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1. INTRODUCTION TO COMPUTATIONAL BIOLOGY

Resources used: Lecture slides from Steven Skiena’s Computational Biology class and
Daisuke Kihara’s Protein Bioinformatics class



WHY COMPUTATIONAL BIOLOGY?

Computational biology is particularly exciting today
because:
the problems are large enough to motivate efficient algorithms,
the problems are accessible, fresh and interesting,
biology is increasing becoming a computational science

Computational biology is increasing of interest in both life
science and computational science departments.

Source of complex questions and real-life data.

Many problem ideas go from biology to CS: e.g. fragment
assembly, sequence analysis, algorithms for phylogenic trees.

Many problem ideas go from CS to biology: e.g. sequencing by
hybridization, DNA computing.



COMPUTER SCIENTIST VS BIOLOGIST

Similarity:
There are many different types of life scientists (biologists,

ecologists, medical doctors, etc.), just as there are many different

types of computational scientists (algorists, software engineers,
statisticians, etc.).

Many cultural differences

Nothing is ever completely true or false in biology, where
everything is either true or false in computer science /
mathematics.

Biologists are comfortable with the idea that all data has errors;
computer scientists are not.

Biologists strive to understand the very complicated, very messy
natural world; computer scientists seek to build their own clean
and organized virtual worlds.

* Information extracted from Steve Skiena’s slide. Thanks, Steve. ©



Biologists are data driven; while computer scientists are algorithm driven.
Although nowadays cs are becoming more data driven.

Biotechnology/drug companies are largely science driven, while the
computer industry is more engineering/marketing driven.

The Platonic ideal of a biologist runs a big laboratories with many people.
The Platonic ideal of a computer scientists is a hacker in garage.

Biologists are much more obsessed with being the first to
discover something; computer scientists invent more than
discover.

Biologists can get/spend infinitely more research money than
computational scientists.

Biologists seek to publish in prestigious journals like Science and Nature.
Computer scientists seek to publish in prestigious refereed conference
proceedings.

One consequence is life science journals get refereed faster than
computational science journals.



INFORMATION CONTENT IN BIOLOGY

DNA

RNA

Proteins

Proteins sequence can be thought
of as string of 21-letter alphabet
Binding: covalent bonding, van der
Waals force, hydrophobicity, etc.
Stable structural form:

DNA sequences can be thought of
as strings of bases on a four-letter
alphabet, {A,C,G,T}, called nucleic

acids.
Binding: A=T; C-G

Stable structural form : double helix

RNA sequences can also be

thought of as strings of bases on a
four-letter alphabet, {A,C,G,U}.

Binding: A=U; C-G
Stable structural form:
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CENTRAL DOGMA OF BIOLOGY
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http://www.tokresource.org/tok_classes/biobiobio/biomenu/trans Common Abbreviations
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* DNA: Deoxyribonucleic acid
* RNA: Ribonucleic acid

) ) _ *  mMRNA: messenger RNA
\Youtube: From RNA 1o Protein Synthesis (8minll -t ransfer RNA
*  rRNA: ribosomal RNA
* siRNA: Small interfering RNA



http://youtu.be/NJxobgkPEAo

TRANSCRIPTION PROCESS
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TRANSLATION PROCESS

Codon: Three nucleic acid coding one of 20

(-r»-qﬁiﬂ:::d amino acid (alphabet of 20 size) + START &
olele STOP CODEN

The Genetic Code: The colour wheel reveals.

o RNA triplet codes for various amino acids,

b ] the links in the chain of protein molecules.
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Start codon: AUG ( also Methionine (Met, M))
Stop codon: UAA, UAG, UGA
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LECTURE 2:
INFORMATION CONTENT IN BIOLOGY & DNA BINDING

Resources from:

1) Lecture Notes of Natasha Devroye devroye@ece.uic.edu http://www.ece.uic.edu/~devroye

2) F. Fabris “Shannon Information Theory and Molecular Biology” JIM, vol.12, n.1, february 2009, pp. 41-87.
3) T Cover & J Thomas “Elements of Information Theory 29 ed.” 2006



mailto:devroye@ece.uic.edu
http://www.ece.uic.edu/~devroye

THE MATHEMATICS THEORY OF COMMUNICATION

Claude E. Shannon

“The fundamental problem of communication is that of
—> reproducing at one point either exactly or approximately a
message selected at another point.”

C.E. Shannon, 1948

A B
—-
Rveprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379423, 6236356, July. October, 1948. | Want to send | thlnk A Sent

1001 1001

A Mathematical Theory of Communication

_Introduced a new field:

HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has mtensified the mterest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nyquist! and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the

Information Theory

The fundamental problem of communication 1s that of reproducing at one point either exactly or ap-

FIHLE

to or are correlated according te some system with certamn physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message 1s one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this 1s unknown at the time of design.



SHANNON'S FINDINGS

Source Coding Problem:
Source = random variables

Ultimate data compression limit is the
source’s entropy H

Channel Coding Problem:
Channel = conditional distributions
\ Ultimate transmission rate is the channel
capacity C
Relationship between input and output

Mutual Information

Reliable communication possible «
H<C



GENERAL COMMUNICATION SYSTEM

INFOEMATION

SOURCE TEANSMITTER RECEIVEE DESTINATION
-] ol =
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE
Fig. 1—Schematic diagram of a general communication system.

» Information source: “produces a message or sequence of messages to be
communicated to the receiving terminal”

» Jransmitter: “operates on the message in some way to produce a signal suitable for
transmission over the channel”

* Channel: the medium used to transmit the signal from transmitter to receiver”

» Receiver: ‘performs the inverse operation of that done by the transmitter
reconstructing the message from the signal”

» Destination: ‘person (or thing) for whom the message is intended”



SHANNON'S ENTROPY

Entropy is the measure of average uncertainty in the random
variable

Entropy is the average number of bits needed to describe the
random variable

Entropy is a lower bound on the average length of the shortest
description of the random variable

Entropy of a deterministic value is O

prob(x) 0.5 .
0.3 What is the entropy of a
0.2 random variable X with
l distribution p(x)?
. )—
1 3 7 X

Entropy measured in bits

HOXO = = ) p(0)loga(p()



ENTROPY OF A NON-UNIFORM DISTRIBUTION

Suppose X represents the outcome of a horse race with 8

horses, which win with probabilities (1,1,1,1)1)1)1)1)
24816 64 64 64 64

1 1 1 1 1 1 1 1 1 1
H(X)=—ElOg2 E —Zlogz Z —§log2 g —Elogz E —4alog2 a

=14 24342 4142 — opits)
2' 48" 16 ' 64

8 outcomes, 3 bits? But on average can represent with 2 bits.
ABCDETFGF

2* 428716 64 64 64 64

(000,001,010,011,100,101,110,111) (0,10,110,1110,111100,111101,111110,111111)

3 bits 2 bits (on average!)



MUTUAL INFORMATION BETWEEN 2 RANDOM VARIABLES:

Mutual Information I(X:Y) is the ®__..C“a”“6': il C)

reduction in the uncertainty
about X due to knowledge of Y

If X, Y are independent I(X;Y) =0
if X=Y then [(X;Y) = H(X)
1(X;Y) Is non-negative

I(X;Y) == X,p(x,y)log, (pl(jnggf))



THE DNA-TO-PROTEIN BIO-MOLECULAR CHANNEL

Central Dogma of Molecular Biology states there is a
flow of “biologic information” from DNA towards

proteins:

-> that the DNA carries information that, after
transcription and translation, drives the synthesis of
the proteins.



APPEALING METAPHOR

the that starts from and reaches the

, In the biological communication system outlined by the
Central Dogma, is analogous to the flow of information that starts
from the sender and reaches the receiver (at the other side of the
channel) in the communication system.

DNA: interpreted as a sequence based on a 4-letters alphabet,
a sequence of nucleotides - Adenine, Thymine, Cytosine and Guanine (A,
T7C7G)7

Protein: interpreted as a 20-letters alphabet sequence.

a sequence based on 20 amino acids (Metionine, Serine, Threonine
etc.),

This approach seems to offer the opportunity of using Information
Theory as a tool to build a model of biological information
transmission and correction.



GENERIC COMMUNICATION BLOCK DIAGRAM
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THE DNA-TO-PROTEIN BIO-MOLECULAR CHANNEL
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APPEALING BUT HAS LIMITS

Biology is much complex compared to
general communication system.

