
1. INTRODUCTION TO COMPUTATIONAL BIOLOGY 

Instructor: Sael Lee 
CS549 Spring – Computational Biology 

Resources used: Lecture slides from Steven Skiena’s Computational Biology class and 
Daisuke Kihara’s Protein Bioinformatics class 



WHY COMPUTATIONAL BIOLOGY? 

´ Computational biology is particularly exciting today 
because: 
« the problems are large enough to motivate efficient algorithms, 
« the problems are accessible, fresh and interesting, 
« biology is increasing becoming a computational science 

´ Computational biology is increasing of interest in both life 
science and computational science departments. 

´ Source of complex questions and real-life data. 
« Many problem ideas go from biology to CS: e.g. fragment 

assembly, sequence analysis, algorithms for phylogenic trees. 
« Many problem ideas go from CS to biology: e.g. sequencing by 

hybridization, DNA computing. 
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COMPUTER SCIENTIST VS BIOLOGIST 

´ Similarity:  
« There are many different types of life scientists (biologists, 

ecologists, medical doctors, etc.), just as there are many different 
types of computational scientists (algorists, software engineers, 
statisticians, etc.). 

´ Many cultural differences 
« Nothing is ever completely true or false in biology, where 

everything is either true or false in computer science / 
mathematics. 

« Biologists are comfortable with the idea that all data has errors; 
computer scientists are not. 

« Biologists strive to understand the very complicated, very messy 
natural world; computer scientists seek to build their own clean 
and organized virtual worlds. 
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« Biologists are data driven; while computer scientists are algorithm driven. 
Although nowadays cs are becoming more data driven.  

« Biotechnology/drug companies are largely science driven, while the 
computer industry is more engineering/marketing driven. 

« The Platonic ideal of a biologist runs a big laboratories with many people. 
The Platonic ideal of a computer scientists is a hacker in garage. 

« Biologists are much more obsessed with being the first to 
discover something; computer scientists invent more than 
discover. 

« Biologists can get/spend infinitely more research money than 
computational scientists. 

« Biologists seek to publish in prestigious journals like Science and Nature. 
Computer scientists seek to publish in prestigious refereed conference 
proceedings. 
² One consequence is life science journals get refereed faster than 

computational science journals. 
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INFORMATION CONTENT IN BIOLOGY 
DNA 

RNA 

Proteins 

• DNA sequences can be thought of 
as strings of bases on a four-letter 
alphabet, {A,C,G,T}, called nucleic 
acids. 

• Binding: A=T; C-G 
• Stable structural form : double helix 

http://en.wikipedia.org/wiki/Nucleic_acids 

• RNA sequences can also be 
thought of as strings of bases on a 
four-letter alphabet, {A,C,G,U}. 

• Binding: A=U; C-G 
• Stable structural form:  

• Proteins sequence can be thought 
of as string of 21-letter alphabet 

• Binding: covalent bonding, van der 
Waals force, hydrophobicity, etc.  

• Stable structural form:  

A LQNHTFLHTVYCQDGSPSVGLSEA    … 
DIFSCIVTHEPDRYTAIAYWVPRNALPS  
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CENTRAL DOGMA OF BIOLOGY 

http://www.tokresource.org/tok_classes/biobiobio/biomenu/trans
cription_translation/transcription_2.jpg 

youtube: From RNA to Protein Synthesis [3min] 

Common Abbreviations 
• DNA: Deoxyribonucleic acid  
• RNA: Ribonucleic acid 
• mRNA: messenger RNA 
• tRNA: transfer RNA 
• rRNA: ribosomal RNA 
• siRNA: Small interfering RNA 
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http://youtu.be/NJxobgkPEAo


TRANSCRIPTION PROCESS 

http://biology12-
lum.wikispaces.com/file/view/transcription,nbk.jpg/177394793/transcription,nbk.jp
g 

RNA polymerase ‘unzips’ the DNA 
from initiation site. 

Elongation: create a RNA strand  by 
coping DNA strand 

Stops at termination site 

Posttranslational modification  
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TRANSLATION PROCESS 

http://content.answcdn.com/main/content/img/Britannic
aConcise/images/780.gif 

Codon: Three nucleic acid coding one of 20 
amino acid (alphabet of 20 size) + START & 
STOP CODEN 

Start codon: AUG ( also Methionine (Met, M)) 
Stop codon: UAA, UAG, UGA  

CCC: Proline 
         (Pro, P) 
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LECTURE 2: 
INFORMATION CONTENT IN BIOLOGY & DNA BINDING 

Instructor: Sael Lee 
CS549 Spring – Computational Biology 

CS 549 Spring - Computational Biology 
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Resources from: 
1) Lecture Notes of Natasha Devroye  devroye@ece.uic.edu http://www.ece.uic.edu/~devroye 
2) F. Fabris “Shannon Information Theory and Molecular Biology” JIM, vol.12, n.1, february 2009, pp. 41-87. 
3) T Cover & J Thomas “Elements of Information Theory 2nd ed.” 2006  

mailto:devroye@ece.uic.edu
http://www.ece.uic.edu/~devroye


THE MATHEMATICS THEORY OF COMMUNICATION  
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Claude E. Shannon 

“The fundamental problem of communication is that of 
reproducing at one point either exactly or approximately a 
message selected at another point.” 

C.E. Shannon, 1948 

Introduced a new field: 
Information Theory 



SHANNON’S FINDINGS 

´ Source Coding Problem: 
« Source = random variables 
« Ultimate data compression limit is the 

source’s entropy H  

´ Channel Coding Problem: 
« Channel = conditional distributions  
« Ultimate transmission rate is the channel 

capacity C 

´ Relationship between input and output 
« Mutual Information 

´ 5HOLDEOH�FRPPXQLFDWLRQ�SRVVLEOH�Ȼ�
H<C 
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GENERAL COMMUNICATION SYSTEM 
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• Information source: “produces a message or sequence of messages to be 
communicated to the receiving terminal” 

• Transmitter: “operates on the message in some way to produce a signal suitable for 
transmission over the channel” 

• Channel : “the medium used to transmit the signal from transmitter to receiver” 
• Receiver: “performs the inverse operation of that done by the transmitter 

reconstructing the message from the signal” 
• Destination: “person (or thing) for whom the message is intended” 



SHANNON’S ENTROPY  

´ Entropy is the measure of average uncertainty in the random 
variable 

´ Entropy is the average number of bits needed to describe the 
random variable 

´ Entropy is a lower bound on the average length of the shortest 
description of the random variable 

´ Entropy of a deterministic value is 0 

CS 549 Spring - Computational Biology 

8 

ܪ ܺ = െ෍݌ ݔ ݌)ଶ݃݋݈ ݔ )
௫

 

What is the entropy of a 
random variable X with 
distribution p(x)?  

Entropy measured in bits 



ENTROPY OF A NON-UNIFORM DISTRIBUTION 

´ Suppose X represents the outcome of a horse race with 8 
horses, which win with probabilities 
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´ 8 outcomes, 3 bits? But on average can represent with 2 bits. 

1
2 , 1

4 , 1
8 , 1

16 , 1
64 , 1

64 , 1
64 , 1

64  

ܪ ܺ = െ  12 ଶ݃݋݈
1
2  െ 1

4 ଶ݃݋݈
1
4  െ 1

8 ଶ݃݋݈
1
8  െ 1

16 ଶ݃݋݈
1

16  െ 4 1
64 ଶ݃݋݈

1
64  

            = 
ଵ
ଶ +  ଶସ + ଷ

଼ + ସ
ଵ଺ + 4 ଺

଺ସ = 2(bits)   

A   B   C   D   E   F   G   F  



MUTUAL INFORMATION BETWEEN 2 RANDOM VARIABLES: 

´ Mutual Information I(X;Y) is the 
reduction in the uncertainty 
about X due to knowledge of Y 

´ if X, Y are independent I(X;Y) = 0 
´ if X=Y then I(X;Y) = H(X) 
´ I(X;Y) is non-negative 

CS 549 Spring - Computational Biology 
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I ܺ;ܻ = െσ ݌ ݕ,ݔ ଶ݃݋݈ ௣(௫,௬)
௣ ௫ ௣(௬)௫  



THE DNA-TO-PROTEIN BIO-MOLECULAR CHANNEL 

´ Central Dogma of Molecular Biology states there is a 
flow of “biologic information” from DNA towards 
proteins:    

´ -> that the DNA carries information that, after 
transcription and translation, drives the synthesis of 
the proteins.  
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APPEALING METAPHOR 

the flow of information that starts from DNA and reaches the 
proteins, in the biological communication system outlined by the 
Central Dogma, is analogous to the flow of information that starts 
from the sender and reaches the receiver (at the other side of the 
channel) in the communication system.  
 

´ DNA: interpreted as a sequence based on a 4-letters alphabet,  
« a sequence of nucleotides - Adenine, Thymine, Cytosine and Guanine (A, 

T,C,G), 
´ Protein: interpreted as a 20-letters alphabet sequence.  

« a sequence based on 20 amino acids (Metionine, Serine, Threonine 
etc.), 
 

This approach seems to offer the opportunity of using Information 
Theory as a tool to build a model of biological information 
transmission and correction. 

CS 549 Spring - Computational Biology 

15 



GENERIC COMMUNICATION BLOCK DIAGRAM 
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THE DNA-TO-PROTEIN BIO-MOLECULAR CHANNEL 

CS 549 Spring - Computational Biology 
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Shannon 
unidirectional 
communication 
system 

DNA-to-protein 
communicatio
n system 



APPEALING BUT HAS LIMITS 

´ Biology is much complex compared to 
general communication system.  
« Systematically complex: Feedback loops, 

granularity, multiple players 
« Model incomplete: Many biological relations yet 

to be learned  
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DNA / RNA / PROTEINS; GENE 

“A gene is a molecular unit of heredity of a 
living organism. It is widely accepted by the 
scientific community as a name given to 
some stretches of DNA and RNA that code 
for a polypeptide (protein) or for 
an RNA chain that has a function in the 
organism.”  
[http://en.wikipedia.org/wiki/Gene]  
 
* The concept of genes preceded the 
knowledge of DNA. So, there is some 
controversies in linking genes to DNA.   
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Single “word” in genome 

Individual 
information 

content 
analysis 

Systematic 
interplay of 

bio-contents 
(Model the 
channel)  

V.S. 

http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Polypeptide
http://en.wikipedia.org/wiki/RNA


ANATOMY OF THE (EUKARYOTIC) GENE 
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• Promoters  are the sites where RNA polymerase binds to the DNA to initiate 
transcription. 

• Enhancer is a DNA sequence that can activate the utilization of a promoter, 
controlling the efficiency and rate of transcription from that particular promoter. 
Located geometrically close to the promoter and gene but may not be close in 
sequence.  

• Exons—are intervening sequences 
• Introns—that have nothing whatsoever to do with the amino acid sequence of the 

protein. 

* Father Reading:  Differential Gene Transcription http://www.ncbi.nlm.nih.gov/books/NBK10023/ 

Promoters Exons  Introns 
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DNA-BINDING PROTEIN 

Proteins that are composed of DNA-
binding domains and thus have a 
specific or general affinity for either 
single or double stranded DNA.  

´ Types of Binding 
« Sequence-specific DNA-binding 

² generally interact with the major 
groove of DNA 

« Non-specific DNA-protein 
interactions 

« DNA-binding proteins that 
specifically bind single-stranded 
DNA 
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http://en.wikipedia.org/wiki/DNA-binding_protein 



SEQUENCE LOGO 

´ Sequence logo is a graphical representation of the 
sequence conservation of nucleotides (in a strand of 
DNA/RNA) or amino acids (in protein sequences) 
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Schneider & 
Stephens 
Nucl. Acids Res. 
18: 6097-6100 
1990 

 

Sequence 
Alignment 



LECTURE 3 & 4 
INTRODUCTION TO INFORMATION THEORY  

Instructor: Sael Lee 
CS549 Spring – Computational Biology 



BASIC PROBABILITY RULES 
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Marginalization 

݌ ݕ =  σ ݌ ௫ݕ,ݔ = σ ݌ ݕ ݔ ௫(ݔ)݌   

݌ ݕ = ׬  ݌ ௫ݕ,ݔ = ׬ ݌ ݕ ݔ ௫ (ݔ)݌   

݌ ݔ ݕ =
݌ ݕ ݔ (ݔ)݌

(ݕ)݌
 

Bayes’ Rule 

Product Rule 

௑,௒݌ ݕ,ݔ = ௒|௑݌ ݔ|ݕ ௑݌ ݔ  
௑|௒݌=                    ݕ|ݔ ௒݌ ݕ  

Convention 
 
• 0 log 0 = 0    
• a log

௔
଴ = λ  , if ܽ > 0 

• 0 log
଴
଴ = 0     

 



INDEPENDENCE REVIEWED 
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The events X = x and Y = y are statistically independent if 

The random variables X and Y defined over the alphabets ߯ and ߰ , resp. are 
statistically independent if  
  

p(x, y) = p(x)p(y). 

௑,௒݌ ݕ,ݔ = ௑݌ ݔ ׊ for ,(ݕ)௒݌ ,ݔ ݕ א ߯ × ߰  

The variables ଵܺ,ܺଶ, … ,ܺே are called independent if for all (ݔଵ, ,ଶݔ … , ( ேݔ א 
ɖଵ × ɖ௫ × ×ڮ  ɖே 

݌ ,ଵݔ ,ଶݔ … , ேݔ = ෑ݌௑೔(ݔ௜)
ே

௜ୀଵ
 

They are furthermore called identically distributed if all variables ௜ܺ have the 
same distribution ݌௑(ݔ). 



EXPECTED VALUE 
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1 Discrete random variable, finite case, taking ݔଵ, ,ଶݔ … , ,ଶ݌,ଵ݌ .ே with probݔ … ,   ே݌

ܧ ܺ =
ଵ݌ଵݔ + ଶ݌ଶݔ + +ڮ ே݌௞ݔ

ଵ݌ + ଶ݌ + +ڮ ே݌
 

2 Discrete random variable X, countable case, taking ݔଵ, ,ଶݔ … with prob. ݌ଵ, ,ଶ݌ …    

ܧ ܺ = ෍ݔ௜݌௜
ஶ

௜ୀଵ
 

Sum to 1 if probability 

3 Univariate continuous random variable:  

ܧ ܺ = න ݂ݔ ݔ  dݔ 
ஶ

ିஶ
 

General definition:  UDQGRP�YDULDEOH�GHILQHG�RQ�D�SUREDELOLW\�VSDFH��Ƙ��ƒ��3���WKHQ�WKH�
expected value of X, denoted by E[X], ۃXۄ, Xഥ or E[X], is defined as the Lebesgue integral 

ܧ ܺ = න ܺ ݀ܲ 
ஐ

= න ܺ(߱) ܲ(d߱) 
ஐ

 



ENTROPY 
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8 

Definition:  
The entropy H(X) of a discrete random variable X with pmf ݌௑(ݔ) is given by  

ܪ ܺ = െ෍݌௑ ݔ log݌௑ ݔ
௫

= െܧ௣೉ ௫ [log݌௑ ܺ ] 

Meaning:  
• Measure of the uncertainty of the r.v. 
• Measure of the amount of information required on the average to describe the r.v. 

