pairwise kernels are proposed to express the similarity between pairs in terms of
similarities between individual objects.

Ex> genomic kernel
K2 ({x0,x3} {x).x7}) = k(x?,x] )k (x3,x7) + k(x¥, X2 )k (x*

Ex> (weighted) sum of different pairwise kernels

P
ki ({x7 x5 1 {x7,x7)) = Zlﬂﬁ{{x?ﬁj‘f}r{x?ﬁ,?}}

2012 Fall Big Data Seminar 22 5/22/2013



MULTIPLE KERNEL LEARNING ALGORITHMS

Heuristic Approaches: parameterized combination function and find the

parameters of this function generally by heuristic measures on individual
kernels.

Ex> weighted linear combination

P
n (%3.%;) = 2, Mok (7", X7

m=1
Hm _ a H . - .
Nm =73 Various Heuristic weight
;;E (1, — &) functions are possible
=1

T, is the accuracy obtained using only K,,,, and § is the threshold that should be

less than or equal to the minimum of the accuracies obtained from single-kernel
learners

2012 Fall Big Data Seminar 23

5/22/2013



MULTIPLE KERNEL LEARNING ALGORITHMS

Optimization approaches: use a parameterized combination function and
learn the parameters by solving an optimization problem.

EX> Lanckriet et al. (2004a) propose to optimize the kernel alignment as
follows

maximize A{Kﬁa,ﬂf} ideal kernel: similarity between two kernels.

with respect to Ky € S
subject to tr (Ky) = 1 AK.yy") = (K, yv')r _ (Kw')r
K]‘] t 0 o \/(K! K)F(“’T "W’T}F N (K K}F

where (K1 ] K2>F — Z‘:il E;r:l ’{Tl{xr'l *E}}’h{x?’xﬁ'

2012 Fall Big Data Seminar 24 5/22/2013



MULTIPLE KERNEL LEARNING ALGORITHMS

Bayesian approaches: interpret the kernel combination parameters as
random variables, put priors on these parameters, and perform inference
for learning them and the base learner parameters.

Ex>

where 1) 1s modeled with a Dirichlet prior and o 1s modeled with a zero-mean Gaussian with an

INVErse gamina variance prior.

2012 Fall Big Data Seminar 25 5/22/2013



MULTIPLE KERNEL LEARNING ALGORITHMS

Boosting approaches. iteratively add a new kernel until the performance
stops improving

Ex> Bennett et al. (2002)

N P
_ m I- m m
[0 =33 ok (s x") +b
i=1m=1
: parameters { o™ $=1 and b of the KRR model are learned using gradient-descent

ExpLoss (’E‘r(xf? K,F') Vi) :i") = exp(—17) ‘j';‘r(xi": Xj :Ij
LogLoss(k(x;,X;),v;v;) = log(1 +exp(—yvk(X;:,X;))).

We iteratively update the combined kernel matrix using one of these two loss functions.

KRR: kernel ridge regression

2012 Fall Big Data Seminar 26 5/22/2013



Kernel-Based methods

MULTIPLE KERNEL: EXAMPLES

Computational framework for integrating and drawing inferences from a
collection of genome-wide measurements

Each dataset is represented via a kernel function, which defines generalized
similarity relationships between pairs of entities, such as genes or proteins.

yeast genome wide datasets partial descriptions of the data

similarity
relationships
between pairs of
entities

amino acid hydrophob|0|ty mRNA protein-protein
sequences profile [ expression interactions

linear combination
K = Z,UrKr

Parameter selected by convex optlmlzatlon
GOAL: Classify a protein as a membrane protein or not

Lanckriet, G. R. G., De Bie, T., Cristianini, N., Jordan, M. I., & Noble, W. S. (2004). A statistical framework for genomic data

ig Data Seminar



ROC VS PRECISION
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Slide from The UT Austin, CS 395T, Spring 2008, Prof. William H. Press



ROC (“Receiver Operating Characteristic”) curves

plot TPR vs. FPR as the classifier goes from

“conservative” to “liberal”
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You could get the best of the red and
green curves by making a hybrid or
“Frankenstein” classifier that switches

between strategies at the cross-over
points.

The University of Texas at Austin, C5 395T, Spring 2008, Prof. William H. Press



Precision

Precision-Recall curves overcome this issue by comparing TP with FN and FP

not AE--;

TPA,F
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precision-recall curve
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Continue our toy example:
note that P and N now entei/

prec = tpr*100./(tpr*100+fpr*9900) ;

prec(l) = prec(2); % fix up 0/0
reca = tpr;
plot(reca,prec)

The University of Texas at Austin, CS 395T, Spring 200w, + 1wv. svum

By the way, this shape “cliff" is what the
ROC convexity constraint looks like in
a Precision-Recall plot. It's not very

intuitive. \
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RESULTS: NCI CANCER

SCREENING DATASET.,
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RESULT: NCI ANTI-HIV SCREENING DATASET

Table 1. Results of the experiments on the NCI Anti-HIV screening dataset

Method CA versis CM CA+CM versus Cl CA versus Cl
FSGr . 786 0.786 914

FSG+3D sl a1y .94

pCPE 540 = 0.010 0837 £+ 0,002 0947 = ().(Kks
WDk 854 4 (0.019 U841 4 0.6 0945 = ().(0
yiDDk 853 == (.040 U549 = 0.(MF7 0951 == (.06
PIWDK4+3DDE ) 6] 4= 0.0 U.8ds = 000G 0951 == 0.7

The IDDK and WDK are compared to the frequent subgraphs approach and to the cyclic pattern kernel. The table reports the value of AU for the vanous methods.
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