Systematically complex: Feedback loops,
granularity, multiple players

Model incomplete: Many biological relations yet
to be learned



DNA / RNA / PROTEINS; GENE

Single “word” in genome

‘A gene is a molecular unit of heredity of a
living organism. It is widely accepted by the
scientific community as a name given to
some stretches of DNA and RNA that code
for a polypeptide (protein) or for

an RNA chain that has a function in the

organism.”
[http://en.wikipedia.org/wiki/Gene]

* The concept of genes preceded the
knowledge of DNA. So, there is some
controversies in linking genes to DNA.

Individual
information
content
analysis

V.S.

Systematic
interplay of
bio-contents
(Model the
channel)


http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Polypeptide
http://en.wikipedia.org/wiki/RNA

ANATOMY OF THE (EUKARYOTIC) GENE

[A)
Transcription  Translation Translation
initiation site  initiation site termination  Paly{A) Transcription
'!-fil]-"'::I Amino acid {aa)l Amiano acid numbers site addition termination
Promoter i p A “ gite site
region “.\ s 30 3 104 105 |4::\ H\
Y Y
r m; m m’, ‘ T d‘#‘ _’.4.-—-.1- T 0 .n'-.u-v.-.“ ’*‘ h‘- s e -—— -~
| == Exon 1— |=—Intron 1—| = Exon 2-‘-: Intron 2 [ = Exon 3
L.pstre.].m 1 A. TA [ —
promoter  box  Leader 3 untranslated
regions 5" untranslated region
region)
Promoters Exons Introns

* Promoters are the sites where RNA polymerase binds to the DNA to initiate
transcription.

* Enhancer is a DNA sequence that can activate the utilization of a promoter,
controlling the efficiency and rate of transcription from that particular promoter.
Located geometrically close to the promoter and gene but may not be close in
sequence.

* Exons—are intervening sequences

* Introns—that have nothing whatsoever to do with the amino acid sequence of the
protein.

* Father Reading: Differential Gene Transcription http://www.ncbi.nim.nih.gov/books/NBK10023/



DNA-BINDING PROTEIN

http://en.wikipedia.org/wiki/DNA-binding_protein

Proteins that are composed of DNA-
binding domains and thus have a
specific or general affinity for either
single or double stranded DNA.

Types of Binding

Sequence-specific DNA-binding N

generally interact with the major g%i:;éf%

groove of DNA t Zamccormachsmanmas

Non-specific DNA-protein 5 Fmoriciizoazaa
interactions ]E 1 '

DNA-binding proteins that S A A

specifically bind single-stranded
DNA



SEQUENCE LOGO

Sequence logo is a graphical representation of the
sequence conservation of nucleotides (in a strand of
DNA/RNA) or amino acids (in protein sequences)
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taattaattgaactcactaaagggagac
cgcttaatacgactcactaaaggagaca
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18: 6097-6100
1990

Sequence
>—

Alignment



\
Korea Q\\\\ Stony Brook
N, University

Instructor: Sael Lee
CS549 Spring - Computational Biology

LECTURE 3 & 4
INTRODUCTION TO INFORMATION THEORY



BASIC PROBABILITY RULES

Marginalization

p(¥) = Xxp(x,y) = X p(y|x)p(x)

p(y) = [ r(xy) = [ pGl0px)
Bayes’ Rule

p(y|x)p(x)
p(y) Convention

p(xly) =

Product Rule . 0log0 = 0

e alogZ = ,ifa>0
pxy(x,y) = PY|X(Y|X)PX(3C) 59

0
=px)y x|y (¥) * Olog;=0



INDEPENDENCE REVIEWED

The events X = x and Y =y are statistically independent if

X, y) = px)ply).

The random variables X and Y defined over the alphabets y and ¢ , resp. are
statistically independent if

pxy(x,y) = px(X)py(y), for V(x,y) € x X ¢

The variables X4, X,, ..., Xy are called independent if for all (x4, x5, ..., x5 ) €
X1 X X X" X XN

N
p(xlerJ '"rxN) = HpXi(xi)
i=1

They are furthermore called identically distributed if all variables X; have the
same distribution px (x).



EXPECTED VALUE

1 Discrete random variable, finite case, taking x4, x,, ..., x5y With prob. p{,p,, ..., Py

E[X] = X1P1 + X2p2 + o+ XkPn
pL+py+ -+ pN Sum to 1 if probability

2 Discrete random variable X, countable case, taking x1, x5, ... with prob. p4, p,, ...

(0]

ElX] = ) xip

i=1
3 Univariate continuous random variable:

E[X] = jooxf(x) dx

General definition: random variable defined on a probability space (Q, Z, P), then the
expected value of X, denoted by E[X], (X), X or E[X], is defined as the Lebesgue integral

E[X]=j XdpP =J X(w) P(dw)
Q Q



ENTROPY

Definition:
The entropy H(X) of a discrete random variable X with pmf py(x) is given by

HOO = = ) px(0) logpx (x) = ~Epy o [logpx ()]

The entropy H(X) of a continuous random variable X with pdf fy(x) in support set S
is given by

R(X) = — f £ (O l0g fie () = —E; (o [l0g fie(X)]
S

Meaning:
* Measure of the uncertainty of the r.v.
* Measure of the amount of information required on the average to describe the r.v.

Denote H(X) and H(p)
as same when X is
binary rv

Use log base 2



JOINT ENTROPY
Definition:
The joint entropy H(X,Y) on a pair of discrete r.v. (X,Y) with a joint distribution p(x,y) is
defined as

HX,Y)=— Z z p(x,y)logp(x,y)
X Yy

= _Ep(x,y) logp(x, Y)

CONDITIONAL ENTROPY

Definition:
The conditional entropy H(Y | X) on a pair of discrete r.v. (X,Y) with a joint distribution
p(x,y) is defined as

HIYIX) = = ) pGOHYIX = x)

= Z p(x) Z p(y|x) logp(y|x)
X y

= —z Z p(x,y)logp(y|x)
X Yy

= _Ep(x,y) logp(y|x)



CHAIN RULE

Theory (Chain Rule)

H(X, Y) = H(X) + H(YlX) proof
= H(Y)+ HX|Y)
Corollary
HX,Y|Z)=HX|Z)+ HY|X,2)
Remark

H(Y|X) £ HX|Y)
H(Y) — H(Y|X) = H(X) — H(X|Y)



RELATIVE ENTROPY

Definition:
The relative entropy ( Kullbuck-Leibler distance, K-L divergence) between two
probability mass function p(x) and q(x) is defined as

p(x) p(X)
D(plla) = ), p()log_ 5= By log_ 3
XEXY
Meaning: Properties:
» Distance between two distributions * Is non-negative
* A measure of the inefficiency of  D(p|lg) = 0 if and only if p=q
assuming that the distribution is g * Isasymmetric: D(p|lq) # D(q||p)
when the true distribution is p * Does not satisfy triangle inequality

Definition:
The conditional relative entropy between two probability mass function p(x,y) and
q(x,y) is defined as

p(y[x) r(Y|X)
D x)|]| x)) = Z (y|x) lo = log
() |lq(y|x) p(¥|x) log O - Eranlos iy

XEx




MUTUAL INFORMATION

Definition:
Mutual information I(X;Y) is the relative entropy between the joint distribution p(x,y)
and the product distribution p(x)p(y)

IX;Y) =D, y)|lp()p())

-2 e

log p(X,Y)
Py) =8 p (X)p(Y)

=E

Definition:
Conditional mutual information I(X;Y|Z) is the reduction in the uncertainty of X due
to knowledge of Y when Z is given

I(X;Y|Z) = D(p(x,y12)|Ip(x|2)p(y|2))

zxzy p(x|z)p(y|z)
p(X,Y|Z)

= Epeeyn 108 S A 2)
= H(X|Z) — H(X|Y, Z)




RELATIONSHIP BETWEEN ENTROPY AND MUTUAL
INFORMATION

Properties:

H(X,Y) * |(X;Y) is the reduction of uncertainty of X

/\ due to the knowledge of Y (or vise versa)

ot 1Y) = HX) — H(X|Y)
“<I(X;Y) = HY) — H(Y|X)

* |s symmetric: X says about Y as much
H(X|Y) I(X,Y) H(Y|X) and Y says about X

e IX;Y)=HY)+HX)—-HX,Y)
since H(X,Y) = H(X) + H(Y|X)

\ f by chain rule

H(X) HY)  « 1(X;X) = H(X) also called self
information
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LECTURE 4:
DNA BINDING AND INFORMATION THEORY



A BRIEF REVIEW OF MOLECULAR INFORMATION THEORY.

SCHNEIDER, T. D., (2010). NANO COMMUNICATION NETWORKS1(3), 173-180.



MOLECULAR INFORMATION THEORY

Molecular information theory: Using information theory to
measure states and patterns of molecules.