The entropy H(X) of a continuous random variable X with pdf ௑݂(ݔ) in support set S 
is given by  

݄ ܺ = െන ௑݂ ݔ log ௑݂ ݔ
ௌ

= െܧ௙೉ ௫ [log ௑݂ ܺ ] 

Denote H(X) and  H(p) 
as same when X is 
binary rv 
Use log base 2  



JOINT ENTROPY 
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Definition: 
The joint entropy H(X,Y) on a pair of discrete r.v. (X,Y) with a joint distribution p(x,y) is 
defined as  

ܪ ܺ,ܻ = െ෍෍݌ ,ݔ ݕ log݌ ݕ,ݔ
௬௫

 

= െܧ௣ ௫,௬ logݔ)݌,  (ݕ
 CONDITIONAL ENTROPY 
Definition: 
The conditional entropy H(Y|X) on a pair of discrete r.v. (X,Y) with a joint distribution 
p(x,y) is defined as  

ܪ ܻ|ܺ = െ෍݌ ݔ ܪ ܻ ܺ = ݔ
௫

 

= ෍(ݔ)݌
௫

෍݌ ݔ|ݕ log݌ ݔ|ݕ
௬

 

= െ෍෍݌ ݕ,ݔ log݌ ݔ|ݕ
௬௫

 

= െܧ௣ ௫,௬ log(ݔ|ݕ)݌ 
 



CHAIN RULE 
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Theory (Chain Rule) 
ܪ ܺ,ܻ = ܪ ܺ + ܪ ܻ ܺ  

    = ܪ ܻ + ܪ ܺ ܻ  

Corollary 
ܪ ܺ,ܻ|ܼ = ܪ ܺ|ܼ +  (ܼ,ܺ|ܻ)ܪ

 

Remark 
ܪ ܻ ܺ ് ܪ ܺ ܻ  

ܪ ܻ െ ܪ ܻ ܺ = ܪ ܺ െ ܪ ܺ ܻ  
 

proof 



RELATIVE ENTROPY 
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Meaning:  
• Distance between two distributions 
• A measure of the inefficiency of 

assuming that the distribution is q 
when the true distribution is p 

Definition: 
The relative entropy  ( Kullbuck-Leibler distance, K-L divergence) between two 
probability mass function p(x) and q(x) is defined as  

|݌)ܦ ݍ =  ෍݌ ݔ log
݌ ݔ
ݍ ఞא௫ݔ

= ௣ܧ log
݌ ܺ
ݍ ܺ  

Properties:  
• Is non-negative 
• |݌)ܦ ݍ = 0  if and only if p=q 
• Is asymmetric ׷ |݌)ܦ  ݍ ് |ݍ)ܦ ݌  
• Does not satisfy triangle inequality  

Definition: 
The conditional relative entropy between two probability mass function p(x,y) and 
q(x,y) is defined as  

|(ݔ|ݕ)݌)ܦ (ݔ|ݕ)ݍ =  ෍݌ ݔ|ݕ log
݌ ݔ|ݕ
ݍ ఞא௫ݔ|ݕ

= ௣(௫,௬)ܧ log
݌ ܻ|ܺ
ݍ ܻ|ܺ  



MUTUAL INFORMATION 
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Definition: 
Mutual information I(X;Y) is the relative entropy between the joint distribution p(x,y) 
and the product distribution p(x)p(y) 

ܫ ܺ;ܻ = ,ݔ)݌)ܦ |(ݕ ݌ ݔ ݌ ݕ  

= ෍ ෍ ݌ ,ݔ ݕ log
݌ ݕ,ݔ
݌ ݔ ݌ ௬௫ݕ

 

= ௣ܧ ௫,௬ log
݌ ܺ,ܻ
݌ ܺ ݌ ܻ  

Definition: 
Conditional mutual information I(X;Y|Z) is the reduction in the uncertainty of X due 
to knowledge of Y when Z is given 

ܫ ܺ;ܻ|ܼ = |(ݖ|ݕ,ݔ)݌)ܦ ݌ ݖ|ݔ ݌ ݖ|ݕ  

= ෍ ෍ ݌ ,ݔ ݖ|ݕ log
݌ ݖ|ݕ,ݔ

݌ ݖ|ݔ ݌ ௬௫ݖ|ݕ
 

= ௣ܧ ௫,௬,௭ log
݌ ܺ,ܻ|ܼ

݌ ܺ|ܼ ݌ ܻ|ܼ  

= H X Z െ H(X|Y, Z) 



RELATIONSHIP BETWEEN ENTROPY AND MUTUAL 
INFORMATION 
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 (ܻ,ܺ)ܪ

 (ܺ|ܻ)ܪ (ܻ,ܺ)I (ܻ|ܺ)ܪ

 (ܺ)ܪ (ܻ)ܪ

Properties: 
 
• I(X;Y) is the reduction of uncertainty of X 

due to the knowledge of Y (or vise versa) 
ܫ ܺ;ܻ = ܪ ܺ െ ܪ ܺ ܻ  
ܫ ܺ;ܻ = ܪ ܻ െ ܪ ܻ ܺ  

 
• Is symmetric: X says about Y as much 

and Y says about X 
 

• ܫ ܺ;ܻ = ܪ ܻ + (ܺ)ܪ െܪ(ܺ,ܻ)  
      since ܪ ܺ,ܻ = ܪ ܺ +             (ܺ|ܻ)ܪ
 by chain rule 

 
• ܫ ܺ;ܺ = ܪ ܺ  also called self 

information  
 
 

proof 



LECTURE 4: 
DNA BINDING AND INFORMATION THEORY  

Instructor: Sael Lee 
CS549 Spring – Computational Biology 

1 



A BRIEF REVIEW OF MOLECULAR INFORMATION THEORY.  
SCHNEIDER, T. D. , (2010). NANO COMMUNICATION NETWORKS1(3), 173–180.  
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MOLECULAR INFORMATION THEORY 

´ Molecular information theory: Using information theory to 
measure states and patterns of molecules.  

´ Problem we focus on: Interaction between DNA and Protein  

Transcription process:  
RNA Polymerase (protein) binding to DNA 

PROBLEM: 
Analysis of interaction between DNA and 
proteins that control the expression DNA 

PROPERTIES: 
• Protein is a finite molecule 
• Interaction content of proteins cover 10-20 

base pairs (bp) in DNA  

Interaction site: 10~20 bp 

CS 549 - Computational Biology 
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SEQUENCE LOGO – REVIEWED  

´ Sequence logo is a graphical representation of the sequence conservation of 
nucleotides (in a strand of DNA/RNA) or amino acids (in protein sequences) 

´ They can show how much pattern is in a set of binding sits.  
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Schneider & Stephens 
(1990)  NAR. 18: 6097-6100 

 

EX> Fis site 

Fig. 6. Major determinants in Fis–DNA 
binding. [ Shao et al. (2008) JMB 380:2, 327-339.] 



CHARACTERIZING BINDING SITES 

´ Before binding, protein is uncertain as to what base it 
will see and that uncertainty can be measured as  
logଶ(4) 
« Before we know the binding event can occur, all four bases 

(A,T,C,G) can be seen in a DNA locus.  

´ After binding, uncertainty of what it is touching in 
different cases is lower.  
« If only one type of bases occur:   

logଶ 1 = 0  
« If other bases occur as well: (Conditional Entropy) 

ܪ ݈ > 0 

Binding event X Y ܪ ݈  logଶ(4) 

CS 549 - Computational Biology 
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logଶ(4) : Uncertainty ‘observed’ by the DNA binding protein before binding to a  site. 
 -> * maximum uncertainty possible:  logଶ |߯|  
 .Uncertainty ‘observed’ by the DNA binding protein after binding to a site : (݈)ܪ

ܪ ݈ = െ෍ ௕݂,௟ ଶ݃݋݈ ௕݂,௟௕א{஺,்,ீ,஼}
 

where ௕݂,௟  are the frequency of base b at a position l.  

The information content (y-axis) of position l: 

ܴ௦௘௤௨௘௡௖௘(݈) = logଶ(4)  െ (݈)ܪ) + ݁௡) 

Four letter: A,T,C,G small-sample correction  Entropy 

I ܺ;ܻ = ܪ ܺ െ   (ܻ|ܺ)ܪ

Height in 
sequence 
logo 

(bits per base) 

(bits per base) 
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Assuming independence between sites, total information in a binding site. 

ܴ௦௘௤௨௘௡௖௘ = ෍ ܴ௦௘௤௨௘௡௖௘(݈)
௟

 



INFORMATION REQUIRED TO FIND A SET OF BINDING SITES 

G = # of potential binding sites 
    = genome size in some cases 
 number of binding sites on genome = ߛ

௙ܴ௥௘௤௨௘௡௖௬       = ௕௘௙௢௥௘ ௕௜௡ௗ௜௡௚ܪ  െ  ௔௙௧௘௥ ௕௜௡ௗ௜௡௚ܪ
= logଶ ܩ െ logଶ  ߛ

= െlogଶ ఊீ  

Uncertainty before being 
bound to one of the sites 

Uncertainty after being 
bound to one of the sites 

Information required to find 
binding sites  

(bit per site) 

CS 549 - Computational Biology 
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INFORMATION REQUIRED 
TO FIND A SET OF BINDING SITES 
IN A GENOME 

CS 549 - Computational Biology 
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LECTURE 6: 
FINDING NUCLEOSOME POSITIONS 

Instructor: Sael Lee 
CS549 Spring – Computational Biology 

Reference:  
C. Jiang and B. F. Pugh. Nucleosome positioning and gene regulation: advances through genomics. 
Nature Reviews Genetics 10 161-172 (2009) 



WHY NUCLEOSOMES POSITION?  

´ Knowing the precise locations of nucleosomes in a 
genome is key to understanding how genes are 
regulated. 

´ Nucleosome positions can tell us about  
« How nucleosome positioning distinguish promoter regions 

and transcriptional start sites, and  
« How the composition and structure of promoter 

nucleosomes facilitate or inhibit transcription. 
« How diverse factors, including underlying DNA sequences 

and chromatin remodeling complexes, influence 
nucleosome positioning 

CSE 549 - Computational Biology 

3 



CHROMATIN STRUCTURES 

CSE 549 - Computational Biology 
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The packaging of DNA creates both a problem 
and an opportunity:  
 

• Wrapping DNA around histones may be a 
obstacle in accessing the genetic code;  

• Can be exploited so that enzymes that read, 
replicate and repair DNA can be directed to 
the appropriate entry sites 



NUCLEOSOME STRUCTURE 

CSE 549 - Computational Biology 
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The nucleosome is the 
basic unit of eukaryotic 
chromatin, consisting 
of a histone core 
around DNA.  
 
Each histone core is 
composed of two 
copies of each of the 
histone proteins H2A, 
H2B, H3 and H4. 
Approximately 147 bp 
of DNA coils 1.65 
times around the 
histone octamer in 
a left-handed toroid.  



GENOMEWIDE NUCLEOSOME MAPS  
 

CSE 549 - Computational Biology 

9 

At most loci, there is an approximately 
Gaussian (normal) distribution of 
nucleosome positions around particular 
genomic coordinates,  
ranging from ~30 bp for highly phased 
nucleosomes to a random continuous 
distribution throughout an array. 

*Phasing  
The distribution of nucleosomes around a particular 
coordinate in a population of cells. 

Allow us to explore the genomic properties of chromatin 

Cause of variation:  
• Genuine positional heterogeneity  
• how much is an artifact that is caused by 

overtrimming or undertrimming of the 
DNA at nucleosome borders by experiment 
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MIXTURE MODELS: INTRODUCTION 



THE DENSITY ESTIMATION PROBLEM  
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Density Estimation Problem: (loose definition) 
 
Given a set of N points in D dimensions, xଵ, … , xே א ܴ஽ , and a family ܨ of 
probability density function on ܴ஽, find the probability density functions (pdf) on 
ܴ஽, find pdf ݂ x א   .that is most likely to have generated the given points ܨ

Defining ܨ : give each of it’s members the same mathematical form, and to 
distinguish different members by different values of a set of parameters ߠ. 
 
EX> Mixture of PDFs 

;ܠ)݂ (ߠ =  ෍ߨ௞݃(ܠ; (௞ߠ
௄

௞ୀଵ
 

න݃ ;ܠ ௞ߠ ܠ݀ = 1 න݂ ;ܠ ߠ  ܠ݀ = 1  ෍ߨ௞ 
௄

௞ୀଵ
= ௞ߨ   ;1 > 0 

Mixing probability PDF Mixture of PDFs 



MIXTURE MODEL AND CLUSTERING 
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Example: Gaussian Mixture Models. 
 

෍ߨ௞ܰ(࢑ࢳ,࢑ࣆ|ܠ)
௄

௞ୀଵ
 

ܰ ܠ ࢑ࢳ,࢑ࣆ = 1
ଶߪߨ2

஽
ଶ

1
࢑ࢳ

ଵ
ଶ

 exp (െ 1
2 ݔ െ ߤ ૚ିࢳ் ݔ െ ߤ ) 

  
 

Each cluster is assigned a Gaussian, 
with mean being the center of cluster 
and standard deviation being the 
spread of data for the cluster.  
   



GAUSSIAN MIXTURE MODEL AND NUCLEOSOME POSITION  
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Standard deviation: 
• Characterize 

nucleosome stability 
• Determine phased or 

fuzzy. 

Mean: 
• Determine nucleosome center position 
• Determine spread of nucleosome  



K-MEANS CLUSTERING: DISTORTION MEASURE 

´ Dataset {x1, . . . , xN} 

´ Partition in K clusters 

´ Cluster prototype: ƫk 

´ Binary indicator variable, 1-of-K Coding scheme 

 

 

´ Hard assignment. 

´ Distortion measure:  a measure of how much data 

point deviate from the center of their clusters  
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Only one is 1 and all other 0 



K-MEANS CLUSTERING: EXPECTATION MAXIMIZATION 

´ Goal: Find values for {ݎ௡௞} and {ƫ௞} to minimize: 

 

 

´ Iterative procedure: 
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Calculate the center 

Calculate the membership 



K-MEANS CLUSTERING: EXAMPLE 

´ Each E or M step reduces the value of the objective function J 

´ Convergence to a local maximum 
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MIXTURE OF GAUSSIANS: LATENT VARIABLES 

´ Gaussian Mixture Distribution: 

 

 

 

´ Introduce latent variable z 

« z is binary 1-of-K coding variable 

« p(x, z) = p(z)p(x|z) 
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GOAL 
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We want to identify which data came from which source. 

“Evaluate the posterior distribution p(Z|X) of the latent variables Z (which source) 

given the observed (visible) data variables X, and the evaluation of expectations 

computed with respect to this distribution.” 

In probabilistic modeling words  

Strategy for parametric models  

Estimate p(Z|X) by estimating it’s parameter ߠ  

Condition we work on: The data are independently generated by 

sources of data (distribution functions) and there are no (or ignorable) 

dependency between the sources. 

Estimating it’s parameter ߠ by evaluating the (ࣂ|ܠ)ܘ ܌ܗܗܐܑܔ܍ܓܑܔ ܏ܗܔ 

Mixture models 

A method the solve log likelihood function is using Expectation Maximization 



MIXTURE OF GAUSSIANS: LATENT VARIABLES (2) 

The use of the joint probability p(x, z), leads to significant 

simplifications 

´ Prior probability of components 

 

 

 

´ Gaussian function of each K mixing components 

 

 

´ Redistribution of Gaussian mixture model 

´   
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MIXTURE OF GAUSSIANS: LATENT VARIABLES (3) 

´ Responsibility that component k takes for “explaining” 

observation x:  

« the posterior probability once we observed X.  
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MIXTURE OF GAUSSIANS: MAXIMUM LIKELIHOOD 

´ Log Likelihood function of observations 
X = {xଵ, … , xே} 

 

 

 

´ Problems with Log Likelihood 

« Singularity when a mixture component 
collapses on a data point 

« Identifiability for a ML solution in a K-
component mixture there are K! equivalent 
solutions.  

« * We assume we can use heuristics to 
overcome these problems.  

CSE 549 - Computational Biology  

12 



MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES 

´ Informal introduction of expectation-maximization 

algorithm (Dempster et al., 1977). 

´ Maximum of log likelihood: 

« Derivatives of lnߨ|ܺ)݌, ,ߤ ȭ) w.r.t parameters to 0. 
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MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES 
SUMMARY 
1. Initialize {ߤ௞ ,ȭ௞  ௞}  and evaluate log-likeihoodߨ,

2. E-Step: Evaluate responsibilities ɀ(ݖ௞) 

3. M-Step: Re-estimate paramters ߠ, using current 

responsibilities ɀ ௞ݖ  

 

 

 

 

 

4. Evaluate log-likelihood lnߨ|ܺ)݌, ,ߤ ȭ) and check for 

convergence of either the parameters or the log likelihood. 

 If convergence criterion is not satisfied return to step 2. 
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RELATION TO K-MEANS 

´ K-means algorithm with the EM algorithm for 

Gaussian mixtures shows that there is a close 

similarity 

« K-means algorithm performs a hard assignment of data 

points to clusters, in which each data point is associated 

uniquely with one cluster, 

« the EM algorithm makes a soft assignment based on the 

posterior probabilities. 
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MIXTURE OF GAUSSIANS: 
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• Log Likelihood function  

• Gaussian Mixture Distribution 

• Posterior probability of ݖ௞ (responsibility) once we 

observed a point x 

݌ ܠ =  ෍ߨ௞ܰ ܠ ௞ࣆ ,઱௞
௄

௞ୀଵ
 

Where ݌ ௞ݖ = 1 = ௞ݖ ௞ : prior prob. ofߨ  = 1 

ܰ ܠ ௞ࣆ ,઱௞ =
1

ߨ2
஽
ଶ

1

઱
ଵ
ଶ

 exp{െ 1

2
ܠ െ ࣆ ்઱ିଵ ܠ െ ࣆ }  

• N number of D dimension  
data X 
ࢄ = ,૚ܠ … , ࡺܠ ܠ, = xଵ, … , ஽ݔ  

 

• N number of K dim. class  
variable Z  
ࢆ = ,૚ࢠ} … , ࢠ ,{ࡺࢠ = ,ଵݖ … , ௄ݖ  

 

݌ ,ܠ ܢ = ݌ ࢠ  (ܢ|ܠ)݌

Mixture of Gaussians Model 

ߛ ௞ݖ ؠ ݌ ௞ݖ = ܠ|1 =
௞ܰߨ ܠ ௞ࣆ ,઱௞

σ ௝ܰߨ ܠ ௝ࣆ ,઱௝௄
௝ୀଵ

 

Where ࣆ} = ࢑ߠ௞ ,઱௞, ߨ௞} and ી={ߠ૚, …  {௄ߠ,

ln݌ ܆ ઱,ࣆ,ߨ = ෍ ln {෍ߨ௞ܰ ܠ ௞ࣆ ,઱௞
௄

௞ୀଵ
}

ே

௡ୀଵ
 



MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES 
SUMMARY 
1. Initialize {ߤ௞ ,ȭ௞  ௞}  and evaluate log-likeihoodߨ,

2. E-Step: Evaluate responsibilities ɀ ௞ݖ  

 

 

3. M-Step: Re-estimate parameters ࣂ, using current responsibilities ɀ ௞ݖ  

 

 

 

 

 

 

 

4. Evaluate log-likelihood ln(ࢳ,ࣆ,ߨ|ࢄ)݌ and check for convergence of either 

the parameters or the log likelihood. 

 If convergence criterion is not satisfied return to step 2. 
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Maximize log-likelihood 

ln ݌ ܆ ઱,ࣆ,ߨ

= ෍ ln {෍ߨ௞ܰ ܠ ௞ࣆ ,઱௞
௄

௞ୀଵ
}

ே

௡ୀଵ
 

ߛ ௞ݖ ؠ ݌ ௞ݖ = ܠ|1 =
௞ܰߨ ܠ ௞ࣆ , ઱௞

σ ௝ܰߨ ܠ ௝ࣆ ,઱௝௄
௝ୀଵ

 



AN ALTERNATIVE VIEW OF EM: LATENT VARIABLES 

´ Let X observed data, Z latent variables,  parameters. 

