
LECTURE 21: 
GRAPH KERNELS 

Instructor: Sael Lee 
CS549 Spring – Computational Biology 

Resources: 
• Gärtner, T., Flach, P., & Wrobel, S. (2003). On graph kernels: Hardness results and efficient alternatives. 

Learning Theory and Kernel Machines (pp. 129–143).  
• Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels between labeled graphs. ICML2003.  
• Mahé, P., Ueda, N., & Akutsu, T. (2004). Extensions of marginalized graph kernels. ICML2004.   

• Also their slides presented in ICML2004 
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How to define a valid kernel function 

𝐾(𝐺𝑗 ,𝐺𝑗), between two graphs 𝐺𝑗  and 𝐺𝑗 . 

• 𝐾(𝐺𝑗 ,𝐺𝑗) should provide relationship 

(similarity / dissimilarity / correlation 

etc.) measure for between two graphs.  

• 𝐾(𝐺𝑗 ,𝐺𝑗) should be able to be applied 

in kernel based machine learning 

methods such that it provide optimal 

classification / clustering performance.  

We will look at graph kernels that states similarity between kernels.  



MARGINALIZED KERNELS BETWEEN LABELED GRAPHS 
(Kashima et al., ICML 2003) 

Marginalized Kernels 

• Assume hidden variables  h ( ex> walk of a graph ) and make use of the 
probability  distribution of visible variables x, x’ ( structured data ex> 
Graph)  and hidden variables 

joint kernel  &  z = [x;h] 

posterior probability 

posterior probability p(h|x) can be interpreted as a feature extractor 
that extracts informative features for classification from x 

Marginalized Kernels: Expectation of the joint kernel over all possible 
values of h and h’ 
 

5/20/2013 CSE 549 - Computational Biology 

3 

𝐾 𝒙,𝒙′ =  ��𝐾𝑧(𝒛, 𝒛′)𝒑 𝒉 𝒙 𝑝 𝒉 𝒙𝒙
ℎ′ℎ

 



GRAPH KERNELS TERMINOLOGY 

• A graph G =(𝑉,𝐸, 𝑙),  
• 𝑉 is the set of vertices,  
• 𝐸 ⊂ (𝑉 × 𝑉) is the set of undirected edges (Changed to directed for 

random walk), and  
• 𝑙 ∶  𝑉,𝐸 → Σ  is a function that assigns labels from an alphabet Σ to 

nodes in the graph.  
 

 

• ’s’ and ’d’ denote single and 
double bonds, respectively. 

• Kernel assumes a directed 
graph, undirected edges are 
replaced by directed edges 
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Changing undirected graph to directed graph 

G =(𝑉,𝐸, 𝑙), 



FIRST ORDER MARKOV RANDOM WALKS ON GRAPHS 

Hidden variable: Random Walks on Graphs 

• Hidden variable 𝒉 =  (ℎ1, … , ℎ𝑙) associated with graph G is a sequence of 
natural numbers from 1 to |G|.   |G| : number of vertices 
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• h is generated by a random walk 

1-st step) ℎ1 is sampled from the prior probability distribution 𝑝𝑠(𝒉). 

i-th step)  ℎ𝑖 sampled subject to the transition probability  𝑝𝑡(ℎ𝑖|ℎ𝑖−1)  
 and with walk termination probability  𝑝𝑞(ℎ𝑖−1): 

• Posterior probability for the walk h : p(h|G) 

where 𝑙 is the length of h 

uniform distribution can be used for 
uninformative prior 

• traversed labels are listed: 



DEFINE JOINT KERNEL 
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Assume that two kernel functions are 
readily defined:  
• K(v; v’) : Kernel between vertex labels 
• K(e; e’):  Kernel between edge labels, 

Constrain both kernels to be nonnegative 
𝐾 𝑣;  𝑣′ ≥ 0;  𝐾 𝑒;  𝑒′ ≥ 0 

Define vertex  kernel & edge kernel 

Example of the vertex label kernels 
Dirac kernel: For Discrete labels 

Gaussian kernel: For Real value labels 

Joint Kernel 



COMPUTING JOINT KERNEL 
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Where  

The straightforward 
enumeration is impossible, 
because 𝑙 spans 
from 1 to infinity. 



COMPUTING JOINT KERNEL CONT. 
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Restate this problem in recursive form 

Equilibrium equation: 



COMPUTING JOINT KERNEL CONT. 
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computation of the marginalized kernel finally comes down to 
iteratively solving for  

and substituting the solutions into  

until convergence starting from Proof of convergence in 
Section 3.4 of Kashima et al., 

2003  



EXTENSION TO MARGINALIZED GRAPH KERNEL 
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Reduce Tottering effect by  
 Using 2nd Order Markov Random Walk instead of 1st order  

Iterative Label Enrichment:  
 Morgan Index (1965) 

Approaches:  

Size of product graph affects runtime of kernel computation 

• The more node labels, the smaller the product graph 

• Trick: Introduce new artificial node labels 

Focusing on non-tottering walks is a way to get closer to the path kernel  

1 

2 

(Mahé et al. ICML 2004) 
Model: Marginalized Graph Kernel with Dirac joint kernel 



SIMPLIFIED MARGINALIZED GRAPH KERNEL 
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𝐾 𝐺,𝐺′ =  � 𝑝 𝒉|𝐺 𝑝′ 𝒉′|𝐺𝐺 𝐾𝐿(𝑙 𝒉 , 𝑙 𝒉′ )
𝒉,𝒉′ ∈𝑉∗×𝑉′∗

 