Problem we focus on: Interaction between DNA and Protein

PROBLEM:
Analysis of interaction between DNA and
proteins that control the expression DNA

PROPERTIES:

* Protein is a finite molecule

* |nteraction content of proteins cover 10-20
base pairs (bp) in DNA

Transcriph an unil

Transcription process: [_Rm polymerase ]

RNA Polymerase (protein) binding to DNA @ DA of gene
ARSI

[mitiation site Termanation site

Interaction site: 10~20 bp



SEQUENCE LOGO - REVIEWED

Sequence logo is a graphical representation of the sequence conservation of
nucleotides (in a strand of DNA/RNA) or amino acids (in protein sequences)

.- : : : Schneider & Stephens
They can show how much pattern is in a set of binding sits. (1990) NAR. 18: 6097-6100

- + EX> Fis site
l-——————— 44++++++++1 (a)
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o6 -5 -4 -3 -2 -1 0+l 42 43+ 48 46 47
1 tet thatet 12.2 57 —ptecetad@eCeTeCHEpAPASTH TS pAcGeChtrartea —3'
2 ttt t taat 12.2 37 — argrar GeRP TeRArAR, CPTPC tPa.FtP 5
3 t- t t tttt t t 11 - B +7 46 45 -l"fa 42 #1 0 -1 -2 -3 -4 -5 —5 —'-'
4 agtgact ttt tea 11.8 | \
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11 t t t Lttt tt 8.5
12 E.5
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120 Fis binding sites

Fig. 6. Maror determinants in Fis-DNA
binding. [ Shao et al. (2008) JMB 380:2, 327-339.]



CHARACTERIZING BINDING SITES

Before binding, protein is uncertain as to what base it
will see and that uncertainty can be measured as

log,(4)
Before we know the binding event can occur, all four bases
(A, T,C,G) can be seen in a DNA locus.
After binding, uncertainty of what it is touching in
different cases is lower.

If only one type of bases occur:
log,(1) =0
If other bases occur as well: (Conditional Entropy)
H(l) >0

log,(4) ( X }—Binding-event——Y ) H(])



The information content (y-axis) of position !

Height in Four letter: A, T,C,G Entropy small-sample correction

sequence
logo Rsequence (D) = @4) - (%(l) + eﬁ( (bits per base)

I(X;Y) = H(X) — H(X|Y)

log,(4) : Uncertainty ‘observed’ by the DNA binding protein before binding to a site.
-> * maximum uncertainty possible: log, | x|
H(l) : Uncertainty ‘observed’ by the DNA binding protein after binding to a site.

H() =— Z fpilogs fo (bits per base)
be{AT,G,C}

where f;,; are the frequency of base b at a position .



Assuming independence between sites, total information in a binding site.

Rsequence — Zl Rsequence(l)




INFORMATION REQUIRED TO FIND A SET OF BINDING SITES

G = # of potential binding sites
= genome size in some cases

Yy = number of binding sites on genome

Information required to find Uncertainty before being Uncertainty after being
binding sites bound to one of the sites bound to one of the sites
\y P4 \
Rfrequency = Hbefore binding ~— Hafter binding

= log, G —log, vy

= —log?g (bit per site)
|




INFORMATION REQUIRED
TO FIND A SET OF BINDING SITES
IN A GENOME

16 positions
1 site
log,16/1 = 4 bits

16 positions
2 sites
Iog2 16/2 = 3 bits
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LECTURE 6:
FINDING NUCLEOSOME POSITIONS

Reference:
C. Jiang and B. F. Pugh. Nucleosome positioning and gene regulation: advances through genomics.
Nature Reviews Genetics 10 161-172 (2009)



WHY NUCLEOSOMES POSITION?

Knowing the precise locations of nucleosomes in a
genome is key to understanding how genes are
regulated.

Nucleosome positions can tell us about

How nucleosome positioning distinguish promoter regions
and transcriptional start sites, and

How the composition and structure of promoter
nucleosomes facilitate or inhibit transcription.

How diverse factors, including underlying DNA sequences
and chromatin remodeling complexes, influence
nucleosome positioning



CHROMATIN STRUCTURES

DNA The Nuclecsome "Beads-on-a-String” The 30nm Fibre Active Chromosome The Metaphase Chremosome

[ | | | [ | [ | | | |

Isolated patches. Genes under active transcription. Less active genes. During interphase. During cell division.

\ | | \ | | ! |

Add histone H1. Add further scaffold proteins. Add further scaffold proteins.

The packaging of DNA creates both a problem
and an opportunity:

* Wrapping DNA around histones may be a
obstacle in accessing the genetic code;

e Can be exploited so that enzymes that read,
replicate and repair DNA can be directed to
the appropriate entry sites




NUCLEOSOME STRUCTURE

Complete Histone With

H3-H4 Hisfone Octamer
Tetramer

HInZ

Linker histone

Histane tail modifications

Mature Reviews | Genetics

The nucleosome is the
basic unit of eukaryotic
chromatin, consisting
of a histone core
around DNA.

Each histone core is
composed of two
copies of each of the
histone proteins H2A,
H2B, H3 and H4.
Approximately 147 bp
of DNA coils 1.65
times around the
histone octamer in

a left-handed toroid.



GENOMEWIDE NUCLEOSOME MAPS

Allow us to explore the genomic properties of chromatin

— H3.1
E——— Hala

At most loci, there is an approximately ok
Gaussian (normal) distribution of
nucleosome positions around particular
genomic coordinates,

ranging from ~30 bp for highly phased
nucleosomes to a random continuous
distribution throughout an array.

log2{ ChIPF / input )
=

-0.2|

Cause of variation: - 2 o 2 am

* Genuine positional heterogeneity - :

 how much is an artifact that is caused by
overtrimming or undertrimming of the

DNA at nucleosome borders by experiment ————— =
*Phasing —=-m=_?ér_
The distribution of nucleosomes around a particular ===

coordinate in a population of cells.



MIXTURE MODELS: INTRODUCTION



THE DENSITY ESTIMATION PROBLEM

Density Estimation Problem: (loose definition)

Given a set of N points in D dimensions, x4, ..., Xy € RP , and a family F of
probability density function on R”, find the probability density functions (pdf) on
RP, find pdf f(x) € F that is most likely to have generated the given points.

Defining F : give each of it’'s members the same mathematical form, and to
distinguish different members by different values of a set of parameters 6.

EX> Mixture of PDFs
K

F:0) = ) meg (% 0)
k=1 .
g(x;0,)dx =1 f(x; 8)dx=1 m, =1, m, >0
j j kZl k k

PDF Mixture of PDFs Mixing probability



MIXTURE MODEL AND CLUSTERING

Example: Gaussian Mixture Models.

K
z N (X[ g, Z)
k=1
1 1 1 ——_—
(2rmo?)2 | Zy|2
1

Each cluster is assigned a Gaussian, i EZ §§£E§ —
with mean being the center of cluster 08 F ﬂ p=-2,6"=05 ——
and standard deviation being the 07t

spread of data for the cluster.




GAUSSIAN MIXTURE MODEL AND NUCLEOSOME POSITION

— H3.1

027
e H3.3

Standard deviation:
_~_ Characterize -
nucleosome stability
 Determine phased or

B fuzzy.

log2( ChIP / input )
o

-4 .3 0 2 4 (kb)

Mean:
 Determine nucleosome center position

* Determine spread of nucleosome



K-MEANS CLUSTERING: DISTORTION MEASURE

Dataset {x1, ..., XN}

Partition in K clusters

Cluster prototype: uk

Binary indicator variable, 1-of-K Coding scheme

Tnk € {U*- 1}
rnk = 1, and r,; = 0 for 7 # k. Only one is 1 and all other O
Hard assignment.

Distortion measure: a measure of how much data
point deviate from the center of their clusters

N K
J = ZZTnk”Xn - J“kHQ

n=1 k=1



K-MEANS CLUSTERING: EXPECTATION MAXIMIZATION

Goal: Find values for {ry,;} and {u, } to minimize:

N K
J = ZZ?’"nk”Xﬂs - J“*FGHQ

n=1 k=1
Iterative procedure:

1. Minimize J w.r.t. rpy, keep p1 fixed (Expectation)

12

Calculate the membership R 1 if k= argmin; ||x, — iz
"= 0 otherwise

2. Minimize J w.r.t. j, keep ry fixed (Maximization)

N
2 Z Pk (Tn — ) =0
n=1

Calculate the center

D

n | nk

e =



K-MEANS CLUSTERING: EXAMPLE

Each E or M step reduces the value of the objective function J
Convergence to a local maximum

Q
1000 |




MIXTURE OF GAUSSIANS: LATENT VARIABLES

Gaussian Mixture Distribution:

K
p(x) = Z TN (x| pge, Xk
k=1

Introduce latent variable z 2
z is binary 1-of-K coding variable
p(x, ) = p(z)p(x|2)



GOAL

We want to identify which data came from which source.