´ Goal: maximize marginal log-likelihood of observed data  
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ln݌ ࢄ ࣂ = ln{෍݌ ી ܈,܆
܈

} 
Summation over the 

latent variables appears 

inside the logarithm 

Log-sum prevents the logarithm from acting directly on the joint distribution, 

resulting on complicated expressions for the maximum log likelihood solution.  



AN ALTERNATIVE VIEW OF EM: GENERAL EM ALGORITHM 

Given a joint distribution p(܈,܆ |ી) over observed variables X and latent 

variables Z, governed by parameters Ƨ, the goal is to maximize the 

likelihood function p(܆|ી) with respect to Ƨ. 
 

1. Initialization: Choose initial set of parameters ી௢௟ௗ 

2. E-step: use current parameters ી௢௟ௗ  to compute. 

 

3. M-step: determine ߠ௡௘௪ by maximizing ܳ(ߠ,ߠ௢௟ௗ) 

 

 

 

 

4. Check convergence either the log likelihood or the parameter 

values : stop, or ી௢௟ௗ ึ  ી௡௘௪ and go to step 2. 
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 (܌ܔܗી,܆| ܈)݌

ીܟ܍ܖ = argી max ܳ (ી, ી୭୪ୢ). 

Where 

Q(ી, ી୭୪ୢ) =  σ (܌ܔܗી,܆| ܈)݌ ln݌(܈,܆ |ી)ࢠ  

 

Logarithm acts directly on the 

joint distribution ݌ ી ܈,܆  so 

maximization is  tractable  

ln݌ ࢄ ࣂ = ln{෍݌ ી ܈,܆
܈

} 



AN ALTERNATIVE VIEW OF EM:  
GENERAL EM ALGORITHM FOR GAUSSIAN MIXTURE MODEL 
Given a joint distribution p(ࣆ,࣊| ܈,܆,઱) over observed variables X and 

latent variables Z, governed by parameters {ࣆ,࣊,઱}, the goal is to 

maximize the likelihood function p(ࣆ,࣊|܆,઱) with respect to {ࣆ,࣊,઱}. 

1. Initialization: Choose initial set of parameters {࣊௢௟ௗ ௢௟ௗࣆ, ,઱୭୪ୢ} 

2. E-step: use current parameters ࣊௢௟ௗ ௢௟ௗࣆ, ,઱୭୪ୢ  to compute. 

 

 

3. M-step: determine ߠ௡௘௪ by maximizing ܳ(ߠ,ߠ௢௟ௗ) 

 

 

 

 

4. Check convergence either the log likelihood or the parameter 

values : stop, or ી௢௟ௗ ึ  ી௡௘௪ and go to step 2. 
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{௞௡௘௪,઱௞௡௘௪ࣆ,௞௡௘௪࣊} = arg{࣊ೖ,ࣆೖ,઱ೖ} max E୞[ ln ݌ ܈,܆ ܓ઱,࢑ࣆ,࢑࣊ ]. 
 

= arg{࣊ೖ,ࣆೖ,઱ೖ} max ෍ߛ ௡௞ݖ {lnߨ௞ + lnܰ ࢔ܠ ௞ࣆ ,઱௞ }

ே

௡ୀଵ
 

௭ܧ ௡௞ݖ = ߛ ௡௞ݖ ؠ ௞ܰߨ ܠ ௞ࣆ ,઱௞
σ ௝ܰߨ ܠ ௝ࣆ ,઱௝௄
௝ୀଵ

 

Closed form solution 

 (܌ܔܗી,܆| ܈)݌

ીܟ܍ܖ = argી max σ (܌ܔܗી,܆| ܈)݌ ln݌(܈,܆ |ી)ࢠ . 



LECTURE 11: 
BIOMARKER DISCOVERY  

Instructor: Sael Lee 

CS549 Spring – Computational Biology 

Resources: Steven Skiena’s CSE 549 lecture 15-18 slides 



WHAT IS A BIOMARKER?  

´ Biomarker, or biological marker, is any type of 
indicator of biological state.   
« “cellular, biochemical or molecular alterations that are 

measurable in biological media such as human tissues, 
cells, or fluids.”  - [B S Hulka (1990) New York: Oxford University Press] 

´ It objectively measures the states of biology in 
medicine, cell biology, geology, ecotoxicology, etc.  

´ The most popular uses are in medicine to measure 
states in:  
« Normal biological process 

« Pathogenic process 

« Pharmacological responds to therapeutics  
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http://www.news-medical.net/health/Biomarker-What-is-a-Biomarker.aspx 

Presenter
A biomarker, or biological marker, is an indicator of a biological state. It is a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. It is used in many scientific fields. (wiki)

http://www.news-medical.net/health/Biomarker-What-is-a-Biomarker.aspx


CAPABILITIES OF BIOMARKERS [TABLE 1 OF MAYEUX, R. 2004] 

´ Delineation of events between exposure and disease 

´ Establishment of dose-response 

´ Identification of early events in the natural history 

´ Identification of mechanisms by which exposure and 
disease are related 

´ Reduction in misclassification of exposures or risk 
factors and disease 

´ Establishment of variability and effect modification 

´ Enhanced individual and group risk assessments 

4/29/2013 CSE 549 - Computational Biology 

5 

Mayeux, R. (2004). Biomarkers: potential uses and limitations. NeuroRx᩿: the journal of the American Society for Experimental 
NeuroTherapeutics, 1(2), 182–8.  



TYPES OF BIOMARKERS  
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Diseases 

Biomarkers 

Exposure  

1. Screening,  
2. Diagnostic tests, and  
3. Prognosis predictions 

 

Screening/ classifying  /  
diagnosis / monitoring 

disease progress 1. Environmental exposures, 
effect modifies or risk factors. 

2. Genetic susceptibility 
3. Intermediate biomarkers  

Risk prediction 



POSSIBLE SHORT COMES OF BIOMARKERS  
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Validity 

Short Comes of Biomarkers 

Variability 

1. Content validity 
• degree to which a biomarker reflects 

the study 

2. Construct validity 
• relevant characteristics of the 

disease or trait 

3. Criterion validity 
1. sensitivity,  
2. specificity, and  
3. predictive power 

 

1. Difference in amount of an 
external exposure 
 

2. Difference in the way a 
putative toxin is metabolized 
 

3. Personal difference / Group 
difference / measurement 
error 

  

Presenter
1) content validity, which shows the degree to which a biomarker reflects the biological phenomenon studied, 
2) construct validity, which pertains to other relevant characteristics of the disease or trait, for example other biomarkers or disease manifestations, and 
3) criterion validity, which shows the extent to which the biomarker correlates with the specific disease and is usually measured by sensitivity, specificity, and predictive power





DATA USED FOR BIOMARKER DISCOVERY 
´ Bio-specimens used:  

« Blood, brain, cerebrospinal fluid, spinal fluid, muscle, nerve, skin, and 
other body fluids  

« In both the healthy and diseased state 
 

´ DNA, RNA, or protein  
« EX> Microarray chips, Genome sequences,  

´ Cytogenetic markers 
« ex> chromosome structure 

´ Tissue markers  
« Microscope level visible differences  

´ Behavior markers 
´ Measure toxicants in body fluids & tissues 
´ Death of marker animals 

« Ex> environmental conditions.   
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FOCUSING ON GENE EXPRESSION 

´ Certain technologies have been developed where 
different compounds are anchored to tiny beads, so 
reacting beads can be labeled, isolated, and identified.  

´ But the best solution is to attach distinct compounds 
to different regions of a solid substrate so you know 
where they are. 
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WHAT DOES MICROARRAY MEASURE 

´ Analysis of post translational modifications in genes  
« ex.> methylation states.  

´ Sequencing variants of a known genome 
« detecting single nucleotide polymorphisms (SNPs)  

´ Identifying a specific strain of virus  
« (e.g. the Affymetrix HIV-1 array). 

´ Measuring differential expression of all genes in tumor and 
normal cells,  
« to determine which genes may cause/cure cancer 
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´ Identify which treatment a specific tumor should respond best 
to. 
« Paired treatment  

´ Measuring differential expression of all genes in different 
tissue types,  
« to determine what makes one cell type different than another. 

´ Measuring differential expression of all genes in different time  
« Circadian rhythm  

´ Measuring copy number variants from chromosomal anomalies 
or cancer. 

´ Obtaining individual’s genotype / SNP data, e.g. 23andMe 
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DNA MICROARRAY 
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DNA Microarray YouTube 2.  

cDNA microarray YouTube 1. – Gabriel Mckinsey  

http://www.3d-gene.com/en/about/abo_001.html 

´ Single stranded DNA/RNA molecules are anchored by one end 
to the plate/substrate.  
« These molecules will seek to hybridize with complementary strands 

floating in solution. 

´ The target molecules are fluorescently labeled,  
« so that the spots on the chip/array where hybridization occurs can be 

identified.  

´ The strength of the detected signal somewhat reflects the 
amount of stuff which binds to it,  
« and thus the amount of the target in solution.  

´ Such quantitative expression data is not very reliable, however. 

http://youtu.be/9U-9mlOzoZ8
http://youtu.be/9U-9mlOzoZ8
http://youtu.be/VNsThMNjKhM
http://www.3d-gene.com/en/about/abo_001.html
http://www.3d-gene.com/en/about/abo_001.html
http://www.3d-gene.com/en/about/abo_001.html


COMPLEXITY IN ANALYSIS OF MICROARRAY DATA 

´ Underlying biological processes being investigated are 
often not understood and are almost certainly 
complex  

´ Measures the steady-state level of an unstable 
molecule , mRNA 
« Depends on the rate of transcription and degradation of the 

mRNA.  
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CLASSIFICATION AND CLUSTERING PROBLEM 

´ Finding Biomarkers using microarray data becomes 
feature selection (gene selection) problem in 
classification (supervised learning)  and clustering 
(unsupervised learning) 
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FEATURE SELECTION AND BIOMARKER DISCOVERY  

´ Feature selection challenge specific to microarray 
data:  
« Large feature (gene) and small number of data (samples) 

« Reproducibility is low  
² need stable feature selection method.  

 

´ Cause of instability  
« Algorithm design without considering stability 

« The existence of multiple sets of true markers 

« Small number of samples in high dimensional data 

4/29/2013 CSE 549 - Computational Biology 

19 



FEATURE SELECTION 

´ Selected features can be singular or form groups.  
« Singular: early onset genetic diseases  

« Group feature: complex diseases  
² cancer, diabetes, etc   

 

 

´ Incorporation of prior-knowledge in to feature 
selection.  
« Best to incorporate all we know esp. since variable 

samples are always small  
² Interaction between genes  
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LECTURE 12-13: 
FEATURE SELECTION 

Instructor: Sael Lee 
CS549 Spring – Computational Biology 

Ref.  
1. C. M. Bishop “Pattern Recognition and Machine Learning” 2nd ed. & provided sides 
 



TYPES OF FEATURE SELECTION METHOD  
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Filtering Methods Wrapper Methods Embedded Method 

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 
2507–17.  

relevance of features is 
evaluated by looking 
only at the intrinsic 
properties of the data 
 
* Often feature relevance 
score is used to evaluate 
each feature  (gene)  

model hypothesis 
search is embed within 
the feature subset 
search 
 
-> various subsets of 
features are  generated 
and evaluated 

optimal feature subset 
search is built into the 
classifier construction 
 
-> a search in the 
combined space of feature 
subsets and hypotheses 



Chapter 3 of PRML  

FEATURE SELECTION WITH LASSO REGRESSION MODEL 



LINEAR BASIS FUNCTION MODELS (1) 

´ Example: Polynomial Curve Fitting 



LINEAR BASIS FUNCTION MODELS (2) 

´ Generally 
 
 

´ where ߶௝(x) are known as basis functions. 
´ Typically, ߶଴ x = 1 , so that 0ݓ acts as a bias. 
´ In the simplest case, we use linear basis functions :
(ݔ)݀߶  =  .݀ݔ 



LINEAR BASIS FUNCTION MODELS (3) 

´Polynomial basis function
s: 

 
 

´These are global; a small 
change in ݔ affect all basis 
functions. 



LINEAR BASIS FUNCTION MODELS (4) 

´Gaussian basis functions: 
 
 
 

´These are local;  
«a small change in ݔ only affect 
nearby basis functions. 
control location and sc ݏ and ݆ߤ »
ale (width). 



LINEAR BASIS FUNCTION MODELS (5) 

´Sigmoidal basis functions: 
 
 

where 
 
 
 

´Also these are local;  
«a small change in ݔ only affect 
nearby basis functions. 
 control location and ݏ and ݆ߤ »
scale (width). 



MAXIMUM LIKELIHOOD AND LEAST SQUARES (1) 

´ Assume observations from a deterministic function with added 
Gaussian noise: 
 

´ which is the same as saying, 
 

´ Given observed inputs,                            , and targets, 
                      , we obtain the likelihood function   
 

where 

likelihood function  



MAXIMUM LIKELIHOOD AND LEAST SQUARES (2) 

´ Log likelihood:  
 
 
 

      where 
 
 

      is the sum-of-squares error. 
 

ܰ ௡ݐ ࣘࢀ࢝ ܖܠ ଵିߚ, =
ఉ
ଶగ

భ
మ exp (െఉ

ଶ ௡ݐ െ ࣘࢀ࢝ ܖܠ
ଶ)  

 

Relationship of log 
likelihood and sum-of-
squares error in univariate 
Gaussian noise model.  



REGULARIZED LEAST SQUARES (1) 

´ Consider the error function: 
 

´ With the sum-of-squares error (SSE) function and a 
quadratic regularizer, we get   
 
 

´ which is minimized by 

Data term + Regularization term 

 is called the ߣ
regularization 
coefficient. 



REGULARIZED LEAST SQUARES (2) 

´ With a more general regularizer, we have 
 

Lasso Quadratic 

Fig: Contours of the regularization terms  



USING LASSO FOR FEATURE SELECTION 

Lasso tends to generate sparser solutions 
« If ߣ is sufficiently large, some of the coefficients ݓ௝are 

driven to zero, leading to a sparse model in which the 
corresponding basis function pays no role.  
 

Minimizing  
 

    
is equivalent to minimizing the unregularized SSE subjected  to 
constraint   

general regularizer 

Subjected to  ෍ ௝ݓ
௤ ൑ ߟ

ெ

௝ୀଵ
 

Lagrangian Multiplier 



REGULARIZED LEAST SQUARES (3) 

Figure shows the minimum of the error function, subjected to constraint.  
As ߣ is increased, so an increasing number of parameters are driven to 
zero.  

Quadratic Lasso 

Q: So, how do we find the right ߣ?  

Contours of 
unregularized SSE 

Contours of the 
regularization terms ෍ ௝ݓ

௤ ൑ ߟ
ெ

௝ୀଵ
 

Lasso give sparse solution in 
which כݓ = 0.  

ଵݓ = 0 



SUPPORT VECTOR MACHINES 
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KERNELS 

• The original feature space can always be mapped to 

some higher-dimensional feature space (even infinite) 

where the training set is separable  

ĭ:  x ĺ 
ĳ(x) 



KERNELS 

• The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj 

• If every data point is mapped into high-dimensional space via some 
transformation ƕ:  x ȹ Ƶ(x), the inner product becomes: 

K(xi,xj)= Ƶ(xi) 
TƵ(xj) 

• A kernel function is some function that corresponds to an inner product in 
some expanded feature space. 
 
 

• Kernel function should measure some similarity between data 
• kernel must be positive semi-definite 

 
• You should scale the features to have same scale!! 

 
• Most widely used is linear kernels and Gaussian kernels    



GAUSSIAN KERNELS 

݇ ௜ݔ , ௝ݔ = exp െ | ௜ݔ െ ௝ݔ |ଶ
ଶߪ2 = exp െσ ௜௞ݔ) െ ௝௞)ଶ௡ݔ

௞ୀଵ  
ଶߪ2  

If ݔ௜  :௝ is similarݔ ݀݊ܽ 

  ݇ ௜ݔ , ௝ݔ  ൎ exp െ ଴మ
ଶఙమ ൎ 1  

If ݔ௜  :௝ is differentݔ ݀݊ܽ 

  ݇ ௜ݔ , ௝ݔ  ൎ exp െ (௟௔௥௚௘ ௡௨௠௕௘௥)మ
ଶఙమ ൎ 0   

If you use Gaussian kernel, 
You will need to pick ߪ 



´ SVMs constructs a maximum margin separator 

´ SVMs create a linear separating hyperplane 

« But have ability to embed that in to higher-

dimensional space (via Kernel trick) 

´ SVM are a nonparametric method 

« Retain training examples an potentially need to 

store all or part of the data 

« Some example are more important then others (support 

vectors) 

SUPPORT VECTOR MACHINES 

SVM 



SVM TERMS  

SVM 

• Distance from example xi to the separator is  
ݎ  =  (୵೅୶ାୠ)

୵ൗ   
• Examples closest to the hyperplane are support vectors.  
• Margin ư of the separator is the distance between support vectors 

r 

ȡ 

wT x + b < 0 

wT x + b > 0 



MARGINS  

SVM 

Instead of minimizing expected empirical loss in the training data, 
SVM attempts to minimize expected generalization loss.  

or ݎ =  (୵೅୶ାୠ)
୵ൗ /(ݔ)ݕ   ݓ  

-b/ ݓ  

w 

x٣ 

x 

ݕ x =  w୘x + ܾ where w is weight vector and b is bias 
x= x ٣ ݎ+  ௪

| ௪ |    (multiply w୘ and add b) 

w୘x + ܾ = w୘(x ٣ ݎ+  ௪
| ௪ |)  + ݕ) ܾ x =  w୘x + ܾ ) 

ݕ x = w୘x ٣ ݎ +  ୵
౐௪
௪ + ݕ)  ܾ x ٣ =  w୘x ٣ +ܾ = 0) 

ݕ x ݎ = ୵
౐௪

| ௪ |     = I 

 



MAXIMUM MARGINS 

r 

ȡ 
} ௪,௕ݔܽ݉݃ݎܽ 1

ݓ  ݉݅݊௡[ݐ௡(w୘x୬ + ܾ)]} 

Solving this is non-trivial and will not be 
discussed in class 

ݎ =  (୵೅୶ାୠ)
୵ൗ   

௪,௕݊݅݉݃ݎܽ
1
2  ଶ||ݓ||

߶(x୬) in the 
feature space 

෍ ܽ௡ݐ௡
ே

௡ୀଵ
= 0 

w =  ෍ ܽ௡ݐ௡
ே

௡ୀଵ
߶ x୬  



SOFT MARGINS 

Idea: Allow data point to be in the wrong side of the margin boundary, but with a 
penalty that increases with the distance from that boundary.  
 