𝐾𝐿: Dirac kernel between labeled sequence 

𝐾𝐿 𝑙, 𝑙′ = �1        if 𝑙 = 𝑙𝑙
0  otherwise

 

𝐾: Marginalized graph kernel 

Simplified by  
1) not using edge kernel defined 
2) Using Dirac vertex kernel 



SIMPLIFIED MARGINALIZED GRAPH KERNEL IN MATRIX 
FORMAT 
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Tensor product graph id defined as labeled graph 𝐺𝑝 = 𝑉𝑝,Ε𝑝   with  𝑉𝑝 ⊂ 𝑉1 ×
𝑉2 are pairs of vertices with identical labels  

𝑣1,𝑣2 ∈ 𝑉𝑝 𝑖𝑖𝑖 𝑙 𝑣1 = 𝑙 𝑣2  
and edges connecting the vertices 

𝑢1,𝑢2 and 𝑣1, 𝑣2  𝑖𝑖𝑖 𝑢𝑖 , 𝑣𝑖 ∈ 𝐸𝑝, 𝑓𝑓𝑓  𝑖 = 1,2, … 𝑙 

 tensor product  of agency matrix G × H  G × H  G                 H  
Fig: http://en.wikipedia.org/wiki/Tensor_product_of_graphs 

http://en.wikipedia.org/wiki/Tensor_product_of_graphs
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G × H  G                 H  

A function 𝜋 on the set of walks(paths) 𝐻(𝐺𝑝) 

SIMPLIFIED MARGINALIZED GRAPH KERNEL IN MATRIX FORMAT 

𝜋𝑡 



SIMPLIFIED MARGINALIZED GRAPH KERNEL IN MATRIX FORMAT 
CONT. 
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𝐾 𝐺1,𝐺2
=  � 𝑝1 𝒉𝟏|𝐺1 𝑝2 𝒉𝟐|𝐺1 𝐾𝐿(𝑙 𝒉𝟏 , 𝑙 𝒉𝟐 )

𝒉𝟏,ℎ2 ∈𝑉1∗×𝑉2∗
 



LABEL ENRICHMENT WITH MORGAN INDEX (1965) 

Problems: 
• The computation of graph kernels is time-consuming. 
• Need to increase the relevance of the features used to compare 

graphs.   

Expected outcome: 
• The computation of graph kernels is time-consuming. 
• Need to increase the relevance of the features used to compare 

graphs.   



LABEL ENRICHMENT WITH MORGAN INDEX CONT.  
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Enrichment with vertex connectivity properties 
→ extended connectivity descriptor : 
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𝑀𝑛: vector of labels in graph 
Given adjacency matrix A and setting 𝑀0 = 𝟏  
 𝑀𝑛+1 = 𝐴 + 𝐼 𝑀𝑛 



PREVENTING TOTTERING  

Tottering  

A tottering walk is a walk 𝑤 =  𝑣1 . . . 𝑣𝑛 with 𝑣𝑖  =  𝑣𝑖 + 2 for some i. 

• A walk can visit the same cycle of nodes all over again 

• Kernel measures similarity in terms of common walks 

• Hence a small structural similarity can cause a huge kernel value 
• Focusing on non-tottering walks is a way to get closer to the path 

kernel (e.g., equivalent on trees). 



PREVENTING TOTTERING CONT. 
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PREVENTING TOTTERING CONT. 
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PREVENTING TOTTERING CONT. 
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2ND ORDER MARKOV RANDOM WALK 
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The function is still a valid kernel but the implementation described for the 
first order Markov random walk cannot be directly used anymore.  

=> Instead of explicitly working with 2nd Order Markov Random walk, 
transform the original graph 𝐺 to 𝐺′ such that  𝐺′ contains the look ahead 
information.   



GRAPH TRANSFORMATION CONT.  
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* Don’t confuse G’ used in the 
last notation for compared Graph 



GRAPH TRANSFORMATION CONT.  
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GRAPH TRANSFORMATION CONT.  
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Original Graph Corresponding directed graph G = (V,E,l) 

Transformed Graph  Labels in the transformed graph 



MODIFIED KERNEL COMPUTATION CONT.  
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MODIFIED KERNEL COMPUTATION 
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one-to-one correspondence 



REVIEW BIJECTION 
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• Bijection (or bijective function or one-to-one correspondence) is a function 
giving an exact pairing of the elements of two sets. 

http://en.wikipedia.org/wiki/Bijection 

A bijection composed of an injection (left) 
and a surjection (right). 

• Bijective function f: X → Y is a one to one and onto mapping of a set X to a 
set Y. 

http://en.wikipedia.org/wiki/Bijection
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Theorem 1. f is a Bijective function between 𝐻0(𝐺) and 𝐻1(𝐺𝐺), and for any 
path 𝐡 ∈ 𝐻0(𝐺) we have  

𝑓:𝐻0 𝐺 → 𝐻1(𝐺𝐺) 
 

�
𝑙 𝒉|𝐺 = 𝑙𝑙(𝑓 𝒉 |𝐺𝐺)
𝑝 𝒉|𝐺 = 𝑝′ 𝑓 𝒉 |𝐺𝐺  

Corollary 1. For any two graphs 𝐺1 and 𝐺2, the marginalized graph kernel 
can be expressed in terms of the transfromed graphs 𝐺′1 and 𝐺′2 by:  
 

𝐾 𝐺1,𝐺2 = � 𝑝1′ ℎ1′ 𝑝2′ ℎ2′

ℎ1′ ,ℎ2′ ∈ Σ1′
∗
× Σ2′

∗

𝐾𝐿(𝑙1′ ℎ1′ 𝑙2′ ℎ2′ ) 
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