In probabilistic modeling words

“Evaluate the posterior distribution (Z /X) of the latent variables Z (which source)
given the observed (visible) data variables X, and the evaluation of expectations
computed with respect to this distribution.”

Strategy for parametric models

Estimate p(Z|X) by estimating it’'s parameter 6

Condition we work on: The data are independently generated by
sources of data (distribution functions) and there are no (or ignorable)
dependency between the sources. Mixture models

Estimating it's parameter @ by evaluating the log likelihood p(x|0)

A method the solve log likelihood function is using Expectation Maximization




MIXTURE OF GAUSSIANS: LATENT VARIABLES (2)

The use of the joint probability p(x, z), leads to significant
simplifications

Prior probability of components

plzp =1)=m
constraints: 0 < m, < 1,and ), m. =1

p(z) = H;; '?Tzk

Gaussian function of each K mixing components

p(x|zk = 1) = N (x|pg, Xi)
p(x|z) = [T NV (x|, X ) *

Redistribution of Gaussian mixture model

p(x) =3, p(x.2) = 3, p(2)p(x[z) = 32 meN (2|, )



MIXTURE OF GAUSSIANS: LATENT VARIABLES (3)

Responsibility that component k takes for “explaining”
observation x:
the posterior probability once we observed X.

_ p(zk = 1)p(x|zk = 1)
Y 2L ) = 2. =1
F( R) p( k — |}{) Z;Lp( = l) (}{|~;L . l)
_ ;L,Ig,eﬂ& (x|;¢;¢,2;¢)
> o TN (X ek, Xi)




MIXTURE OF GAUSSIANS: MAXIMUM LIKELIHOOD

Log Likelihood function of observations
= {Xll cee XN}

In p(X|m, p, X) Z]H{ZTLJ\ (z|pr, L) }

Problems with Log Likelihood

Singularity when a mixture component
collapses on a data point

|dentifiability for a ML solution in a K-
component mixture there are K! equivalent
solutions.

* We assume we can use heuristics to
overcome these problems.

o

e,
Zn
Xn
)
S




MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES

Informal introduction of expectation-maximization
algorithm (Dempster et al., 1977).

Maximum of log likelihood:
Derivatives of In p(X|m, u, ) w.r.t parameters to O.

In p(X|, e, 22) Z]_ll {Z TN (|, Ek)}

n=1 k=1



MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES

SUMMARY
1. Initialize {ug, L, ™} and evaluate log-likeihood
2. E-Step: Evaluate responsibilities y(zy)
3. M-Step: Re-estimate paramters 8, using current
responsibilities y(z)
new __ 1 P
P = S (2 %: /(Zk)Xn
g = don },.-(z;;) ;T"'(ﬂk)(xn — i) (Xn — )"
_new __ Zn '.‘-"'(’Z-IJ)
Jlk — _f\.-'r
4. Evaluate log-likelihood In p(X|m, u, ) and check for

convergence of either the parameters or the log likelihood.
If convergence criterion is not satisfied return to step 2.



RELATION TO K-MEANS

K-means algorithm with the EM algorithm for
Gaussian mixtures shows that there is a close
similarity

K-means algorithm performs a hard assignment of data

points to clusters, in which each data point is associated
uniquely with one cluster,

the EM algorithm makes a soft assignment based on the
posterior probabilities.



MIXTURE OF GAUSSIANS:

Gaussian Mixture Distribution
K

PO = ) meN (I T

k=1

Where p(z;, = 1) = my, : prior prob. of z, = 1
1

1 1
N (x| gy, i) = 51 exp{— > x-—w'Z ' (x—mw}
(2m)2 [Z]2

Posterior probability of z, (responsibility) once we
observed a point X

e N (X|py, Zg)
KN (x|p), Z))

Y(zk) = p(z = 1x) =

Where 0, = {uy, Xy, T} and 0={04, ..., Ok}

Log Likelihood function

N

K
Inp (X|m, 1, X) = 7 ln{y . N (X py, Z) }

n=1 k=1

Mixture of Gaussians Model

|
(&S

p(x,z) = p(2)p(X|z)

e N number of D dimension
data X

X ={xq,... Xy}, x=1{xq1, ..., xp}

* N number of K dim. class
variable Z

Z=1{zq,..,2y},Z={2q, ..., 2¢}



MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES
SUMMARY

1. Initialize {uy, X, T} and evaluate log-likeihood
2. E-Step: Evaluate responsibilities y(zy)

1 N (X[ g, Zi)

j= i mN (x|, g )

Y(@zk) =p(zx = 1|x) =

3. M-Stdp: Re-estimate parameters 6, using current|responsibilities y(zy)
e : 1
o SRR IE“. Maximize log-likelihood
(DEW - (21)%y,
i >on ﬂﬂ) 2 Inp (X|m, p, %)

new __ E F}(/-'k‘)

?'k h
4. Evaluate log-likelihood In p(X|m, u, £) and check for convergence of either
the parameters or the log likelihood.
If convergence criterion is not satisfied return to step 2.




AN ALTERNATIVE VIEW OF EM: LATENT VARIABLES

Let X observed data, Z latent variables, parameters.
Goal: maximize marginal log-likelihood of observed data

Summation over the
Inp(X|0) = (X,Z10)} latent variables appears

inside the logarithm

Log-sum prevents the logarithm from acting directly on the joint distribution,
resulting on complicated expressions for the maximum log likelihood solution.



AN ALTERNATIVE VIEW OF EM: GENERAL EM ALGORITHM

Given a joint distribution p(X,Z |0) over observed variables X and latent
variables Z, governed by parameters 6, the goal is to maximize the
likelihood function p(X]|0) with respect to 6.

1.
2.

Initialization: Choose initial set of parameters 9°¢
E-step: use current parameters 0°'4 to compute.
— p(Z X, 68"

M-step: determing 8™¢% by maximizing Q (6, 6°'4)

new — b old
0 arge max (6, 6°%). Logarithm acts directly on the
Where v joint distribution p(X,Z |0) so

Q(0, 8°) = ¥ _p(Z |X, OOIQEID p(X,Z|0) maximization is_tractable
Inp(X16) (X,Z 10)}

Check convergence either the log likelihood or the parameter
values : stop, or 8°'4 «— 0™Y and go to step 2.



AN ALTERNATIVE VIEW OF EM:
GENERAL EM ALGORITHM FOR GAUSSIAN MIXTURE MODEL

Given a joint distribution p(X,Z |, u, X) over observed variables X and
latent variables Z, governed by parameters {m,u, X}, the goal is to
maximize the likelihood function p(X|m, u, ¥) with respect to {m, u, X}.

1. Initialization: Choose initial set of parameters {m®!¢, y°'d, xoldy

2. E-step: use current parameters {m®4, u°'¢,x°14} to compute.

e N (x| pg, Zy)
j= 17TJN(X|MJ'Z)
3. M-step: determine 8™FY by maximizing Q (6, 6°'?) I

{n_knew’ e, zkné W} = ar8im, pup 5, Max Ez[ In (X, Z| 1y, Uy, Zk)] ) 1
= g 2GR

= A8 im wi i) maxz Y Zu{Inmy, + In N Xy |y, Zi)} mpev - = 1( )Z (o) (% — i) (%0 — 1)
2n 7 (28)

>
p(ZX, BOId) EZ [an] — V(an) =

n=1

0"°Y = argy max Y, p(Z |X,0°YInp(X,Z |0). T = nﬁ
4. Check convergence either the log likelihood or the parameter
values : stop, or 8°'4 «— 0™Y gnd go to step 2.




\
Korea q\\\\ Stony Brook
REiE University

Instructor: Sael Lee
CS549 Spring - Computational Biology

LECTURE 11;
BIOMARKER DISCOVERY

Resources: Steven Skiena’s CSE 549 lecture 15-18 slides



WHAT IS A BIOMARKER?

Biomarker, or biological marker, is any type of

iIndicator of biological state.

“cellular, biochemical or molecular alterations that are
measurable in biological media such as human tissues,

Ce”S, or fluids.” - iss Huika (1990) New York: Oxford University Press]
It objectively measures the states of biology in
medicine, cell biology, geology, ecotoxicology, etc.