Penalty for each data point : slack variable ࣈ 
௡ߦ = 0  if point is on the right side 
௡ߦ = ௡ݐ| െ   if point is on the wrong side |(x௡)ݕ
Such that 
ݕ௡ݐ x௡ ൒ 1 െ ௡ߦ ௡ for n = 1, …, N andߦ ൒ 0  
 
• 0 < ௡ߦ ൑ 1 for points inside the margin 
• ௡ߦ = 1 for points on the margin 
• ௡ߦ > 1 for points that are on the wrong side 

 
Goal now is to maximize the margin while softly penalizing points that lie on the 
wrong side of the margin boundary 
 
 

௡ߦ෍ܥ  ௪,௕݊݅݉݃ݎܽ
ே

௡
+  1

2 | ݓ |ଶ 



OPTIMIZATION ON SOFT MARGINS 

ܥ  ௪,௕݊݅݉݃ݎܽ σ ௡ே௡ߦ + ଵଶ | ݓ |ଶ  
subjected to ݐ௡ݕ x௡ ൒ 1 െ ௡ߦ ௡ for n = 1, …, N andߦ ൒ 0  

Complex calculations 
Lagrangian 
Etc.  

෍ ܽ௡ݐ௡
ே

௡ୀଵ
= 0 

w =  ෍ ܽ௡ݐ௡
ே

௡ୀଵ
߶ x୬  

ܽ௡ = C - ߤ௡ ߤ௡ is Lagrangian multiplier 
related to ߦ௡  

 ௡: slack variable forߦ 
training data  x௡ 

ܽ௡ is Lagrangian multiplier 
related to w௡  

b =  1
ܰெ

෍ ௡ݐ) െ෍ (ܽ௠ݐ௠௡אௌ
((௠ݔ௡ݔ)݇

௡אெ
 



PREDICTION USING KERNELS 

ݕ ݔ =  w்߶ x୬ + ܾ  

w =  ෍ ܽ௡ݐ௡
ே

௡ୀଵ
߶ x୬  

ݕ ݔ =  ෍ ܽ௡ݐ௡݇(x, x୬)
ே

௡ୀଵ
+ ܾ 

ܽ௡ is a Lagrangian multiplier 

New 
Data Training data 

Training data target (-1,1) 

Any data point ܽ௡ = 0 will not appear in 
the sum  



LECTURE 14: 
BIOMARKER DISCOVERY WITH FEATURE SELECTION 
METHODS 

Instructor: Sael Lee 
CS549 Spring – Computational Biology 

Resources: . 
• Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., & Saeys, Y. (2010). Robust biomarker identification for cancer diagnosis with 

ensemble feature selection methods. Bioinformatics .26(3), 392–8. 
• Guyon, I., Weston, J., Barnhill, S., & Vapnik��9����������*HQH�6HOHFWLRQ�IRU�&DQFHU�&ODVVLÀFDWLRQ�XVLQJ�6XSSRUW�9HFWRU�0DFKLQHV��

Machine Learning, 46(1-3), 389–422.  
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AREA UNDER ROC CURVE (AUC)  

´ Overall measure of test performance 

´ Comparisons between two tests based on 
GLIIHUHQFHV�EHWZHHQ��HVWLPDWHG��$8& 

´ )RU�FRQWLQXRXV�GDWD��$8&�HTXLYDOHQW�WR�Mann-
Whitney U-statistic (nonparametric test of 
difference in location between two populations) 
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PROBLEMS WITH AUC 

´ No clinically relevant meaning 

´ A lot of the area is coming from the range of large 
false positive YDOXHV��QR�RQH�FDUHV�ZKDW·V�JRLQJ�RQ�
in that region (need to examine restricted regions) 

´ 7KH�FXUYHV�PLJKW�cross, so that there might be a 
meaningful difference in performance that is not 
SLFNHG�XS�E\�$8& 



LECTURE 15: 
ANALYZING PROTEIN STRUCTURE AND DYNAMICS 

Resources:  
• Slide 9 of Protein Bioinformatics, Spring 2013 Daisuke Kihara 
• Wikipedia  

Instructor: Sael Lee 
CS549 Spring – Computational Biology 



TRANSLATION PROCESS 

http://content.answcdn.com/main/content/img/Britannic
aConcise/images/780.gif 

Codon: Three nucleic acid coding one of 20 
amino acid (alphabet of 20 size) + START & 
STOP CODEN 

Start codon: AUG ( also Methionine (Met, M)) 
Stop codon: UAA, UAG, UGA  

CCC: Proline 
         (Pro, P) 

2 

CS 549 Spring - Computational Biology 



PROTEIN STRUCTURE 
Amino Acid Sequence

  
 APRKFFVGGNWKMNGDKKSLGELIHTLNGAKL

SADTEVVCGAPSIYLDFARQKLDAKIGVAAQN
CYKVPKGAFTGEISPAMIKDIGAAWVILGHSE
RRHVFGESDELIGQKVAHALAEGLGVIACIGE
KLDEREAGITEKVVFEQTKAIADNVKDWSKVV
LAYEPVWAIGTGKTATPQQAQEVHEKLRGWLK
SHVSDAVAQSTRIIYGGSVTGGNCKELASQHD
VDGFLVGGASLKPEFVDIINAKH 

 

 

General Structure of AA 

3 

= 
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AMINO ACID AND MAIN CHAIN 

9 

http://en.wikipedia.org/wiki/Amino_acid 

CS 549 Spring - Computational Biology 

http://en.wikipedia.org/wiki/Amino_acid


DIHEDRAL ANGLES 

• Dihedral Angles (Torsion angles):  
 Angels between two planes. 
  

• Ƶ�(phi, involving the backbone atoms C'-N-CƠ-C‘)  
• Ʒ�(psi, involving the backbone atoms N-CƠ-C'-N)  
• Ƶ�FRQWUROV�WKH�&
-&
�GLVWDQFH��Ʒ�FRQWUROV�WKH�1-N 

distance 
• rotations about Ƶ�and Ʒ�angles are the softest 

CS 549 Spring - Computational Biology 

10 



11 

• Ƹ��omega, involving the backbone atoms CƠ-C'-N-CƠ). 
• Ƹ�FRQWUROV�WKH�&Ơ-CƠ distance  
• Peptide bond XVXDOO\�UHVWULFWV�Ƹ�to be 180° (the typical trans case) 

or 0° (the rare cis case). 

Ƹ 

CS 549 Spring - Computational Biology 



RAMACHANDRAN PLOT 

12 

CS 549 Spring - Computational Biology 

A Ramachandran plot  
Is a visualization tools for visualizing 
backbone dihedral angles Ʒ�against Ƶ�of 
amino acid residues in protein structure.  

https://en.wikipedia.org/wiki/Ramachandran_plot 

The red, brown, and yellow regions represent the 
favored, allowed, and "generously allowed" regions as 
defined by ProCheck 

https://en.wikipedia.org/wiki/Ramachandran_plot


PROTEIN SECONDARY STRUCTURES 

´ Proteins packs the hydrophobic side chains inside the molecule.  
´ Proteins have hydrophobic kernel and hydrophilic surface. 
´ The backbone is polar, hence hydrophilic.  
´ To neutralize this hydrophility there are hydrogen bindings between  
      NH and CO on the backbone.  
´ This is done by constructing regular secondary structures 

« Helices, alpha most usual 
« Beta sheets 

 

13 
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ALPHA HELIX 

14 

Alpha-helix: 
• Right-handed helix 
• 3.6 residues per helix turn 
• Hydrogen bond between n and n+4 

CS 549 Spring - Computational Biology 



BETA SHEETS 

15 

CS 549 Spring - Computational Biology 



BETA-TURN 

16 

• 4 residues in length  
• Enables structure to have an 180 degree turn 
 

CS 549 Spring - Computational Biology 

imtech.res.in 

http://imtech.res.in/raghava/betatpred/intro.html


PROTEIN TERTIARY STRUCTURE 

18 

Driving force for folding: 
• Hydrophobic effect 
• Electrostatic 
• Hydrogen bond 
• Disulfide bond 

CS 549 Spring - Computational Biology 



PROTEIN STRUCTURE CLASSIFICATION 
- SCOP (STRUCTURAL CLASSIFICATION OF PROTEINS) 
´ Classes: 

« All alpha proteins (126)  
« All beta proteins(81)  
« Alpha and beta proteins (a/b) (87)  

Mainly parallel beta sheets (beta-alpha-beta units)  
« Alpha and beta proteins (a+b) (151)  

Mainly antiparallel beta sheets (segregated alpha and beta regions)  
« Multi-domain proteins (alpha and beta) (21)  

Folds consisting of more than one domain of different classes  
« Membrane and cell surface proteins and peptides (10)  

Does not include proteins in the immune system  
« Small proteins (44)  

Usually dominated by metal ligand, heme, and/or disulfide bridges  
« Coiled coil proteins (4)  
« Low resolution protein structures (4)  
« Peptides (61)  

Peptides and fragments  
« Designed proteins (17)  

Experimental structures of proteins with essentially non-natural sequences  

 20 

CS 549 Spring - Computational Biology 



 SCOP CONT. 

21 4AGA 3LDH 
1AR2 

CS 549 Spring - Computational Biology 



PROTEIN STRUCTURE CLASSIFICATION –  
CATH DATABASE 

´ Class, Architecture, Topology, Homology 
« Architecture: the global spatial 

arrangement of 2ndary structure segments 
« Topology: connectivity of the 2ndary 

structure segments is also counted 
´ Protein structure comparison program, 

SSAP is used 
 

22 

CS 549 Spring - Computational Biology 



CANNOT USE PURE DYNAMIC PROGRAMMING FOR STRUCTURE 
COMPARISON 

28 

CS 549 Spring - Computational Biology 



FRAMEWORK FOR PAIRWISE STRUCTURE COMPARISON 

29 

CS 549 Spring - Computational Biology 



PROTEIN DYNAMICS 

Molecular Dynamics Extended Library: 
http://mmb.pcb.ub.es/MoDEL/ :  
test searching 1e5w & 1AHR 
 

Induced fit model:  

1AHR 

1OQK 

CS 549 Spring - Computational Biology 

31 



LECTURE 16: 
PCA AND SVD 

Instructor: Sael Lee 
CS549 – Computational Biology 

Resource:  
• PCA Slide by Iyad Batal 
• Chapter 12 of PRML 
• Shlens, J. (2003). A tutorial on principal component analysis. 

 



PRINCIPLE COMPONENT ANALYSIS 

´ PCA finds a linear projection of high dimensional data 
into a lower dimensional subspace such as:  
« The variance retained is maximized.  
« The least square reconstruction error is minimized  

 



PCA STEPS 

Linearly transform an ܰ×݀ matrix ܺ into an ܰ×݉ matrix ܻ 
´ Centralized the data (subtract the mean).  

´ Calculate the ݀×݀ covariance matrix: ܥ = ଵ
ேିଵ ܺ

்ܺ 

« ௜,௝ܥ = ଵ
ேିଵ

σ ܺ௤,௜ܺ௤,௜  ே
௤ୀଵ  

« ௜,௜ܥ  (diagonal) is the variance of variable i.  
«   .௜,௝ (off-diagonal) is the covariance between variables i and jܥ

´ Calculate the eigenvectors of the covariance matrix 
(orthonormal).  

´ Select m eigenvectors that correspond to the largest m 
eigenvalues to be the new basis.  
 
 



EIGENVECTORS 

´ If A is a square matrix, a non-zero vector v is an 
eigenvector of A if there is a scalar ƪ�(eigenvalue) such 
that  

ݒܣ =  ݒߣ
´ Example:  
´   
 
´ If we think of the squared matrix A as a transformation 

matrix, then multiply it with the eigenvector do not 
change its direction.  
 



´ Step 1: subtract the mean and calculate the 
covariance matrix C. 



´ Step 2: Calculate the eigenvectors and eigenvalues of 
the covariance matrix: 

 
Notice that v1 and v2  
are orthonormal:  



´ Step 3: project the data 
« Let ܸ = ,ଵݒ]   are ݅ݒ ௠] is ݀×݉ matrix where the columnsݒ …

the eigenvectors corresponding to the largest m eigenvalues  
« The projected data: ܻ=ܺ ܸ is ܰ×݉ matrix.  
« If m=d (more precisely rank(X)), then there is no loss of 

information! 



´ Step 3: project the data 
 
 

´ The eigenvector with the highest eigenvalue is the 
principle component of the data.  

´ if we are allowed to pick only one dimension, the 
principle component is the best direction (retain the 
maximum variance).  

´ Our PC is ݒଵ  ൎ  െ0.677 െ 0.735 ் 



SINGULAR VALUE DECOMPOSITION(SVD) 

´ Any ܰ×݀ matrix ܺ can be uniquely expressed as: 
 
 
 
 
 
 

´ r is the rank of the matrix X (# of linearly independent 
columns/rows).  
« U is a column-orthonormal ܰ×ݎ matrix.  
« ƒ�is a diagonal ݎ×ݎ matrix where the singular values ƲL are sorted 

in descending order.  
« V is a column-orthonormal ݀×ݎ matrix.  

 



PCA AND SVD RELATION 

Theorem:  
Let ܺ =  ܷ ȭ ்ܸ be the SVD of an ܰ×݀ matrix X and  

ܥ = ଵ
ேିଵܺ

்ܺ  be the ݀×݀ covariance matrix.  

The eigenvectors of C are the same as the right singular 
vectors of X.  

Proof: 

But C is symmetric, hence ܥ =  ܸ Ȧ ்ܸ  
Therefore, the eigenvectors of the covariance matrix C  are the same as 
matrix V (right singular vectors) and  

the eigenvalues of C can be computed from the singular values ߣ௜ = ఙ೔
మ

ேିଵ 
 



ASSUMPTIONS OF PCA 

´ I. Linearity 
´ II. Mean and variance are sufficient statistics. 

« Gaussian distribution assumed 

´ III. Large variances have important dynamics. 
´ IV. The principal components are orthogonal 



PCA WITH EIGENVALUE DECOMPOSITION 
function [signals,PC,V] = pca1(data) 
 
% PCA1: Perform PCA using covariance. 
% data - MxN matrix of input data 
% (M dimensions, N trials) 
% signals - MxN matrix of projected data 
% PC - each column is a PC 
% V - Mx1 matrix of variances 
 
[M,N] = size(data); 
 
% subtract off the mean for each dimension 
mn = mean(data,2); 
data = data - repmat(mn,1,N); 
 
% calculate the covariance matrix 
covariance = 1 / (N-1) * data * data’; 

% find the eigenvectors and eigenvalues 
[PC, V] = eig(covariance); 
 
% extract diagonal of matrix as vector 
V = diag(V); 
 
% sort the variances in decreasing order 
[junk, rindices] = sort(-1*V); 
V = V(rindices); 
PC = PC(:,rindices); 
 
% project the original data set 
signals = PC’ * data; 

Shlens, J. (2003). A tutorial on principal component analysis. 



PCA WITH SVD 

function [signals,PC,V] = pca2(data) 
 
% PCA2: Perform PCA using SVD. 
% data - MxN matrix of input data 
% (M dimensions, N trials) 
% signals - MxN matrix of projected data 
% PC - each column is a PC 
% V - Mx1 matrix of variances 
 
[M,N] = size(data); 
 
% subtract off the mean for each dimension 
mn = mean(data,2); 
data = data - repmat(mn,1,N); 
 
% construct the matrix Y 
Y = data’ / sqrt(N-1); 

% SVD does it all 
[u,S,PC] = svd(Y); 
 
% calculate the variances 
S = diag(S); 
V = S .* S; 
 
% project the original data 
signals = PC’ * data; 

Shlens, J. (2003). A tutorial on principal component analysis. 



LECTURE 17: 
KERNEL PCA 

Instructor: Sael Lee 

CS549 Spring – Computational Biology 



KERNEL-BASED FEATURE EXTRACTION 

´ PCA can only extract a linear projection of the data 

« To do so, we first compute the covariance matrix 

ܵ = 1
ܰ෍ x௡x௡்

ே

௡ୀଵ
 

« Then, we find the eigenvectors and eigenvalues 

௜ݑܵ = ௜ݑ௜்ݑ ௜ andݑ௜ߣ = 1 

ܷܵ =  ܷߣ

« And, finally, we project onto the eigenvectors with largest 

eigenvalues  

ݕ = Ux 
 

´ Can the kernel trick be used to perform this operation 

implicitly in a higher-dimensional space? 