The most popular uses are in medicine to measure
states in:

Normal biological process

Pathogenic process
Pharmacological responds to therapeutics

http://www.news-medical.net/health/Biomarker-What-is-a-Biomarker.aspx



Presenter
A biomarker, or biological marker, is an indicator of a biological state. It is a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. It is used in many scientific fields. (wiki)

http://www.news-medical.net/health/Biomarker-What-is-a-Biomarker.aspx

CAPABILITIES OF BIOMARKERS [TABLE 1 OF MAYEUX, R. 2004]

Delineation of events between exposure and disease
Establishment of dose-response
|dentification of early events in the natural history

|dentification of mechanisms by which exposure and
disease are related

Reduction in misclassification of exposures or risk
factors and disease

Establishment of variability and effect modification
Enhanced individual and group risk assessments

Mayeux, R. (2004). Biomarkers: potential uses and limitations. NeuroRx : the journal of the American Society for Experimental
NeuroTherapeutics, 1(2), 182-8.



TYPES OF BIOMARKERS

W N

Exposure

Risk prediction

Environmental exposures,

effect modifies or risk factors.

Genetic susceptibility
Intermediate biomarkers

Biomarkers

Diseases

Screening/ classifying /
diagnosis / monitoring
disease progress
1. Screening,
2. Diagnostic tests, and
3. Prognosis predictions
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- Short Comes of Biomarkers

MARKERS

1. Difference in amount of an
external exposure

2. Difference in the way a
putative toxin is metabolized

3. Personal difference / Group
difference / measurement
error

1. Content validity
degree to which a biomarker reflects
the study

2. Construct validity
relevant characteristics of the
disease or trait

3. Criterion validity
1. sensitivity,
2. specificity, and
3. predictive power



Presenter
1) content validity, which shows the degree to which a biomarker reflects the biological phenomenon studied, 
2) construct validity, which pertains to other relevant characteristics of the disease or trait, for example other biomarkers or disease manifestations, and 
3) criterion validity, which shows the extent to which the biomarker correlates with the specific disease and is usually measured by sensitivity, specificity, and predictive power




DATA USED FOR BIOMARKER DISCOVERY

Bio-specimens used:

Blood, brain, cerebrospinal fluid, spinal fluid, muscle, nerve, skin, and
other body fluids

In both the healthy and diseased state

DNA, RNA, or protein
EX> Microarray chips, Genome sequences,

Cytogenetic markers
ex> chromosome structure

Tissue markers
Microscope level visible differences

Behavior markers
Measure toxicants in body fluids & tissues

Death of marker animals
Ex> environmental conditions.



FOCUSING ON GENE EXPRESSION

Certain technologies have been developed where
different compounds are anchored to tiny beads, so
reacting beads can be labeled, isolated, and identified.

But the best solution is to attach distinct compounds
to different regions of a solid substrate so you know
where they are.




WHAT DOES MICROARRAY MEASURE

Analysis of post translational modifications in genes
ex.> methylation states.

Sequencing variants of a known genome
detecting single nucleotide polymorphisms (SNPs)

|dentifying a specific strain of virus
(e.g. the Affymetrix HIV-1 array).

Measuring differential expression of all genes in tumor and
normal cells,

to determine which genes may cause/cure cancer



ldentify which treatment a specific tumor should respond best
to.

Paired treatment
Measuring differential expression of all genes in different
tissue types,

to determine what makes one cell type different than another.

Measuring differential expression of all genes in different time
Circadian rhythm

Measuring copy number variants from chromosomal anomalies
or cancet.

Obtaining individual’'s genotype / SNP data, e.g. 23andMe



DNA MICROARRAY

cDNA microarray YouTube 1. - Gabriel Mckinsey

DNA Microarray YouTube 2.

Single stranded DNA/RNA molecules are anchored by one end
to the plate/substrate.

These molecules will seek to hybridize with complementary strands
floating in solution.

The target molecules are fluorescently labeled,

so that the spots on the chip/array where hybridization occurs can be
identified.

The strength of the detected signal somewhat reflects the
amount of stuff which binds to it,

and thus the amount of the target in solution.
Such quantitative expression data is not very reliable, however.

http://www.3d-gene.com/en/about/abo_001.html



http://youtu.be/9U-9mlOzoZ8
http://youtu.be/9U-9mlOzoZ8
http://youtu.be/VNsThMNjKhM
http://www.3d-gene.com/en/about/abo_001.html
http://www.3d-gene.com/en/about/abo_001.html
http://www.3d-gene.com/en/about/abo_001.html

COMPLEXITY IN ANALYSIS OF MICROARRAY DATA

Underlying biological processes being investigated are
often not understood and are almost certainly
complex

Measures the steady-state level of an unstable
molecule , MRNA

Depends on the rate of transcription and degradation of the
MRNA.



CLASSIFICATION AND CLUSTERING PROBLEM

Finding Biomarkers using microarray data becomes
feature selection (gene selection) problem in
classification (supervised learning) and clustering
(unsupervised learning)



FEATURE SELECTION AND BIOMARKER DISCOVERY

Feature selection challenge specific to microarray
data:
Large feature (gene) and small number of data (samples)
Reproducibility is low
need stable feature selection method.

Cause of instability
Algorithm design without considering stability
The existence of multiple sets of true markers
Small number of samples in high dimensional data



FEATURE SELECTION

Selected features can be singular or form groups.
Singular: early onset genetic diseases

Group feature: complex diseases
cancer, diabetes, etc

Incorporation of prior-knowledge in to feature
selection.

Best to incorporate all we know esp. since variable
samples are always small
Interaction between genes
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LECTURE 12-13:
FEATURE SELECTION

Ref.
1. C. M. Bishop “Pattern Recognition and Machine Learning” 2" ed. & provided sides



TYPES OF FEATURE SELECTION METHOD

Filtering Methods

F5 space

O - | Classifier

relevance of features is
evaluated by looking
only at the intrinsic
properties of the data

* Often feature relevance
score is used to evaluate
each feature (gene)

Wrapper Methods

F5 spaca

model hypothesis
search is embed within
the feature subset
search

-> various subsets of
features are generated
and evaluated

/ Embedded Method \

FS U hypothesis space

optimal feature subset
search is built into the
classifier construction

-> a search in the

o

combined space of feature
subsets and hypotheses

/

Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19),

2507-17.



Chapter 3 of PRML
FEATURE SELECTION WITH LASSO REGRESSION MODEL



LINEAR BASIS FUNCTION MODELS (1)

Example: Polynomial Curve Fitting

y(z, w) = wo +wnx +wor® + ... +wyz™ = ij;cj



LINEAR BASIS FUNCTION MODELS (2)

Generally

where ¢;(x) are known as basis functions.

Typically, ¢,(x) = 1, so that w, acts as a bias.
In the simplest case, we use linear basis functions :

ba(x) = x4



LINEAR BASIS FUNCTION MODELS (3)

Polynomial basis function
S:

oi(x) = 2.

These are global; a small
change in x affect all basis
functions.




LINEAR BASIS FUNCTION MODELS (4)

Gaussian basis functions:

(z — py)*
¢i(r) = exp {_ 2323 }
These are local;

a small change in x only affect
nearby basis functions.

y; and s control location and sc
ale (width).

0754\ [\ [
05| |

025/




LINEAR BASIS FUNCTION MODELS (5)

Sigmoidal basis functions:

oo (52
where i12) S

1
1+ exp(—a)

o(a)

Also these are local;

a small change in x only affect
nearby basis functions.

y; and s control location and
scale (width).

0.75}

0.5

0.25}




MAXIMUM LIKELIHOOD AND LEAST SQUARES (1)

Assume observations from a deterministic function with added
Gaussian noise:

t=y(x,w)+e where p(e|B) = N(e|0,871)
which is the same as saying,

p(tlx,w,B) = N(tly(x,w), 7).

Given observed inputs,X = {x1,...,Xn~ } and targets,
t =[t1,...,tn]5 We obtain the likelihood function

N
likelihood function | p(t|X,w,B) = | [ N(tn|w ep(xn),87").

n=1




MAXIMUM LIKELIHOOD AND LEAST SQUARES (2)

N (e W7 02, 5™ =
(ﬁ)E eXp(_ g (tn - WT¢(Xn))2)

Log likelihood: 2m
N
Inp(tlw, 8) = > InN(tn|w ¢ (x,),87")
n=1
= %lnﬁ _ N In(27) —BEp (W)
where Relationship of log
N likelihood and sum-of-
1 squares error in univariate
Ep (W) — 5 Z{tn — WTQb(Xn)}z Gaussian noise model.
n=1

IS the sum-of-squares error.



REGULARIZED LEAST SQUARES (1)

Consider the error function:

ED (W) + )\EW (W)

Data term + Regularization term
With the sum-of-squares error (SSE) function and a
quadratic regularizer, we get

1 & A
5 Z{tn —wio(x,)} + §WTW
n=1

Ais called the
which is minimized by regularization

coefficient.