« If so, this would be equivalent to performing non-linear PCA in the 

feature space 



Scholkopf, B., Smola, A., Muller, K. R., & Kybernetik, M. 

(n.d.). Kernel Principal Component Analysis, 2–7. 



DERIVING KERNEL-PCA 

* Assume zero mean data (centralized data points)  

1. Project the data into the high-dim feature space M 

߶:ܴ஽ ՜ ܴெ; x ՜ ߶ x  

2. Compute the covariance matrix  

     * Assume that projected data has zero mean (we will deal with it 

later) 

ܥ = 1
ܰ෍߶ x௡ ߶ x௡ ்

ே

௡ୀଵ
 

3. Compute the principal components by solving the eigenvalue problem 

௜ݒܥ = ݅ ௜        whereݒ௜ߣ = 1  ܯ…
or ݒܥ =   ݒߣ

 

´ The challenge is… how do we do this implicitly?  

 

Schölkopf et al., (Neural Computation, 1998) 



LECTURE 19: 
DRUG DISCOVERY & CHEMOINFORMATICS 

Instructor: Sael Lee 
CS549 Spring – Computational Biology 



5/13/2013 CSE 549 - Computational Biology  

2 

RATIONAL DRUG DISCOVERY 



TYPICAL RATIONAL DRUG DISCOVERY PROCEDURE  

Target Discovery Target Validation 

Screening 

Toxicity 
Test 

Clinical Trials Approval/Market Post-Approval Studies 

Drug 
Absorption 

Animal 
Test 

Target Selection 

Lead Discovery / Development 

Pre-clinical Development 

Drug  
Metabolism 

Cell-
Based Test 

Assay 
Development 

… 

Hits to Leads 
Lead 

Optimization 

CSE 549 - Computational Biology  
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Target 
Discovery 

Target 
Validation 

Target Selection 

Assay 
Development 

Computational 
Functional 
Genomics 

[Yeang  et al. The FASEB Journal 2008;22:2605-262] 

Computational Study 

Experimental Study 

PDBID: 2VUK 
Cellular tumor antigen 
p53 core domain 

Druggability :  
Structure 
Analysis 

4 
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Computational 
Functional 
Genomics 

DEF.: Computational methods that make s use of the 
large scale genomic data  to describe gene (and 
protein)  functions and their interactions.  

“An E. coli metabolic network with 574 reactions and 
473 metabolites colored according to their modules” 

“A yeast protein–protein 
interaction network” 

“A yeast genetic 
network “ 

“G-protein-dependent 
signaling pathways 
regulated through 
activation of PAR-1.” 

5 
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Prediction of the three-dimensional structure of 
a protein from its amino acid sequence 
 

Druggability : 
Structure Analysis 

DEF.: The suitability of a portion of a  protein or 
protein complex to be targeted by a drug, especially 
by a small molecule drug. 

Protein structure 
prediction 

Protein-ligand/drug 
binding site prediction 

Protein surface analysis 
& searching 

Identification of potential interaction sites such as 
cavities or pockets on the structure 
 

Calculation and comparison of  physicochemical 
and geometric properties of the potential 
interaction sites 

7 
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´ Computational determination of three dimensional 
structure of  macro-molecules given their primary 
structure (amino acid sequence/DNA sequence/RNA 
sequence) 

´ Types of structure prediction 
« Protein structure prediction 

² Ab-initial structure prediction 
² Homology  modeling 
² Threading  

« RNA structure prediction 
« DNA structure prediction 

Structural searching is 
important 

Protein structure 
prediction 

5/13/2013 CSE 549 - Computational Biology  



Protein-ligand / drug 
binding site prediction 

•SURFNET searches for a gap in a protein surface by fitting spheres inside the 
convex hull. [Laskowski RA. J Mol Graph1995;13:323–328] 
•PocketPicker and LIGSITE locate a protein onto a three-dimensional (3D) grid and 
scan it for protein-void-protein events in many directions [Weisel et al. Chem Cent J 
2007;1:7, Hendlich et al. J Mol Graph Model 1997;15:359–363]  
•VisGrid  uses the visibility of surface points to find pockets. 
•PocketDepth clusters grid cells using information of the depth of the grid cells. 
[Kalidas & Chandra J Struct Biol 2008;161:31–42] 

Identifying potential ligand/drug binding sites in 
proteins using geometric properties such as 
pocket-like shape and evolutionally conservation 
information.   

Some methods using geometric properties: 

** Several methods consider additional information, such as sequence 
conservation and energetics which are often combined while considering 
geometrical shape. 

9 
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Screening Hits to Leads Lead 
Optimization 

Lead Discovery / Development 

    Virtual Screening  

Compound 
Library 
(~1060) 

Docking 

Protein Design and Optimization 

11 
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Virtual 
screening 

Molecular interaction prediction 
` Computational determination of whether a two macro-molecules 

interact.  
Types of interaction prediction 
` Protein-small molecule interaction prediction 
` Protein-protein interaction prediction 

Computational quick search of large compound libraries   
in order to identify those structures which are most likely 
to bind to a drug target, typically a protein receptor or 
enzyme. 

13 

5/13/2013 CSE 549 - Computational Biology  

Chemoinformatics 
` Similarity between known drugs or ones 

that have predefined properties   

virtual screening are generally good at eliminate the bulk of inactive 
compounds (negative design). Actual selection of bioactive molecules for a 
given target requires more improvement(positive design). 



Docking 

14 

[Venkatraman et al. BMC Bioinformatics 2009] 

1AOI: ATP binding 
protein  

[Chikhi  et al Proteins 2010] [Sael et al. IJMS 2010] 

Protein-ligand docking 
Catalyze enzymatic reactions  
Metabolic processes 
Pocket like shapes 

1AY7: Ribonuclease Sa/Barstar 
complex 

Protein-protein docking  
Permanent complex  
Transient interaction 
Mostly flat region 

Many of these problems deals with bio-molecular surface  comparison.    

“Computational methods  that predict the preferred orientation 
of one molecule to a second when bound to each other to form 
a stable complex.” [Lengauer & Rarey Curr. Opin. Struct. Biol. 1996; 6 (3): 

402–6] 

Z-Dock; LZerD;  

5/13/2013 CSE 549 - Computational Biology  
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CHEMOINFORMATICS & 
 LIGAND-BASED VIRTUAL SCREENING 

Resource:  
• Brown, N. (2009). Chemoinformatics—an introduction for computer scientists. ACM Computing Surveys, 41(2), 1–38. 
• Karsten Borgwardt and Xifeng Yan | Part 8 I: Graph Mining  
• Takigawa, I., & Mamitsuka, H. (2013). Graph mining: procedure, application to drug discovery and recent advances. Drug discovery 

today, 18(1-2), 50–7.  



THE SIMILAR-STRUCTURE, SIMILAR-PROPERTY PRINCIPLE 

5/13/2013 CSE 549 - Computational Biology  

17 

The fundamental assertion of chemoinformatics is the similar-structure, 
similar-property principle (similar property principle)  
• similar molecules will also tend to exhibit similar properties; this is 

known as 
• “. . . the so-called principle of similitude, which states that systems 

constructed similarly on different scales will possess similar properties.” 
[Johnson and Maggiora 1990, page 18] 

Problems are solved by determining of structural similarity between two 
molecules, or a larger set of molecules.  
 

Similarity searching in virtual screening from a problem-centric rather than a 
method centric perspective is needed, depending on what is already known 
about a target and its ligands.  



CHEMICAL SEARCH SPACE 
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Chemistry space is the term given to the space that contains all of the theoretically 
possible molecules and is therefore theoretically infinite. 

Druglike chemistry space : a set of empirically derived rules is used to define 
molecules that are more likely to be orally available as drugs.  
Reduced druglike chemistry space is estimated to contain anything from 1012 

to 10180 molecules 

Goal of chemoinformatics is to assist in 1) filtering the space of available 
molecules to something more manageable while also 2) maximizing the chances 
of a) covering the molecules with the most potential to enter the clinic and b) 
maintaining some degree of structural diversity to avoid prospective 
redundancies or premature convergence.  

Brown, N. (2009).  



CHEMISTRY AND GRAPH THEORY 
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Fig. 5. The hydrogen-depleted molecular graphs of 
(a) caffeine, (b) aspirin, and (c) D-lysergic acid 
diethylamide. (N Brown 2009) 

The molecular graph is a type of graph that is undirected and where the nodes are 
colored and edges are weighted where the nodes are the atoms of a molecule and 
the edges are the bonds.   
• The individual nodes are colored according to the particular atom type: carbon 

(C), oxygen (O), nitrogen (N), chlorine (Cl),etc.,  
• The edges are assigned weights according to the bond order:  single, double, 

triple, and aromatic. 
 



VARIOUS GRAPH MINING-BASED APPROACHES 
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Fig. from Takigawa, I., & Mamitsuka, H. (2013).  

2> ‘graph kernels’: show similarities between 
two graphs or chemical compounds to 
evaluate similarities between two graphs 

3> ‘frequent subgraph mining’, which 
enumerates all subgraphs that occur more 
than or equal to a preset threshold to indentify 
structural features embedded in given graphs.  



FREQUENT SUBGRAPH MINING 
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Fig. from Takigawa, I., & Mamitsuka, H. (2013).  

Frequent subgraph mining is used for analyzing structural fragments or partial 
structures and molecular graphs.  



SUBGRAPH ISOMORPHISM 
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“subgraph isomorphism problem’ is theoretically proven to be NP-complete.  

Problem:  Given two graphs G and H as input, determine whether G contains 
a subgraph G’ that is where two vertices u and v of G’ are adjacent in G’ if 
and only if ƒ(u) and ƒ(v) are adjacent in H (isomorphic to H)  



LECTURE 20: 
GRAPH KERNELS 

Instructor: Sael Lee 

CS549 Spring – Computational Biology 

Resources: 

• Shervashidze, N., et al. (2011). Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12, 

2539–2561. 

• “Graph Mining and Graph Kernels” K. Borgwardt and X. Yan KDD2008 Tutorial  

• Vishwanathan, S. V. N., et al.  (2010). Graph Kernels. Journal of Machine Learning Research, 11, 1201–1242. 

• “Graph kernels and chemoinformatics” Jean-Philippe Vert. Slides from Gbr’2007 

  



GRAPH ISOMORPHISM 

Graph isomorphism 
 

Find a mapping  f of the vertices of ܩଵ to the vertices of ܩଶ such that ܩଵ 

and ܩଶ are identical; i.e. (x,y) is an edge of ܩଵ iff (f(x),f(y)) is an edge of ܩଶ. 

Then f is an isomorphism, and ܩଵ and ܩଶ are called  Isomorphic 

 

•  No polynomial-time algorithm is known for graph isomorphism 

•  Neither is it known to be NP-complete 

Subgraph isomorphism 
 

 ଶ are isomorphic if there exists a subgraph isomorphismܩ ଵ andܩ 

from ܩଵ to ܩଶ and from ܩଶ to ܩଵ 

  

• Subgraph isomorphism is NP-complete 

We want polynomial-time similarity measure for graphs 



MEASURING GRAPH SIMILARITY 1 

Graph Edit Distances 
 

Principle 

• Count operations that are necessary to transform G1 into G2 

• Assign costs to different types of operations (edge/node 

insertion/deletion, modification of labels) 

 

Advantages 

•  Captures partial similarities between graphs 

•  Allows for noise in the nodes, edges and their labels 

•  Flexible way of assigning costs to different operations 

 

Disadvantages 

•  Contains subgraph isomorphism check (NP-complete) as one 

intermediate step 

•  Choosing cost function for different operations is difficult 



MEASURING GRAPH SIMILARITY 2 

Topological Descriptors 
 

Principle 

•  Map each graph to a feature vector (ex> finger printing methods) 

•  Use distances and metrics on vectors for learning on graphs 

 

Advantages 

•  Reuses known and efficient tools for feature vectors 

 

Disadvantages 

• Most feature vector transformation leads to loss of topological information  

• Or includes subgraph isomorphism as one step  



MEASURING GRAPH SIMILARITY 3: 
Graph Kernels: Kernels on pairs of graphs  
 

Principle 

• Let ߶(x) be a vector representation of the graph x 

• The kernel between two graphs is defined by:  

,ݔ)ܭ (Ԣݔ  =  ߶ ݔ ்   (Ԣݔ)߶ 
• To solve convex optimization with kernels, kernels needs to be  

• Symmetric, that is, k(x, xȧ�� �k(xȧ��x), and 

• Positive semi-definite (p.s.d.) 

• Comparing nodes in a graph involves constructing a kernel between nodes 

• Comparing graphs involves constructing a kernel between graphs.  

 

Advantages 

• Similarity of two graphs are inferred through kernel function 

 

Disadvantages 

• Defining a kernel that captures the semantics inherent in the graph structure 

and is reasonably efficient to evaluate is the key challenge. 

 



GRAPH KERNELS TERMINOLOGY 

• A graph G as a triplet (ܸ,ܧ, ݈), where V is the set of vertices, E is the set of 

undirected edges, and ݈ ׷  ܸ ՜ ȭ is a function that assigns labels from an 

alphabet ȭ to nodes in the graph.  

• The neighborhood N (v) of a node v is the set of nodes to which v is  

connected by an edge, that is ܰ (ݒ)  = ,ݒ)|Ԣݒ}  (Ԣݒ א   .{ܧ 

 

For simplicity, we assume that every graph has n nodes, m edges, and a 

maximum degree of d. The size of G is defined as the cardinality of V.  

• A path is a walk that consists of distinct nodes only.  

• A walk is a sequence of nodes in a graph, in which consecutive nodes are  

connected by an edge. walk extends the notion of path by allowing nodes to 

be equal  

• A (rooted) subtree is a subgraph of a graph, which has no cycles, but a 

designated root node.  

• The height of a subtree is the maximum distance between the root and any 

other node in the subtree.  



GRAPH KERNELS TERMINOLOGY CONT.  

Complete graph kernels 

A graph kernel is complete if it separates non-isomorphic graphs, i.e.: 

ଶܩ,ଵܩ׊ א   ܺ,݀௄ ଶܩ,ଵܩ  =  0 ֜ ؆ ͳܩ   . ʹܩ 

Equivalently,  Ԅ(ܩଵ) ്  Ԅ(ܩଵ) if ܩଵ and ܩଶ are not isomorphic. 

• If a graph kernel is not complete, then there is cannot cover all 

possible functions over X: the kernel is not expressive enough. 

• On the other hand, kernel computation must be tractable, i.e., no 

more than polynomial (with small degree) for practical applications. 

• Can we define tractable and expressive graph kernels? 

Computing any complete graph kernel is at least as hard as the graph 

isomorphism problem. (Gärtner et al., 2003) 



GRAPH KERNELS TERMINOLOGY CONT.  

Note that all subtree kernels compare subtree patterns in two graphs, 

not (strict) subtrees. 

Figure 1: A subtree pattern of height 2 rooted at the node 1. 

Note the repetitions of nodes in the unfolded subtree pattern 

on the right. 

subtree patterns (also called tree-walks, Bach, 2008) can have 

nodes that are equal .  



PATH KERNEL 

A path of a graph (V,E) is sequence of distinct vertices 

,ଵݒ . . . , ௡ݒ א ܸ (݅ ് ݆ ֜ ௜ݒ   ് א (௜ାଵݒ , ௜ݒ) ௝ ) such thatݒ  ���for i  ������������Q�î ܧ

Equivalently the paths are the linear subgraphs. 

The path kernel is the subgraph kernel restricted to paths, i.e., 

(ଶܩ,ଵܩ)௣௔௧௛ܭ  =  ෍ɉு
ுא௉

߶ு ଵܩ ߶ு(ܩଶ) 

where P ؿ X is the set of path graphs. 

NOTE: Computing the path kernel is NP-hard. (Gärtner et al., 2003) 



EXPRESSIVENESS VS COMPLEXITY TRADE-OFF 

´ It is intractable to compute complete graph kernels. 

´ It is intractable to compute the subgraph kernels. 

´ Restricting subgraphs to be linear does not help:  

« it is intractable to compute the path kernel. 

´ One approach to define polynomial time computable graph 

kernels is to have the feature space be made up of graphs 

homomorphic to subgraphs, e.g., to consider walks instead of 

paths. 



RANDOM WALKS 

Principle (Kashima et al., ICML 2003, Gaertner et al., COLT 2003) 

•  Compare walks in two input graphs G and G’ 

•  Walks are sequences of nodes that allow repetitions of nodes 

Computation 

•  Walks of length k can be computed by looking at the k-th power of the adjacency 

matrix 

•  Construct direct product graph of G and G’ 

•  Count walks in this product graph G× = (  (×ܧ,ܸ×

•  Each walk in the product graph corresponds to one walk in G and G’ 

Runtime in ܱ(݊଺) 
Some proposed speed up:  

• Fast computation of random walk graph kernels (Vishwanathan 

et al., NIPS 2006)  

• Label enrichment and preventing tottering (Mahe et al., ICML 2004) 

• Graph kernels based on shortest paths(Kriegel, ICDM 2005)  



PRODUCT GRAPH 

Let ܩͳ =  (ܸͳ,ܧͳ) ܽ݊݀ ܩʹ =  be two graphs with labeled (ʹܧ,ʹܸ) 

vertices. The ܩ ݄݌ܽݎ݃ ݐܿݑ݀݋ݎ݌ = × ͳܩ    :9�(��ZLWK�� �LV�WKH�JUDSK�* ʹܩ 

ܸ = (ଶݒ,ଵݒ)}  א ଵܸ  ×  ଶܸ ׷  , {ଶ have the same labelݒ ଵ andݒ 

ܧ = {( ,ଵݒ ଶݒ , ଵᇱݒ ଶᇱݒ, ) א ܸxܸ: ଵᇱݒ,ଵݒ א ݀݊ܽ ଵܧ ,ଶݒ ଶᇱݒ א  {ଶܧ

. 

• Product graph consists of pairs of identically labeled nodes and edges 

from G1 and G2 



WALKS 

A walk of a graph (V,E) is sequence of ݒଵ, . . . , ௡ݒ א   ܸ such that 

݅ݒ, ݅ݒ) + 1) א = ݅ for ܧ  1, . . . ,݊ െ  1.  

 

We note (ࡳ)࢔ࢃ the set of walks with n vertices of the graph G, and 

 .the set of all walks (ࡳ)ࢃ

walks Paths 



WALK KERNELS 



TOTTERING  

Tottering (Mahe et al., ICML 2004) 

A tottering walk is a walk ݓ = . ଵݒ  . . ௜ݒ ௡ withݒ  = ௜ݒ  + ʹ for some i. 

• A walk can visit the same cycle of nodes all over again 

• Kernel measures similarity in terms of common walks 

• Hence a small structural similarity can cause a huge kernel value 

• Focusing on non-tottering walks is a way to get closer to the path 

kernel (e.g., equivalent on trees). 



LABEL ENRICHMENT: MORGAN INDEX (1965) 

•  Size of product graph affects runtime of kernel computation 

•  The more node labels, the smaller the product graph 

•  Trick: Introduce new artificial node labels 

•  Topological descriptors of nodes are natural extra labels 

•  For instance, the Morgan Index that counts k-th order neighbours 

of a node: 



GRAPH KERNELS 
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 (ଶܩ,ଵܩ)ܭ

Kernel matrix K 

. . . 

. . . 

How to define a valid kernel function 

௝ܩ)ܭ ௝ܩ ௝), between two graphsܩ,  and ܩ௝ . 
• ௝ܩ)ܭ  ௝) should provide relationshipܩ,

(similarity / dissimilarity / correlation 

etc.) measure for between two graphs.  

• ௝ܩ)ܭ  ௝) should be able to be appliedܩ,

in kernel based machine learning 

methods such that it provide optimal 

classification / clustering performance.  

We will look at graph kernels that states similarity between kernels.  



PREVENTING TOTTERING CONT. 
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2ND ORDER MARKOV RANDOM WALK 
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The function is still a valid kernel but the implementation described for the 
first order Markov random walk cannot be directly used anymore.  

=> Instead of explicitly working with 2nd Order Markov Random walk, 
transform the original graph ܩ to ܩᇱ such that  ܩᇱ contains the look ahead 
information.   



GRAPH TRANSFORMATION CONT.  
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* Don’t confuse G’ used in the 
last notation for compared Graph 



GRAPH TRANSFORMATION CONT.  
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GRAPH TRANSFORMATION CONT.  
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Original Graph Corresponding directed graph G = (V,E,l) 

Transformed Graph  Labels in the transformed graph 



MODIFIED KERNEL COMPUTATION CONT.  
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MODIFIED KERNEL COMPUTATION 
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one-to-one correspondence 



ROC VS PRECISION RECALL 

Slide from The UT Austin, CS 395T, Spring 2008, Prof. William H. Press 

precision recall curve 

ROC (AUC)  







Selected slides from BioNetwork 
slide by  Dr. Nataša Pržulj 

Dr. Nataša Pržulj 
Department of Computing 
Imperial College London 
natasha@imperial.ac.uk 

www.doc.ic.ac.uk/~natasha/ 
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Introduction: biological networks 

z Biological nets 
 Other network types 

 
 



Metabolic networks 

z Used for studying and modeling metabolism 
{Biochemical reactions in cells that allow an organism to:  
zRespond to the environment  
zGrow 
zReproduce  
zMaintain its structure 
z  

{i.e., the main biochemical reactions needed to keep an 
organism in homeostasis 
zAn internal regulation that maintains a stable, constant 

condition of a living system 
9 



Metabolic networks 

z Metabolites 
{Small molecules such as glucose and amino acids 
{Also, macromolecules such as polysaccharides and glycans 

(carbohydrates) 
z Metabolic pathways 
{Series of successive biochemical reactions for a specific 

metabolic function, e.g., glycolysis, or penicillin synthesis, that 
convert one metabolite into another 

{Enzymes: proteins that catalyze (accelerate) chem. reactions 
z Thus, in a metabolic pathway: 
{Nodes correspond to metabolites and enzymes 

z In an alternate order Æ bipartite graphs 
{Directed edges correspond to metabolic reactions 
{Simpler approaches: nodes are metabolites, directed edges 

are reactions that convert one metabolite into the other; or 
nodes are enzymes and metabolites as edges 10 

Bipartite graph 



Metabolic networks 

z All metabolic pathways of a cell form a 
metabolic network 
{Complete view of cellular metabolism and 

material/mass flow through the cell 
{Cell relies on this network to digest substrates from 

the environment, generate energy, and synthesize 
components needed for its growth and survival 

{Insights from analyzing them used to, for example: 
zCure human metabolic diseases through better 

understanding of the metabolic mechanisms 
zControl infections of pathogens by understanding the 

metabolic differences between human and pathogens 
12 



Transcriptional regulation networks 

zModel regulation of gene expression  
{Recall: gene Æ mRNA Æ protein 

zGene regulation  
{Gives a cell control over its structure and function, 

e.g.: 
zCellular differentiation – a process by which a cell turns 

into a more specialized cell type 
zMorphogenesis (a process by which an organism 

develops its shape) 
z...  

19 



Transcriptional regulation networks 

z Nodes correspond to genes 
{ DNA sequences which are transcribed into mRNAs that translate into 

proteins  
z Directed edges correspond to interactions through which the 

products of one gene affect those of another  
{ Protein-protein, protein-DNA and protein-mRNA interactions  

 
 
 

z Transcription factor X (protein product of gene X) binds 
regulatory DNA regions of gene Y to regulate the production 
rate (i.e., stimulate or repress transcription) of protein Y  
{ Note: proteins are products of gene expression that play a key role in 

regulation of gene expression 20 



Transcriptional regulation networks 

z Problem 
{Stimulation and repression of gene transcription are 

both represented the same way in the network 
z Available for model organisms  
{Non-human species manipulated and studied to get 

insights into workings of other organisms, e.g.: 
zBaker's yeast, S. cerevisiae (Milo et al., 2002) 
zE. coli (Shen-Orr et al., 2002) 
zSea urchin (Davidson et al., 2002) 
zFruitfly, D. melanogaster  

{Available from dBs: EcoCyc, GeneNet, KEGG, 
RegulonDB, Reactom, TRANSPATH,  
TRANSFAC 21 



Cell signaling networks 
z Cell signaling 
{Complex communication system that governs basic 

cellular activities, e.g., development, repair, immunity 
z Errors in signaling cause diseases  
{E.g., cancer, autoimmune diseases, diabetes  

24 

E.g.: Transforming 
growth factor beta 
(TGF-ȕ��LV�D�SURWHLQ�
that controls 
proliferation, cellular 
differenciation, and 
other functions in 
most cells. 



Cell signaling networks 

z Signaling pathways 
{Ordered sequences of signal transduction reactions in 

a cell, as shown in the previous figure 
{Cascade of reversible chemical modifications of 

proteins 
zE.g., phosphorylation catalyzed by protein kineases:  
    enzymes that modify other proteins by adding phosphate 
    groups to them (process called phosphorylation) 

z Signaling pathways in the cell form the cell 
signaling network 
{Nodes are proteins and edges are directed 

25 



Cell signaling networks 

Famous examples (lots of literature on them): 
z Mitogen-activated protein kinase (MAPK) pathway  

{ Originally called “ERK” pathway 
{MAPK protein: an enzyme, a protein kinase, which can attach 

phosphate groups to a target protein, causing its spatial 
reorganization and affecting its function  
z Other enzymes can restore protein’s initial function 

{ E.g.:  
z MYC 

• An oncogene transcription factor expressed in a wide range of human 
cancers (oncogene – when mutated or over-expressed, the gene helps turn 
a normal into a tumor cell) 

• MAPK can phosphorylate (attach phosphate group to) MYC and alter gene 
transcription and cell cycle progression 

z EGFR = “epidermal growth factor receptor”  
• Activates MAPK pathway 
• Mutations affecting its expression/activity can result in cancer  26 



Cell signaling networks 

Famous examples (lots of literature on them) cont’d: 
z Hedgehog signaling pathway 

{ One of the key regulators of animal development 
{ Conserved from fly to human 
{ Establishes basis of fly body plan 
{ Important during embryogenesis (the process by which the embryo 

develops) and metamorphosis (from larva to pupa to adult) 

z TGF-beta signaling pathway 
{ The “transforming growth factor” (TGF) signaling pathway  
{ Involved in:  

z Cell growth  
z Cell differentiation 
z Apoptosis (programmed cell death) 

27 



Cell signaling networks 

z Compared to metabolic networks: 
{ Limited mass flow 
{ Instead, sig. nets provide information transmission along a sequence 

of reactions – one enzyme modulates the activity of another one, 
which then modulates the activity of the third enzyme, etc., but 
enzymes are not consumed in the reactions they catalyze 

z Compared to transcriptional reg. networks: 
{ They overlap, but gene expression, i.e., transcription factors, can be 

seen as the “final targets” of signaling pathways 
z Compared to PPI networks: 

{ Signal transduction is indeed mediated between proteins, but PPIs are 
undirected without a defined input and output (as we will discuss soon) 

{ Not all PPIs are involved in chemical reactions, or part of signal 
transduction 

{ Also, many components of signaling are not proteins 
z These networks have much in common 
z At the same time, they reflect different aspects of cellular activity 

28 



Protein-protein interaction (PPI) networks 

z A protein-protein interaction (PPI) usually refers 
to a physical interaction, i.e., binding between 
proteins  

z Can be other associations of proteins such as 
functional interactions – e.g., synthetic lethality: 
type of a “genetic interaction” (will introduce 
later) 

30 



Protein-protein interaction (PPI) networks 

z PPIs are very important for structure and function of a cell: 
{ Participate in signal transduction (transient interactions) 

z Play a role in many diseases (e.g., cancer) 
{ Can be stable interactions forming a protein complex   
 (a form of a quaternary protein structure, set of proteins which bind 

to do a particular function, e.g., ribosome, hemoglobin – illustrated 
below)  

 

31 



Protein-protein interaction (PPI) networks 

z PPIs are very important for structure and function of a cell: 
{ Can be transient interactions 

z Brief interactions that modify a protein that can further change PPIs 
e.g., protein kineases (add a phosphate group to a target protein)  

z A protein can carry another protein, e.g., nuclear pore importins 
(proteins that carry other proteins from cytoplasm to nucleus and 
vice versa) 

z Transient interactions form the dynamic part of PPI networks  
{ Some estimates state that about 70% of interactions are stable and 

30% are dynamic (transient) 

z PPIs are essential to almost every process in a cell 
z Thus, understanding PPIs is crucial for understanding life, 

disease, development of new drugs (most drugs affect PPIs) 
32 



Protein-protein interaction (PPI) networks 

Methods to detect PPIs 
z Biological and computational approaches 
z None are perfect 
{High rates of false positives  
zInteractions present in the data sets that are not 

present in reality 
{High rates of false negatives 
zMissing true interactions 

33 



Protein-protein interaction (PPI) networks 

Methods to detect PPIs 
z PPIs initially studied individually by small-scale 

biochemical techniques (SS) 
z However, large-scale (high-throughput) interaction 

detection methods (HT) are needed for high discovery 
rates of new protein interactions 

z SS of better “quality,” i.e., less noisy than HT  
z However, HT are more standardized, while SS are 

performed differently each time 
z SS are biased – the focus is on the subsets of proteins 

interesting to particular researchers 
z HT – view of the entire proteome 34 



Protein-protein interaction (PPI) networks 

Methods to detect PPIs 
z Physical binding 
{Yeast 2-hybrid (Y2H) screening 
{Mass spectrometry of purified complexes 

z Functional associations 
{Correlated mRNA expression profiles 
{Genetic interactions 
{In silico (computational) methods 

z In many cases, functional associations do take 
the form of physical binding 

35 



Protein-protein interaction (PPI) networks 

Functional associations 
z Correlated mRNA expression profiles (Dr. Rice’s lectures) 

{ Results in a gene expression correlation network 
z Co-expression means that resulting proteins could 

interact 
z Co-expression overlaid over PPI data, e.g. tool 

KeyPathwayMiner 

42 



Protein-protein interaction (PPI) networks 

Functional associations 
z Genetic interactions 

{ Two non-essential genes that cause lethality when mutated at 
the same time form a synthetic lethal interaction 

{ Such genes are often functionally associated and their encoded 
proteins may also interact physically 

{ Charles Boone’s group from University of Toronto published 
genetic interaction networks  

43 



Protein-protein interaction (PPI) networks 

Functional associations 
z In silico (computational) methods 

{ Gene fusion (if two genes are present in one species and fused 
in another) 

{   

45 



Other biological networks  

z Neuronal synaptic connection networks 
 
 

z Brain functional networks 
{Simultaneous (correlated) activities of brain regions 

during a task 
z Ecological food webs 

 
 
 

z Phylogenetic networks (trees) 
{Evolutionary relationships between species 53 



Other biological networks  

z Correlation networks (e.g., gene co-expression) 
{Different from transcriptional regulation networks 
{Not a direct result of experiments 
{Determined by: 
zCollecting large amounts of high-throughput data 
zCalculating the correlations between all elements  

{Biolayout Express 3-D: a tool for generating 
correlation networks 

54 



Other biological networks  

z Disease – “disease gene” association networks 
{ Link diseases that are caused by the same gene 
{ Link genes if they cause the same disease 

 
z Drug – “drug target” association networks 
{ Link drugs if they target the same gene (protein) 
{ Link genes (protiens) if they are targeted by the 

same drug 

55 



1 

Systems Biology: The 
inference of networks from 
high dimensional genomics 

data 

Ka Yee Yeung 
Nov 3, 2011 
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A gene-regulation 
function describes 
how inputs such as 
transcription 
factors and 
regulatory 
elements, are 
transformed into a 
gene’s mRNA 
level. 

Kim et al. Science 2009 

Presenter
Cis input: eg. Promoter sequences
Trans input: DNA-protein, nucleosome positions in vivo, protein-binding microarrays
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Network construction methods 

� Co-expression networks 
� Bayesian networks 
� Regression-based methods 
 



Correlation: pairwise similarity 
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Clustering algorithms 
� Inputs:  

– Similarity matrix 
– Number of clusters or some other 

parameters 
� Many different classifications of 

clustering algorithms: 
– Hierarchical vs partitional 
– Heuristic-based vs model-based 
– Soft vs hard 
 
 

Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results
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Hierarchical Clustering 
� Agglomerative (bottom-up) 
� Algorithm: 

– Initialize: each item a 
cluster 

– Iterate: 
� select two most similar 

clusters 
� merge them 

– Halt: when required number 
of clusters is reached 

dendrogram 

Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results
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Hierarchical: Single Link 
� cluster similarity = similarity of two 

most similar members 

- Potentially 
long and skinny 
clusters 

+ Fast 

Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results
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Hierarchical: Complete Link 
� cluster similarity = similarity of two least 

similar members 

+ tight clusters 

- slow 

Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results
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Hierarchical: Average Link 
� cluster similarity = average similarity of 

all pairs 

+ tight clusters 

- slow 

Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results



AMINO ACID SEQUENCE ALIGNMENT  

CSE 549 
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KEY ISSUES IN SEQUENCE ALIGNMENT 

!  What sort of alignment should be considered?  

!  What scoring system should be used to rank 
alignment ? 

!  What algorithm should be used to find optimal ( or 
good) scoring alignments ? 

!  What statistical methods should be used to 
evaluate the significance of an alignment score?  



TYPES OF ALGINMENT 

!  Global Alignment 
"  Assuming that the complete sequences are the results of 

evolution from the same ancestor sequence 

!  Local  Alignment 
"  Align segments of the sequences so that the segments are 

evolutionarily related 

Ancestor 
S1 

S2 

Ancestor 
S1 

S2 



SCORING (1) 

!  Match – mismatch 
"  Match : +1, mismatch: 0 
"  Identity matrix (often used for DNA sequences) 

 

a c g t 

a 1 0 0 0 
c 0 1 0 0 

g 0 0 1 0 

t 0 0 0 1 

A R N D …
A 1 0 0 0 0 
R 0 1 0 0 0 
N 0 0 1 0 0 
D 0 0 0 1 0 
… 0 0 0 0 .. 

DNA Amino acid 



ALIGNMENT SCORE 

!  Add up the terms (assume independence). 
!  DNA 

#  26 matches / 31 nt (= 83.9%) (identity) 
!  Protein 

#  10 matches / 15 aa ( = 66.7%) (identity) 

atgatcaagtactttaagaagcagaagcggc
||||| ||| |||||||||| || ||| |||
atgataaagcactttaagaaacaaaagaggc

� �� 
 
 �� � �� 	 � �� 

� �� � � �� � �� � �����
� �� 
 � �� � �� 	 � �� �



SCORING (2) 

!  Amino acid substitution (similarity) matrix 
"  Counting similarity of amino acids 
"  Analyze statistics of known alignments 
"  PAM, BLOSUM series, matrices specific for a certain type of 

proteins, e.g. membrane proteins 

A R N D …
A 5 -2 -1 -2 
R -2 7 0 -1 
N -1 0 6 2 
D -2 -1 2 7 
… .. (BLOSUM45) 



SCORING MATRICES FOR PROTEIN SEQUENCE ALIGNMENT 

!  Define scores for amino acid pairs in sequence 
alignments 

!  Reflect “similarity” of amino acid residues 
!  Most often a substitution matrix is used.  
!  Amino acid substitution matrix is not necessarily 

symmetric,  
"  Reflecting the difference of the mutation probability of A > B 

from B > A (A, B: two different amino acids) 
"  Correspond to the logarithm of the relative likelihood that 

the sequences are related, compared to being unrelated.  