1
W — ()\I n <I>T<I>) Tt



REGULARIZED LEAST SQUARES (2)

With a more general regularizer, we have

N)Ir—l

Z{t — Wi (xn)} + Zl’wqu

N[

Ny

ANy
ol

Lasso Quadratic

Fig: Contours of the regularization terms



USING LASSO FOR FEATURE SELECTION

Lasso tends to generate sparser solutions

If Ais sufficiently large, some of the coefficients w;are

driven to zero, leading to a sparse model in which the
corresponding basis function pays no role.

Minimizing

general regularizer
—Z{t —wh(xa)} + qu

IS equivalent to minimizing the unregularized SSE subjected to
constraint

Lagrangian Multiplier

1 al q
Ep(w) = 5 Z{tn —wle(x,)}? Subjected to z|Wj| =7

j=1

n=1



REGULARIZED LEAST SQUARES (3)

Figure shows the minimum of the error function, subjected to constraint.
As A is increased, so an increasing number of parameters are driven to

Z€r0.,,, .

TE9ts lgrger

Contours of
unregularized SSE

Z{t ~ Wl (xa))?

Contours of the
regularization terms 2|WJ| =1

D —
¢
£

Quadratic

Q: So, how do we find the right A?

4

Lasso

’£b1 J=1

Lasso give sparse solution in
which w* = 0.



SUPPORT VECTOR MACHINES



KERNELS

The original feature space can always be mapped to
some higher-dimensional feature space (even infinite)
where the training set is separable

y
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®
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KERNELS

* The linear classifier relies on an inner product between vectors K(xi,xj)=xiTxj
* If every data point is mapped into high-dimensional space via some
transformation ®: x— ¢(Xx), the inner product becomes:
KX, X))= (D(Xi)T(D(Xj)
* A kernel function is some function that corresponds to an inner product in
some expanded feature space.

* Kernel function should measure some similarity between data
* kernel must be positive semi-definite
* You should scale the features to have same scale!!

* Most widely used is linear kernels and Gaussian kernels



GAUSSIAN KERNELS

|| x; — %12 . - D=1 (K — Xjx)*
P 2072

k(xi,xj) = exp (— 252

If x; and x; is similar:
02
k(xl-,xj) ~ exp (— ﬁ) ~ 1

If x; and x; is different:
(large number)?

k(xi,xj) ~ exp (— 2

If you use Gaussian kernel,
You will need to pick o

)~

(1, e)
(0, 1)

7

The natural exponential function
F
y=e



SUPPORT VECTOR MACHINES

SVMs constructs a maximum margin separator

SVMs create a linear separating hyperplane
But have ability to embed that in to higher-
dimensional space (via Kernel trick)

SVM are a nonparametric method

Retain training examples an potentially need to
store all or part of the data

Some example are more important then others (support
vectors)



SVM TERMS

* Distance from example X; to the separator is
_ (wTx+b)
" /Iwi

 Examples closest to the hyperplane are support vectors.
* Margin p of the separator is the distance between support vectors

Figure 18.30  FILES: . Support vector machine classification: (a) Two classes of points (black and
white circles) and three candidate linear separators. (b) The maximum margin separator (heavy line),
is at the midpeint of the margin (area between dashed lines). The support vectors (points with large
circles) are the examples closest to the separator.




MARGINS

Instead of minimizing expected empirical loss in the training data,
SVM attempts to minimize expected generalization loss.

y(x) = wTx + b where w is weight vector and b is bias
Xx=x 1 +r— (multiply wT and add b)

wix+b=wli(xl +r )+b (y(x) = wix+b)

y(x) =wlx 1 +rm+b (y(x L) = wix L +b =0)

y(x)—r wiw = |

/
/
/
/
/
/

Tx+b
A@/|lwl] orr = (i )/ l1wl|

b/[Iwl]



MAXIMUM MARGINS

¢ (x,) in the
feature space

_ (wTx+b)
"= /liwil

argmax,, p {m minn[tn(wan + b)]}

argmin, 5 ||wl |2

»

Solving this is non-trivial and will not be N
discussed in class w = Z Anty G (Xn)



SOFT MARGINS

Idea: Allow data point to be in the wrong side of the margin boundary, but with a
penalty that increases with the distance from that boundary.

Penalty for each data point : slack variable ¢
¢, = 0 if point is on the right side

én = |ty — y(xy,)| if point is on the wrong side
Such that

t,y(x,) =1—-§&,forn=1,..,Nand &, =0

« 0< ¢, <1 forpoints inside the margin
e ¢, = 1 for points on the margin
« ¢, > 1 for points that are on the wrong side

Goal now is to maximize the margin while softly penalizing points that lie on the
wrong side of the margin boundary

argminy, 62&1 + 2 lwlP?




OPTIMIZATION ON SOFT MARGINS

: 1
argming, CIN &+ >|Iwll?
subjected to t,,y(x,,) =1 —-§&,forn=1,..,Nand &, >0

: Complex calculations
&, slack variable for P

. Lagrangian
training data x,, E?f angla

N

W = Z anty ¢ (xp)
n=1

ZN . 0 a,, is Lagrangian multiplier

a =
n=g 0 related to w,
a,=C- Uy is Lagrangian multiplier

related to &,

1
b = N § (tn - E (amtm k(xnxm))
M neMm nes



PREDICTION USING KERNELS

y(x) = WT(.b(Xn) + b

N
w = z ant, d(x,) a,, is a Lagrangian multiplier
n=1

N
y(x) = z Antnk(X,%,) + b Any data point a,, = 0 will not appear in
n=1 the sum

New

Data Training data

Training data target (-1,1)
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LECTURE 14:

BIOMARKER DISCOVERY WITH FEATURE SELECTION
METHODS

Resources: .

* Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., & Saeys, Y. (2010). Robust biomarker identification for cancer diagnosis with
ensemble feature selection methods. Bioinformatics .26(3), 392-8.

* Guyon, |, Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene Selection for Cancer Classification using Support Vector Machines.
Machine Learning, 46(1-3), 389-422.



ROC CURVE

100%

True Positive Rate

(sensitivity)

0%

0% 100;/0
False Positive Rate
(1-specificity)



AREA UNDER ROC CURVE (AUC)

x Overall measure of test performance

x Comparisons between two tests based on
differences between (estimated) AUC

x For continuous data, AUC equivalent to Mann-
Whitney U-statistic (nonparametric test of
difference in location between two populations)



AUC FOR ROC CURVES

100%
: AUC = 1007
© o o
o
]
2
=
[92]
]
(ol
]
2
—
O »
s 100
% False Positive %
Rate
100%
o
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=
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0 o 100
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100%
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100%
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o
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PROBLEMS WITH AUC

x No clinically relevant meaning

x A |ot of the area is coming from the range of large
false positive values, no one cares what’s going on
In that region (need to examine restricted regions)

x The curves might cross, so that there might be a
meaningful difference in performance that is not
picked up by AUC
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LECTURE 15:
ANALYZING PROTEIN STRUCTURE AND DYNAMICS

Resources:
Slide 9 of Protein Bioinformatics, Spring 2013 Daisuke Kihara

Wikipedia



TRANSLATION PROCESS

Codon: Three nucleic acid coding one of 20

(-r»-qﬁiﬂ:::d amino acid (alphabet of 20 size) + START &
olele STOP CODEN

The Genetic Code: The colour wheel reveals.

o RNA triplet codes for various omino acids,

b ] the links in the chain of protein molecules.