ALIGNMENT SCORE: SMITH-WATERMAN SCORE 

!  BLOSUM45, Gap penalty: -12/-2 
!  Add up each term. 
!  Sequence identity: 15/29 = 51.7% 
!  Smith-Waterman Score: 63 

1+4+15+7+3+2+4+4+5+6+….   +6-2-12-2+6…          … -12… 

� �� � � 	� � 	 �
 
 � �� � � �� 
 
 

 � � 
� � �
� �� � � �� � � �� �������� ���������� �� �
� �� � 	 �� � 	 �
 
 � �� 
 � �� � � �
 � 	 
� � �



GAPLESS ALIGNMENT 

!  Gaps not allowed in the middle 
"  Scan one sequence along the other one 

!  Number of possible alignments 
"  Sequence length: m, n 

"  m + n + 1 , If m=n, 2n+1; i.e O(n) 

!  Application: finding a known motif in a sequence 
!  How to choose the “best” alignment? 

"  Scoring scheme 

m m 



ALIGNMENT WITH GAPS 

!  Scoring: AA matrix + gap penalty 
!  Gap penalty for a gap of length g: 

"  Linear model: -gd  (d : gap penalty, d>0) 
"  Affine model: -d – (g-1)e  
    (d: opening penalty,  e: extension penalty. d > e > 0) 

!  Number of possible alignments 
 
 
!  Algorithmic challenge: Given AA matrix, gap penalty, find th

e alignment with the best score. 

If m=n, i.e. O(4n) !!
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LINEAR AND AFFINE GAP PENALTIES 

!  Linear: 

!  Affine:  
 

lggl ⋅=

extendopenl glgg ⋅−+= )1(
l 

gl 

l 

gl 



GLOBAL ALIGNMENT 



FINDING THE HIGHEST SCORING ALIGNMENT 

!  Problem:  
"  Given two sequences, a scoring matrix, and a gap penalty, 

find the alignment with the highest score 

!  Large number of possible alignments  
"  Cannot generate all and score them to find the best 
"  Algorithm: dynamic programming (DP) algorithm 

  (Needleman-Wunsch Algorithm) 

 



RECURRENCE RELATION IN DP 

!  Assume that, Hi-1,j-1, Hi-1,j, Hi,j-1 are known 

xi 
- 

q1..i-1 
d1..j 

xi 
yj  

q1..i-1 
d1..j-1 

- 
yj  

q1..i 
d1..j-1 

max, =jiH 1,1),( −−+ jiji HyxS

gH ji −−1,

gH ji −− ,1jiH ,1−

1,1 −− jiH

1, −jiH

Where g is the gap open penalty and              is the similarity score obtained 
from substitution matrix  for residue type of xi and yj 

),( ji yxS



CALCULATING SCORE OF BEST ALIGNMENT USING MATRIX 

giH

gjH

H

i

j

⋅−=

⋅−=

=

0,

,0

0,0 0

Use to fill first row 

Use to fill 
first column 

max, =jiH 1,1, −−+ jidq HR
ji

gH ji −−1,

gH ji −− ,1

Use to fill rest 
row by row 

Score of best 
alignment 

H matrix 



GLOBAL DP MATRIX, H(I,J) 

L I E Y G D A 

0 -8 -16 -24 -32 -40 -48 -56 

V -8 1     -5 … 

E -16 

W -24 

F -32 

L -40 

BLOSUM45 
S(V,L) = 1 
S(V,I) = 3 
Gap = -8 

                     H(i-1, j-1) + s(xi, yj) 
H(i,j) = max   H(i-1, j)  - d 
                     H(i, j-1)  - d 

LI 
-V 

LI- 
--V 

LI 
V- 

or or 

i 

j 

-24 
-5 
-7 

BLOSUM45 



TRACEBACK, ALIGNMENT 

q 

d 

q’    qi 
d’    - 

i-1 

i 

j j-1 

q’    qi 
d’    di 

i-1 

i 

q’    - 
d’    dj 

i-1 

i 



GLOBAL DP MATRIX, H(I,J) 

Fill this table from top-left to bottom-right 
Trace back to get the alignment! 

-2 
-7 

-12 

-23 
-37 

-48 
D 

-8 -5 -10 -17 -21 -27 -40 L 
-14 
-20 

-31 
-45 

-56 
A 

1 
-4 

-15 
-29 

-40 
G 

-21 -13 -5 1 -8 V 
-7 1 -2 -7 -16 E 

-2 
4 

-32 
Y 

-12 -15 -23 -32 F 
-5 -9 -15 -24 W 

-24 -16 -8 0 
E I L 

LIEYGDA 
-VEWF-L 



TIME COMPLEXITY 

!  Sequences of lengths n  and m 

 
!  Two sequences of length l 
 

)(nmO

)( 2lO



LOCAL ALGINMENT 



THE LOCAL ALIGNMENT 

!  Aims to identify only very similar region of two protein 
sequences 

!  Should ignore negatively contributing suffixes of align
ments 

!  Score of best local alignment – highest value in dyna
mic programming matrix 

!  Alignment found by tracing back from maximum value 
until cell with value 0 (zero) has been reached 



DP RECURRENCE RELATION 

qi 
- 

q1..i-1 
h1..j 

qi 
dj  

q1..i-1 
h1..j-1 

- 
dj  

q1..i 
h1..j-1 

max, =jiH

1,1, −−+ jidq HR
ji

gH ji −−1,

gH ji −− ,1jiH ,1−

1,1 −− jiH

1, −jiH

0Empty alignment 

Effectively allows for removal of negatively contributing prefixes. 



CALCULATING BEST LOCAL ALIGNMENT 

0

0

0,

,0

=

=

i

j

H

H
Use to fill first row 

Use to fill 
first column 

max, =jiH
1,1, −−+ jidq HR

ji

gH ji −−1,

gH ji −− ,1

Use to fill rest 
row by row 

H matrix 

0

Score of best 
alignment 

0 

Best alignment 



EXAMPLE OF LOCAL DP MATRIX, H(I,J) 

6 
1 
0 

2 
0 

0 
D 

0 1 0 0 3 5 0 L 
0 
0 

0 
0 

0 
A 

9 
4 

0 
0 

0 
G 

0 0 3 1 0 V 
1 9 0 0 0 E 

4 
12 

0 
Y 

0 0 1 0 F 
1 0 0 0 W 

0 0 0 0 
E I L 

IEY 
VEW 

BLOSUM45 
Gap penalty = -8 

                     0                    
H(i,j) = max   H(i-1, j-1) + s(xi, yj) 
                     H(i-1, j)  - d 
                     H(i, j-1)  - d 



TIME COMPLEXITY OF LOCAL ALIGNMENT 

!  Sequences of lengths n  and m 

!  Two sequences of length l 

)(nmO

)( 2lO



AFFINE GAP ALGORITHM 2 

S/T L I E Y G D A 

0 -12 -14 -16 -18 -20 -22 -24 

V -12 

E -14 

W -16 

F -18 

L -20 

M: 

� �M(i – 1, j – 1) + s(Si, Tj)   Si align with Tj 
M(i, j) = max  I(i – 1, j – 1) + s(Si, Tj)   Si align with gap 

  J(i – 1, j – 1) + s(Si, Tj)   gap align with Tj 

Gap: 
Opening: -12 
Extension: -2  



AFFINE GAP ALGORITHM 2 

S/T L I E Y G D A 

0 (-∞) (-∞) (-∞) (-∞) (-∞) (-∞) (-∞) 

V -12 

E -14 

W -16 

F -18 

L -20 

I: 

� �M(i – 1, j) – d   Si align with initial gap 
I(i, j) = max 

  I(i – 1, j) – e   Si align with extension gap 

Si: 

Tj: 



AFFINE GAP ALGORITHM 2 

S/T L I E Y G D A 

0 -12 -14 -16 -18 -20 -22 -24 

V (-∞) 

E (-∞) 

W (-∞) 

F (-∞) 

L (-∞) 

J: 

� �M(i, j – 1) – d   initial gap align with Tj 
J(i, j) = max 

  J(i, j – 1) – e   extension gap align with Tj 

Tj: 

Si: 



AFFINE GAP ALGORITHM 2 

S/T L I E Y G D A 
0 -12 -14 -16 -18 -20 -22 -24 

V -12 1 
E -14 
W -16 
F -18 
L -20 

M: 

� �0 + 1 = 1  
M(1, 1) = max  0 + 1 = 1    

  0 + 1 = 1    

from 
I(0, 0) 

from 
J(0, 0) 



AFFINE GAP ALGORITHM 2 

Si/Tj L I E Y G D A 
0 (-∞) (-∞) (-∞) (-∞) (-∞) (-∞) (-∞) 

V -12 -24 -26 -28 -30 -32 -34 -36 
E -14 -11 
W -16 

F -18 

L -20 

I: 

� �1 – 12 = -11 
I(1, 1) = max 

  -24 – 2 = -26 from M(1, 1) 



AFFINE GAP ALGORITHM 2 

Si/Tj L I E Y G D A 
0 -12 -14 -16 -18 -20 -22 -24 

V (-∞) -24 -11 
E (-∞) -26 
W (-∞) -28 
F (-∞) -30 
L (-∞) -32 

J: 

� �1 – 12 = -11 
J(1, 1) = max 

  -24 – 2 = -26 
from M(1, 1) 



BLOSUM62 SCORE MATRIX 

   A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V 
A  4 -1 -2 -2  0 -1 -1  0 -2 -1 -1 -1 -1 -2 -1  1  0 -3 -2  0 
R -1  5  0 -2 -3  1  0 -2  0 -3 -2  2 -1 -3 -2 -1 -1 -3 -2 -3 
N -2  0  6  1 -3  0  0  0  1 -3 -3  0 -2 -3 -2  1  0 -4 -2 -3 
D -2 -2  1  6 -3  0  2 -1 -1 -3 -4 -1 -3 -3 -1  0 -1 -4 -3 -3 
C  0 -3 -3 -3  9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 
Q -1  1  0  0 -3  5  2 -2  0 -3 -2  1  0 -3 -1  0 -1 -2 -1 -2 
E -1  0  0  2 -4  2  5 -2  0 -3 -3  1 -2 -3 -1  0 -1 -3 -2 -2 
G  0 -2  0 -1 -3 -2 -2  6 -2 -4 -4 -2 -3 -3 -2  0 -2 -2 -3 -3 
H -2  0  1 -1 -3  0  0 -2  8 -3 -3 -1 -2 -1 -2 -1 -2 -2  2 -3 
I -1 -3 -3 -3 -1 -3 -3 -4 -3  4  2 -3  1  0 -3 -2 -1 -3 -1  3 
L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4 -2  2  0 -3 -2 -1 -2 -1  1 
K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2 
M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5  0 -2 -1 -1 -1 -1  1 
F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6 -4 -2 -2  1  3 -1 
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7 -1 -1 -4 -3 -2 
S  1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4  1 -3 -2 -2 
T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -2 -2  0 
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11  2 -3 
Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7 -1 
V  0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4 
 



AFFINE GAP ALGORITHM 2 

L I E Y G D A I: L I E Y G D A 

0 -12 -14 -16 -18 -20 -22 -24 0 (-) (-) (-) (-) (-) (-) (-) 

V -12 1 -9 -16 -17 -21 -23 -22 V -12 -24 -26 -28 -30 -32 -34 -36 

E -14 -15 -2 -4 -15 -17 -15 -20 E -14 -11 -21 -30 -32 -33 -35 -34 

W -16 -16 -14 -5 -2 -17 -21 -18 W -16 -13 -13 -16 -27 -29 -27 -32 

F -18 -16 -13 -16 -2 -5 -17 -18 F -18 -15 -15 -17 -14 -29 -29 -30 

L -20 -14 -13 -16 -17 -6 -9 -17 L -20 -17 -17 -19 -16 -17 -29 -30 

L I E Y G D A 

0 -12 -14 -16 -18 -20 -22 -24 

V (-) -24 -11 -13 -15 -17 -19 -21 

E (-) -26 -17 -14 -16 -18 -20 -22 

W (-) -28 -28 -26 -17 -14 -16 -18 

F (-) -30 -28 -25 -27 -14 -16 -18 

L (-) -32 -26 -25 -27 -29 -18 -20 

J: 

M: 

V E W F -  -  L 
L  I  E Y G D A 



TIME COMPLEXITY 

!  Sequences of lengths n  and m 

!  Two sequences of length l 

)(nmO

)( 2lO
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SCORING MATRICES 
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SCORING MATRICES FOR AA SEQUENCE 
ALIGNMENT 
´ Define scores for amino acid pairs in sequence alignments 

´ Reflect “similarity” of amino acid residues 

 

´ Amino acid scoring matrix/Amino acid similarity matrix => 

symmetric 

´ Amino acid substitution matrix => not necessarily 

symmetric,  

« reflecting the difference of the mutation probability of A to B from 

B to A (A, B: two different amino acids) 
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PAM MATRICES (DAYHOFF, 1978) 

´ PAM: A Point Accepted Mutations. 

« Models the replacement of a single AA in the primary 

structure of a protein with another single AA that is accepted 

by natural selection.  

² Does not include silent mutations , mutations which are lethal,  or 

mutations which are rejected by natural selection in other ways. 

´ PAM matrix: 20x20 AA substitution matrix  

« Each entry indicates the likelihood of the AA of that row 

being replaced with the AA of that column through a series 

of one or more PAM during a specified evolutionary interval, 

compared to these two AA being aligned by chance.  



PAM MATRIX CONT. 

´ Different PAM matrices correspond to different lengths of 

time in the evolution of the protein sequence. 

« EX> PAM1: one accepted mutation per 100 residues 

« (n in the PAM
n
 matrix represents the number of mutations per 

100 amino acids,) 

´ Start from a set of well manually curated sequence 

alignments 

« >85% sequence identity 

« 71 groups of homologous sequences 

´ Construct phylogenetic trees and estimate the history of 

the mutation events in the family 

«  1572 observed mutations in the phylogenetic trees of 71 families 

of closely related proteins. 
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PAM: COLLECTION OF DATA FROM 
PHYLOGENETIC TREES 
 

ACGH 
DKGH 
DDIL 
CKIL 
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COMPUTING PROBABILITY OF A CHANGING 
TO B IN A CERTAIN TIME 7�

´ Count for each branch in the phylogenetic trees, the 

number of mismatches recorded and compute 

fequencey 

« fab : frequency of mutation from a => b or b => a ( assume 

symmetry i.e. fab = fba)  
´ Compute mutability of a: fa = 6b�afab 

« the total number of mutation involving a 
´ Compute f = 6afa :  

« twice the total number of mutations 

´ Compute pa  where 6apa =1:  
« the frequency of amino acid a, 

´ Compute ma : the relative mutability of a  
« the probability that a will mutate in the evolutionary time W�
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CALCULATING MA AND MAB IN THE TIME 7�

´ Consider the time W = 1 PAM  

« the time while one mutation is accepted per 100 res.  

´ The probability that mutation is from a is: 

  ½ fa/(f/2) = fa/f ,  
(1/2 comes from f

ab 
=

 
f
ba 

) 

´ Among 100 res., there are 100pa occurrences of a 
´ The relative mutability of a is  

« ma = (1/ 100pa) fa/f 

´ The prob. that a will be mutated to b in the time W 
« Mab = ma (fab/fa) for a�E; Maa = 1 - ma 
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SUBSTITUTION MATRIX M1 



12 

CALCULATE MZ BY MATRIX MULTIPLICATION 
Example Z=2 

´ 2 mutations per 100 residues 

´ A residue a can be changed to residue b after 2 PAM of following 

reasons: 

1. a is mutated to b in first PAM, unchanged in the next, with 

probability M
ab

M
bb 

2. a is unchanged in first PAM, changed in the next, probability 

M
aa

M
ab

 

3. a is mutated to an amino acid x in the first PAM, and then to b 

in the next, probability M
ax

M
xb,  

x being any amino acid unequal 

(a,b) 

These three cases are disjunctive, hence 

¦¦
��

 �� 
Mx

xbax
bax

xbaxabaabbabab MMMMMMMMM
},{

2
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CONVERTING FROM A SUBSTITUTION MATRIX TO 
A SCORING MATRIX 
´ In a substitution matrix not symmetric in general,  

« M
ab

 ��M
ba 

(a in sequence q, b in sequence d)
 

´ To remove the effect of the frequent occurrence of b in 

sequence d, the odds scoring matrix is 

« O
ab

 = M
ab

/p
b 

« O
ab

 is symmetric (O
ab

 = O
ba 

, p. 110, middle) 

´ Log-odds matrix R: 

« R
ab

 = log O
ab 
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BLOSUM  (HENIKOFF & HENIKOFF) 
´ BLOSUM (BLOcks SUbstitution Matrix) matrix is a substitution 

matrix used to score alignments between evolutionarily 

divergent protein sequences introduced by  Henikoff and 

Henikoff in 1992 

 

´ Make multiple alignments consist of sequences sharing more 

than X% sequence identity  

´ Discover blocks not containing gaps (used over 2,000 blocks) 

           ...KIFIMK.......GDEVK... 
        ...NLFKTR       GDSKK... 
           KIFKTK       GDPKA 
           KLFESR       GDAER 
           KIFKGR       GDAAK 

´ For each column in each block, counted the number of 

occurrences of each pair of AA 

« 210 different pairs (combination with repetition: (20+2-1)! /(2!(20-1)!)  )  
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BLOSUM CONT 
´ A block of length w from an alignment of n sequences has 

T=w*n(n-1)/2 possible occurrences of amino acid pairs 

« Let hab be the number of occurrences of the pair (ab) in 

all blocks (hab=hba) 

« T total number of pairs 

« fab=hab/T 

´ Constructing logodds matrix : Rab=log(fab/eab) 
« with background probabilities of finding the amino 

acids a and  in any protein sequence as p
a  

« eaa=papa  

« eab=papb + pbpa = 2 papb  for a �b 
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COMPARING PAM AND BLOSUM 

´ PAM: based on an evolutionary model (tree) 

´ PAM1 is multiplied to obtain PAMx (the larger x, the 

more distant) 

 

´ BLOSUM: Based on common regions in protein 

families 

´ Simple to compute 

´ BLOSUMx (e.g. x=45, 62, 80, the larger more closer) 



21 

ANALYSIS OF SCORING MATRICES 

´ PAMx or BLOSUMy is designed for aligning 

sequences of that range  

« i.e. BLOSUM50 cannot align very distantly related 

sequences by definition 

´ Starts from a set of pairwise (multiple) alignments 

« alignments > scoring matrix > alignment 

´ Can develop a scoring matrix from any set of 

alignments following the BLOSUM’s method 

´ There are many AAindex database 

 http://www.genome.ad.jp/dbget/aaindex.html 
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MULTIPLE ALIGNMENT 
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USE OF ALIGNMENTS 
´ High sequence similarity usually means significant 

structural and/or functional similarity.  

´ Homolog proteins (common ancestor) can vary significantly 

in large parts of the sequences, but still retain common 2D-

patterns, 3D-patterns or common active site or binding site. 

´ Comparison of several sequences in a family can reveal 

what is common for the family. Conserved regions can be 

significant when regarding all of the sequences, but need 

not if regarding only two. 

 

´ Multiple alignment can be used to derive evolutionary 

history. 

´ Conserved positions : structurally/functionally important 
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USE OF ALIGNMENTS 
- MAKE PATTERNS/PROFILES 

´ Can make a profile or a pattern that can be used to m

atch against a sequence database and identify new fa
mily members 

´ Profiles/patterns can be used to predict family memb

ership of new sequences 

´ Databases of profiles/patterns 

« PROSITE 

« PFAM 

« PRINTS 

« ... 
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PATTERN FROM ALIGNMENT 

[FYL]-x-[LIVMC]-[KR]-W-x-[GDNR]-[FYWLE]-x(5,6)-[ST]-W-[ES]-[PSTDN]-x(3)-[LIVMC] 
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ALIGN BY USE OF DYNAMIC PROGRAMMING 

´ Dynamic programming finds best alignment of k 

sequences with given scoring scheme 

 

´ For two sequences there are three different column 

types 

 

´ For three sequences there are seven different column 

types 

         x means an amino acid,   - a blank 

            Sequence1    x  -  x  x  -  -  x 
     Sequence2    x  x  -  x  -  x  - 
     Sequence3    x  x  x  -  x  -  x 
 

´ Time complexity of O(nk)  (sequence lengths = n) 
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SCORING MULTIPLE SEQUENCE ALIGNMENTS 

´ Sum of the pairwise  

sequence score 

 

´ Sum of scores for each row  

Alignment 
AR-L 
ARSL 
AWTL 
AWT- 

¦¦
�

 � 

 
1

1 1

),()(
m

i

m

ij
ji ssSMSAS

m: the number of sequences 
si, sj: sequence i, j 
S(si,sj) = score of si,sj 

¦¦¦
 

�

 � 

 
r

k

m

i

m

ij
SS j
k

i
k

RMSAS
1

1

1 1

)(

r: number of columns 



31 

USE OF K-DIMENTIONAL DYNAMIC PROGRAMMING 

´ Dynamic programming finds 

best alignment of k sequences 

given a scoring scheme 
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MULTI-DIMENSIONAL DP 

´ 3 sequences: 

« Linear gap cost: J(d) = -gd 

« Score of the whole MSA: 
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PROFILE HIDDEN MARKOV MODEL 

REF: Biological sequence analysis: Probabilistic models of proteins 
and nucleic acids Richard Durbin et al. 
  
Slides by SNU BioIntelligence Lab. (http://bi.snu.ac.kr) 
Sildes by D. Kihara @ Purdue 
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PROFILE HMM 

´ An HMM which model a multiple sequence alignment 
of a protein family 

´ Concentrate on features that are conserved in the wh
ole family (consensus modeling): 
« Improves alignment of distantly related sequence of the sa

me family.   
« Able to characterize the family.  

B Mj E 

Ij 

Dj Deletion 
(silent states) 
Insertion 



SNU BioIntelligence Lab. (http://bi.snu.ac.kr) 
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ADD INSERTIONS 

´ Introduce insert states Ii  
« Emission prob. 

² Normally set to equal back ground distribution qa. 

« Transition prob. For  
² Mi to Ii, 
² Ii to itself (multiple insertion) 
² Ii to Mi+1 

 

« Log-odds score of a gap of length k  
² Assuming that                  there is no logg-odds from emission 

Begin Mj End 

Ij 

)(I ae
i

jjjjjj
akaa II1MIIM log)1(loglog ��� �

_I )( aqae
i
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ADD DELETION 

´ Introduce delete states (silent state) 
« No emission prob. 
« Cost of a deletion sum cost of 

² 0ȹD transition 
² DȹD transitions 
² DȹM transition 

 

« (DFK�'ȹ'�PLJKW�EH�different prob.  Unlike I->I that have 
same prob.  
 

Begin Mj End 

Dj 



SNU BioIntelligence Lab. (http://bi.snu.ac.kr) 
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COMPONENTS OF PROFILE HMMS (5) 

´ Combining all parts 

Begin Mj End 

Ij 

Dj 

Figure 5.2 The transition structure of a profile HMM. 

Improbable but can 
create problem when 
left out 



SNU BioIntelligence Lab. (http://bi.snu.ac.kr) 
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DERIVING PROFILES HMM FROM MSA 

´ Assume correct multiple seq. alignment is given 

HBA_HUMAN   ...VGA--HAGEY... 
HBB_HUMAN   ...V----NVDEV... 
MYG_PHYCA   ...VEA--DVAGH... 
GLB3_CHITP  ...VKG------D... 
GLB5_PETMA  ...VYS--TYETS... 
LGB2_LUPLU  ...FNA--NIPKH... 
GLB1_GLYDI  ...IAGADNGAGV... 
               ***  ***** 

Figure 5.3 Ten columns from the multiple alignment of seven globin 
protein sequences shown in Figure 5.1 The starred columns are ones 
that will be treated as ‘matches’ in the profile HMM. 



SNU BioIntelligence Lab. (http://bi.snu.ac.kr) 
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HMMS FROM MULTIPLE ALIGNMENTS 

´ Basic profile HMM parameterization 
« Aim: generate distribution peak around members of the family 

´ Parameters 
« Probabilities values: various ways to do it but let assume 

independent samples aligned independently to the HMM 
 
 
 

« Length of the model: heuristics or systematic way 
² Deciding which MSA columns to assign to match states and which to 

insert states.  
² One Heuristics: columns that are more than half gap should be 

modelled buy inserts.  
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SEARCHING WITH PROFILE HMMS (1) 

´ Main usage of profile HMMs 
« Detecting potential membership in a family 
« By (global) matching a sequence to the profile HMMs 
« Scoring a match: 

² Viterbi equations – gives h most probable alignment of a seq 
together with its probability 

² Forward equation – calculates the full probabilities of seq summed 
overall possible paths.  

« Either case, what we want is the log-odd ratio x being the 
family compared to the random model 

� 
i

xi
qRxP )|(



DNA Sequencing



Two main assembly problems

• De Novo Assembly 
!
!
!

• Resequencing



Reconstructing the Sequence  
(De Novo Assembly)
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Definition of Coverage

Length of genomic segment: G 
Number of reads:   N 
Length of each read:  L 
!
Definition:  Coverage  C = N L / G 
!
How much coverage is enough? 
!
 Lander-Waterman model: Prob[ not covered bp ] = e-C 
 Assuming uniform distribution of reads, C=10 results in 1 gapped 

region /1,000,000 nucleotides

�



Fragment Assembly 
(in whole-genome shotgun sequencing)



Steps to Assemble a Genome
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Some Terminology 
!
read    a 500-900 long word that comes  
 out of sequencer 
!
mate pair   a pair of reads from two ends 
 of the same insert fragment 
!
contig    a contiguous sequence formed  
 by several overlapping reads 
 with no gaps 
!
supercontig   an ordered and oriented set 
(scaffold)         of contigs, usually by mate 
          pairs 
!
consensus   sequence derived from the 
sequene       multiple alignment of reads 
        in a contig



1. Find Overlapping Reads

aaactgcagtacggatct 
aaactgcag 
 aactgcagt 
… 
        gtacggatct 
         tacggatct 
gggcccaaactgcagtac 
gggcccaaa 
 ggcccaaac 
… 
        actgcagta 
         ctgcagtac 
gtacggatctactacaca 
gtacggatc 
 tacggatct 
… 
        ctactacac 
         tactacaca

(read, pos., word, orient.) 
aaactgcag 
aactgcagt 
actgcagta 
…          
gtacggatc 
tacggatct 
gggcccaaa 
ggcccaaac 
gcccaaact 
… 
actgcagta 
ctgcagtac 
gtacggatc 
tacggatct 
acggatcta 
… 
ctactacac 
tactacaca

(word, read, orient., pos.) 
aaactgcag 
aactgcagt 
acggatcta  
actgcagta         
actgcagta 
cccaaactg 
cggatctac 
ctactacac 
ctgcagtac 
ctgcagtac 
gcccaaact 
ggcccaaac 
gggcccaaa 
gtacggatc 
gtacggatc 
tacggatct 
tacggatct 
tactacaca



1. Find Overlapping Reads

• Find pairs of reads sharing a k-mer, k ~ 24 
• Extend to full alignment 9 throw away if not >98% similar

TAGATTACACAGATTAC

TAGATTACACAGATTAC
|||||||||||||||||

T GA

TAGA
| ||

TACA

TAGT
||  

• Caveat: repeats 
▪ A k-mer that occurs N times, causes O(N2) read/read comparisons 
▪ ALU k-mers could cause up to 1,000,0002 comparisons 

• Solution: 
▪ Discard all k-mers that occur :too often; 

• Set cutoff to balance sensitivity/speed tradeoff, according to genome at 
hand and computing resources available



1. Find Overlapping Reads

Create local multiple alignments from the overlapping reads

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA



2. Merge Reads into Contigs

• Overlap graph: 
▪ Nodes: reads r1…..rn 

▪ Edges: overlaps (ri, rj, shift, orientation, score)

Note: 
of course, we don’t 
know the “color” of 
these nodes

Reads that come 
from two regions of 
the genome (blue 
and red) that contain 
the same repeat
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supercontig 
(aka scaffold)
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4. Derive Consensus Sequence

Derive multiple alignment from pairwise read alignments

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

�$0(4$�$ "'�"-,1$,131�! 1$�!7�5$(&'2$#�4-2(,&�
!
��*2$0, 2(4$��2 )$�+ 6(+3+�/3 *(27�*$22$0�



WHOLE GENOME SEQ. ALIGNMENT 

CSE 549  
Sael Lee 

Slides Courtesy of  Michael Schatz 
Quantitative Biology Class @ CSHL 



EXACT MATCHING 

Slide extracts from Michael Schatz’s Quantitative Biology Class @ CSHL 
http://schatzlab.cshl.edu/teaching/2010 



EXACT MATCHING OVERVIEW 



BRUTE FORCE ANALYSIS 

´ Brute Force: 
« At every possible offset in the genome: 

² Do all of the characters of the query match? 

´ Analysis 
« Simple, easy to understand 
« Genome length = n 
« Query length = m  
« Comparisons: (n-m+1) * m 

´ Overall runtime: O(nm) 
« If we double genome or query size, takes twice as long 
« If we double both, takes 4 times as long 



SUFFIX ARRAYS 

´ What if we need to check many queries? 
« Sorting alphabetically lets us immediately skip through the 

data without any loss in accuracy 

´ Sorting the genome: Suffix Array (Manber & Myers, 
1991) 
« Sort every suffix of the genome 



SEARCHING THE INDEX 
´ Strategy 2: Binary search 

« Compare to the middle, refine as higher or l
ower 
 

´ Searching for GATTACA 
« Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
« Middle = Suffix[8] = CC  
       => Higher: Lo = Mid + 1 

 
« Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
« Middle = Suffix[12] = TACC 
       => Lower: Hi = Mid - 1 

 
« Lo = 9; Hi = 11; Mid = (9+11)/2 = 10 
« Middle = Suffix[10] = GATTACC 
     => Lower: Hi = Mid - 1 

 
« Lo = 9; Hi = 9; Mid = (9+9)/2 = 9 
« Middle = Suffix[9] = GATTACA… 
     => Match at position 2! 



SUFFIX ARRAY CONSTRUCTION 

´ Searching the array is very fast, but it takes time 
to construct 
« This time will be amortized over many, many searches 
« Run it once "overnight" and save it away for all future 

queries 

´ How do we store the suffix array? 
« Explicitly storing all n strings is not feasible O(n2) 

´ Instead use implicit representation 
« Keep 1 copy of the genome, and a list of sorted offsets 
« Storing 3 billion offsets requires a big server (12GB) 

² Build a separate index for each chromosome 

TGATTACAGATTACC 



SUFFIX TREES 

Suffix Tree = Tree of suffixes (indexes all substrings of a sequence) 
����/HDI�����IRU�HDFK�VXIIL[��SDWK-label to leaf spells the suffix 
��1RGHV�KDYH�DW�OHDVW���DQG�DW�PRVW���FKLOGUHQ��$�&�*�7��� 



SUFFIX TREE PROPERTIES & APPLICATIONS 

´ Properties 
« 1XPEHU�RI�1RGHV�(GJHV��2�Q� 
« Tree Size: O(n) 
« Max Depth: O(n) 
« Construction Time: O(n) 

² Uses suffix links to jump between nodes without rechecking 
² Tricky to implement, prove efficiency 

´ Applications 
« Sorting all suffixes: O(n) 
« Check for query: O(m) 
« Find all z occurrences of a query O(m + z) 
« Find maximal exact matches O(m) 
« Longest common substring O(m) 

´ Used for many string algorithms in linear time 
« Many can be implemented on suffix arrays using a little extra work 



HASHING 

´ Where is GATTACA in the human genome? 
« Build an inverted index (table) of every k-mer in the genome 

´ How do we access the table? 
« We can only use numbers to index 

² table[GATTACA] <- error, does not compute 
« Encode sequences as numbers 

² Easy: A = 110, C = 210, G = 310, T = 410 
¹ GATTACA = 314412110 

² Smart: A = 002, C = 012, G = 102, T = 112 
¹ GATTACA = 100011110001002 = 915610 

« Running time 
² Construction: O(n) 
² Lookup: O(1) + O(z) 
² Sorts the genome mers in linear time 



IN-EXACT ALIGNMENT 

Slide extracts from Michael Schatz’s Quantitative Biology Class @ CSHL 
http://schatzlab.cshl.edu/teaching/2010 



IN-EXACT ALIGNMENT 

´ Where is GATTACA approximately in the human genome? 
« And how do we efficiently find them? 

´ It depends… 
« Define 'approximately' 

² Hamming Distance, Edit distance, or Sequence Similarity 
² Ungapped vs Gapped vs Affine Gaps 
² Global vs Local 
² All positions or the single 'best'? 

´ Efficiency depends on the data characteristics & goals 
« Smith-Waterman: Exhaustive search for optimal alignments 
« BLAST: Hash based homology searches 
« MUMmer: Suffix Tree based whole genome alignment 
« Bowtie: BWT alignment for short read mapping 



SEED-AND-EXTEND ALIGNMENT 

´ Theorem: An alignment of a sequence of length m with at most k 
differences must contain an exact match at least s=m/(k+1) bp long (Baeza-
Yates and Perleberg, 1996) 

« Proof: Pigeon hole principle 
 

´ Search Algorithm 
« Use an index to rapidly find short exact alignments to seed 

longer in-exact alignments 
² RMAP, CloudBurst, … 

« Specificity of the seed depends on length 
« Length s seeds can also seed some lower quality alignments 

² Won't have perfect sensitivity, but avoids very short seeds 



HAMMING DISTANCE LIMITATIONS 

´ Hamming distance measures the 
QXPEHU�RI�VXEVWLWXWLRQV��613V� 
« Appropriate if that’s all we 

expect/want to find 
² Illumina sequencing error model 
² Other highly constrained sequences 

´ What about insertions and 
deletions? 
« At best the indel will only slightly 

lower the score 
« At worst highly similar sequences 

will fail to align 

Hamming distance=5 
: 2 matches, 5 
mismatches, 1 not 
aligned 

Edit Distance = 1 
: 7 matches, 0 
mismatches, 1 not 
aligned 



EDIT DISTANCE EXAMPLE 
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