For exomple, the code GAG demands the

—_— ribosoma N Q j/\l)LOH crathmant of @ gt a5 ik 1 61
NH;

direction of translation rmessenger EMN& =ubunits HOMOH N o Hotc how o o rddon o
o [} | leucine profecion against mutations. -

= NH, This diogram was taken from P.W. Afkins’

/CeHiaNOz Galileo's Finger, | x;mw added colour

o
glutamic acid
Hf”\)LDH phenylalanine o ond structural formuio:
Cyl

palypeptide chain armino acid

|
CsHgNO, /
1 T Lo HNO;
)‘\-/YOH glycine N / HO' OH
aspa /

transfer EN& that
donated a segrient

anticodons
B ) oysiene
~~ C;HyNOSS
ressenger RM& Qj/\,)‘ou
G I
G ¢ A ribozamal “prmha':“
I u subunits ° .
cAG L& g <1
4G fCuguucoch AGrCU \ Proline
5 et Cy G oH
! NH
—_— et A 2 Py / proline (Pro; P)
A / N CsHaNO,
direction of translation H‘Mcnd::.ng/’ o NG / )
£ 2006 Encyclopsdia Britannica, Ine. emenne - NH e

http://content.answcdn.com/main/content/img/Britannic
aConcise/images/ 780.gif

Start codon: AUG ( also Methionine (Met, M))
Stop codon: UAA, UAG, UGA



PROTEIN STRUCTURE

Amino Acid Sequence

APRKEFEFVGGNWKMNGDKKSLGELIHTLNGAKL
SADTEVVCGAPSIYLDFARQKLDAKIGVAAQN
CYKVPKGAFTGEISPAMIKDIGAAWVILGHSE
RRHVFGESDELIGQKVAHALAEGLGVIACIGE
KLDEREAGITEKVVFEQTKAIADNVKDWSKVV
LAYEPVWAIGTGKTATPQQAQEVHEKLRGWLK s
SHVSDAVAQSTRIIYGGSVTGGNCKELASQHD
VDGFLVGGASLKPEFVDI INAKH

General Structure of AA

Amino
Group

Carboxyl
Group

Side
Chain

triosc phosphatc 1somcrasc (1T1M)

bad:bone
(N, CA,C, Q"%

caroon




AMINO ACID AND MAIN CHAIN

Amino acid (1) H Amino acid (2) H

Water
Dipeptide
http://en.wikipedia.org/wiki/Amino_acid
Sow o TR Ty i T
PN IV PN 3
/\‘/\N/|ﬂ\\ﬂ/\f/\\N/|\r/
S 1 T N
\R Jl . H 0. R ©
\\ Pepudebond’;r,h_______‘_---"‘ The backbone

R Residues~


http://en.wikipedia.org/wiki/Amino_acid

* Dihedral Angles (Torsion angles):
Angels between two planes.

¢ (phi, involving the backbone atoms C'-N-C*-C*)
W (psi, involving the backbone atoms N-C*-C'-N)
o I ¢ controls the C'-C' distance, y controls the N-N
distance
e rotations about ¢ and p angles are the softest



* w (omega, involving the backbone atoms C*-C'-N-C%).

* W controls the C%-C® distance

« Peptide bond usually restricts w to be 180° (the typical trans case)
or O° (the rare cis case).

Peptide

\ / H torsion
] angles.

alpha

/phl ps ﬂ \ /

‘ Qmega alpha

SN

H



RAMACHANDRAN PLOT

| A AN B N A A NY |

pdblaxc
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et ! ~ | B

-5 - '...._ -\

o (__,——J .

-1354 B |

- il

T T ) T T ) .
45 0 45 i) L35 30

Phi {degress)

The red, brown, and yellow regions represent the
favored, allowed, and "generously allowed" regions as
defined by ProCheck

https://en.wikipedia.org/wiki/Ramachandran_plot

A Ramachandran plot

Is a visualization tools for visualizing
backbone dihedral angles g against ¢ of
amino acid residues in protein structure.

” LI i MR G
| T \

e ﬁmzvaﬂ
e s R

L]

FRamachandran plot forthe Ramachandran plot for

general case; data from Glycine
I mwall 200072

FRamachandran plot for FRamachandran plot for
Proline pre-Proline


https://en.wikipedia.org/wiki/Ramachandran_plot

PROTEIN SECONDARY STRUCTURES

Proteins packs the hydrophobic side chains inside the molecule.
Proteins have hydrophobic kernel and hydrophilic surface.

The backbone is polar, hence hydrophilic.
To neutralize this hydrophility there are hydrogen bindings between

NH and CO on the backbone.
This is done by constructing regular secondary structures

Helices, alpha most usual
Beta sheets




ALPHA HELIX

Alpha-helix:
&R® P  Right-handed helix
q ,‘?4" ¥e * 3.6 residues per helix turn
* Hydrogen bond between n and n+4

Figure B.6 (a) Schematic of the hydrogen bonding forming an a-helix. (b) For the
hydrogen bonding to take place. the sequence must be formed as a helix in the space.



BETA SHEETS

Antiparallel beta-sheet  The different types of
4 4 beta-sheet. Dashed lines

1 | indicate main chain
..... hydrogen bonds.
- - F Y F s & &
----- N— e "’, = .
v v . RNl N iy
~ 1 ]
P Eoal "Lagl S
[ 3 & 3 F 1 T - - I
.--""‘_--""_,.w"" - N
. === " " o
S h’"“‘__ "‘-n.‘_“ ¥ P - v
- F - Mixed beta-sheet
“,:" Ly

Parallel beta-sheet

WA 7 AP A

c
A ic-N M é_N foall N R \:,N
v i AN \
C{/H o'flc/r-{of}:/H/O .
i

L

Parallel Antiparallel
connection connection Diagram 1: Beta pleated sheet. The lateral groups (R) are not shown.

Figure B.7 A B-sheet formed of three A-strands, with one parallel and one antiparallel
set of H-bonds. Note that strands near in space do not need to be near in sequence.



BETA-TURN

* 4 residues in length
* Enables structure to have an 180 degree turn

imtech.res.in



http://imtech.res.in/raghava/betatpred/intro.html

PROTEIN TERTIARY STRUCTURE

Driving force for folding:
» Hydrophobic effect
* Electrostatic

e Hydrogen bond
* Disulfide bond




PROTEIN STRUCTURE CLASSIFICATION
-SCOP (STRUCTURAL CLASSIFICATION OF PROTEINS)

Classes:
All alpha proteins (126)
All beta proteins(81)

Alpha and beta proteins (a/b) (87)
Mainly parallel beta sheets (beta-alpha-beta units)

Alpha and beta proteins (a+b) (151)
Mainly antiparallel beta sheets (segregated alpha and beta regions)

Multi-domain proteins (alpha and beta) (21)
Folds consisting of more than one domain of different classes

Membrane and cell surface proteins and peptides (10)
Does not include proteins in the immune system

Small proteins (44)
Usually dominated by metal ligand, heme, and/or disulfide bridges

Coiled coil proteins (4)

Low resolution protein structures (4)

Peptides (61)
Peptides and fragments

Designed proteins (17)
Experimental structures of proteins with essentially non-natural sequences




SCOP CONT.

1 wunits of secondary structure / [I\ / B \
2 supersecondary structure o B[IB BB
larger associations of - vy sg. Bafa e 3
@ | 5 secondary structures g g B B g B BB
= close together in the 4-helix bundle Rossman fold reek ey
c seqUence
£
9 g still larger £.4. lysozyme g4, lactate e.4. iImmunoglobulin
associations domain 2 dehydrogenase domain { 10 strands)
(8 helices) domain 1

(2 Rossman folds)




PROTEIN STRUCTUR

C
CATH DATABAS

Class, Architecture, Topology, Homology

A

E

IFICATION =

Architecture: the global spatial

arrangement of 2ndary structure segments

Topology: connectivity of the 2ndary
structure segments is also counted

;

Protein structure comparison program, i
SSAP is used
Class | Architecture  Topology | Homologous Superfamily | 535 Family | 560 Family | 595 Family | 5100 Family | Domains
1 5 376 B39 2763 3571 4679 9217 32396
2 20 223 514 2514 3573 bB6E 9824 39140
3 14 aTT 1082 5549 8381 10626 21500 79038
4 1 101 114 204 253 352 RAT 2346
Total |40 1282 2549 11330 15778 21325 41488 152920

[f-lactamase
(1mblA1)



CANNOT USE PURE DYNAMIC PROGRAMMING FOR STRUCTURE
COMPARISON

(a) (b)

Figure 8.18 Illustration that dynamic programming cannot
be used directly for structure alignment (see the text).



FRAMEWORK FOR PAIRWISE STRUCTURE COMPARISON

Structure 1 Structure 2

2z &

I Feature extraction \

i,
Structure Structure
description { description 2
s - _ - -
. -
N e

\ !

-

o Constraints
Comparison

Algorithm ~=———— Scoring
!

|
Y
P RMSD
Eqguivalence
1 T Score
!
\
As‘s‘essr{mrt

~ _ s
= Statistical significance

Accurate?



PROTEIN DYNAMICS

Induced fit model:

Glucose
substrate

® 2001 Sinauer Associates, Inc.,

Molecular Dynamics Extended Library:
http://mmb.pcb.ub.es/MoDEL/ :
test searching 1e5w & 1AHR
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LECTURE 16:
PCA AND SVD

Resource:
PCA Slide by lyad Batal
Chapter 12 of PRML
Shlens, J. (2003). A tutorial on principal component analysis.



PRINCIPLE COMPONENT ANALYSIS

PCA finds a linear projection of high dimensional data
Into a lower dimensional subspace such as:

The variance retained is maximized.

The least square reconstruction error is minimized




PCA STEPS

Linearly transform an NXd matrix X into an NXm matrix Y
Centralized the data (subtract the mean).

Calculate the d X d covariance matrix; C = ﬁXTX

1
Ll N-1

C;; (diagonal) is the variance of variable i.

N
¢ q=1Xq,in,i

C; ;j (off-diagonal) is the covariance between variables i and j.

Calculate the eigenvectors of the covariance matrix
(orthonormal).

Select m eigenvectors that correspond to the largest m
eigenvalues to be the new basis.



EIGENVECTORS

If A is a square matrix, a non-zero vector v is an
eigenvector of A if there is a scalar A (eigenvalue) such
that

Av = v

Example: @ 2) (3) _ (182) — 4 (3)

If we think of the squared matrix A as a transformation
matrix, then multiply it with the eigenvector do not
change its direction.



Step 1: subtract the mean and calculate the

covariance matrix C.

c=(

0.716 0.615
0.615 0.616

)

' " jpCAdata.dat”

+




Step 2: Calculate the eigenvectors and eigenvalues of
the covariance matrix:
\,>1.28, v, = [-0.677 -0.735]", A, =0.49, v, = [-0.735 0.677]"

Mean adjusted data with eigenvectors overlayed

2 \ I I I I I I
i " "PCAdataadjust.dat"  +
Notice that vl and v2 (- 740682469/ 671855252)
(-.671855252/- TA0682460)°X -
are orthonormal: 15 F T
T |= 1 F \\ + a
v, [=1
*u, + "
|1?2|:]_ 0z L + |
vy -V =0 R A
. .
+ +
05 - i
4
1 F ) + _
15 F i




Step 3: project the data

LetV = [vq, ... U] is dXm matrix where the columns vi are
the eigenvectors corresponding to the largest m eigenvalues

The projected data: Y=X I/ is NXm matrix.
If m=d (more precisely rank(X)), then there is no loss of

information!

Mean adjusted data with eigenvectors overlayed

2
2 S T T T T T " rdot ' v
. "peAdataadiust dat' | + Jdoublevecfinal.dat" +
(-. 740682469/ 671855252 x
(-.671855252/- 740662469) % 15 L
1.5 :
1 + 1
+
05 | - 05 -
+
0 0 + +
.- ™ +
L +
05+ 05
A
-1 . + -1
A
a5k ‘ 15
] ! ! . 2 1 | 1 1 I
-2 1.5 1 0.5 0 05 1 1.9 - -1.5 0.5 0.5 1 1.5




Step 3: project the data

A,=1.28, v, = [-0.677 -0.735]", A, =0.49, v, = [-0.735 0.677]"

The eigenvector with the highest eigenvalue is the
principle component of the data.

if we are allowed to pick only one dimension, the
principle component is the best direction (retain the
maximum variance).

OurPCis v; ~ [—0.677 — 0.735]T




SINGULAR VALUE DECOMPOSITION(SVD)

Any N Xd matrix X can be uniquely expressed as:

N xd N xr rXTr rxd

X=UxXxVI

r is the rank of the matrix X (# of linearly independent

columns/rows).
U is a column-orthonormal N Xr matrix.
2 is a diagonal rXr matrix where the singular values ai are sorted
in descending order.
V is a column-orthonormal d Xr matrix.




PCA AND SVD RELATION

Theorem:
Let X = UX VT be the SVD of an NXd matrix X and

C = ﬁXTX be the d Xd covariance matrix.

The eigenvectors of C are the same as the right singular
vectors of X.

Proof:
XTX=VXUTuxvi=vyzsvr=yx2yr
ZE
C=V VT
N-1

But C is symmetric, hence C = VAVT
Therefore, the eigenvectors of the covariance matrix C are the same as

matrix V (right singular vectors) and
2
i

the eigenvalues of C can be computed from the singular values A; = v



ASSUMPTIONS OF PCA

|. Linearity

[l. Mean and variance are sufficient statistics.
Gaussian distribution assumed

lll. Large variances have important dynamics.
IV. The principal components are orthogonal



PCA WITH EIGENVALUE DECOMPOSITION

function [signals,PC,V] = pcal(data)

% PCA1: Perform PCA using covariance.
% data - MxN matrix of input data

% (M dimensions, N trials) % find the eigenvectors and eigenvalues
% signals - MxN matrix of projected data [PC, V] = eig(covariance);
% PC - each columnis a PC
% V - Mx1 matrix of variances % extract diagonal of matrix as vector
V = diag(V);

[M,N] = size(data);
% sort the variances in decreasing order
% subtract off the mean for each dimension  [junk, rindices] = sort(-1*V);

mn = mean(data,2); V = V(rindices);

data = data - repmat(mn,1,N); PC = PC(:,rindices);

% calculate the covariance matrix % project the original data set
covariance = 1 / (N-1) * data * data’; signals = PC’ * data;

Shlens, J. (2003). A tutorial on principal component analysis.



PCA WITH SVD

function [signals,PC,V] = pca2(data)

% PCA2: Perform PCA using SVD.

% data - MxN matrix of input data

% (M dimensions, N trials)

% signals - MxN matrix of projected data
% PC - each column is a PC

% V - Mx1 matrix of variances

[M,N] = size(data);
% subtract off the mean for each dimension
mn = mean(data,2);

data = data - repmat(mn,1,N);

% construct the matrix Y
Y = data’ / sqrt(N-1);

Shlens, J. (2003). A tutorial on principal component analysis.

% SVD does it all
[u,S,PC] = svd(Y);

% calculate the variances
S = diag(S);
V=S.*¥S;

% project the original data
signals = PC’ * data;
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LECTURE 17:
KERNEL PCA



KERNEL-BASED FEATURE EXTRACTION

PCA can only extract a linear projection of the data
To do so, we first compute the covariance matrix

[ &
S = Nz X, X0
n=1

Then, we find the eigenvectors and eigenvalues
Su; = Aju;and ul u; =1

SU =AU
And, finally, we project onto the eigenvectors with largest
eigenvalues

y = Ux

Can the kernel trick be used to perform this operation
implicitly in a higher-dimensional space?
If so, this would be equivalent to performing non-linear PCA in the
feature space



linear PCA kernel PCA
) Fy _‘ R] ..__.-i RE ] i-.l...__.-'
xi:-’ -"'.r 4 :f!-'f i1 . |
:} I ...-'r 1_ (TTTTTETTITTT o ,-"'..I:";? -
4 Ay Bl S L ’:1"; ;i .: - ':I, - T, e
A/ Hxy)=(xy) TS Hxy) = (=)

Fig. 1. Basic idea of kernel PCA: by using a nonlinear kernel function & instead of

the standard dot prodoct, we implicitly perform PCA in oa possibly high—dimensional

space £ owhich 1s nonlinearly related to input space. The dotted lines are contour lines
ol constant feature value.

Scholkopf, B., Smola, A., Muller, K. R., & Kybernetik, M.
(n.d.). Kernel Principal Component Analysis, 2-7.



DERIVING KERNEL-PCA

* Assume zero mean data (centralized data points)
1. Project the data into the high-dim feature space M

®:RP - RM;x - ¢(x)
2. Compute the covariance matrix

* Assume that projected data has zero mean (we will deal with it
later)

N
C = %z PO

3. Compute the principal components by solving the eigenvalue problem
Cv; = A;v; wherei =1..M
or Cv = Av

The challenge is... how do we do this implicitly?

Scholkopf et al., (Neural Computation, 1998)
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LECTURE 19:
DRUG DISCOVERY & CHEMOINFORMATICS
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TYPICAL RATIONAL DRUG DISCOVERY PROCEDURE

- A =g ¥y 8 8§ B F

o Assay
Target Discovery Target Validation Development
. Lead
Screening Hits to Leads Optimization
Toxicity Drug Drug Animal Cell-

Test Absorption Metabolism " Test Based Test




Target Selection

Target Target Assay
Discovery Validation Development
4 4
Computational Druggability :
Functional Structure
Genomics Analysis

PDBID: 2VUK
Cellular tumor antigen
p53 core domain

Computational Study

Experimental Study
[Yeang et al. The FASEB Journal 2008;22:2605-262]



Computational | DEF.: Computational methods that make s use of the
Functional large scale genomic data to describe gene (and
Genomics protein) functions and their interactions.

“A yeast genetic
“A yeast protein-protein network “

- interaction network”

Lethal

Slow growth
Unknown
Non-lethal

e 0 0 @

signaling pathways & '

Rour

-
g 7l
“G-protein-dependent .

regulated through

activation of PAR-1.” e An E. coli metabolic network with 574 reactlons and

473 metabolites colored according to their modules”




- DEF.: The suitability of a portion of a protein or
protein complex to be targeted by a drug, especially
by a small molecule drug.

Druggability :
Structure Analysis




Computational determination of three dimensional
structure of macro-molecules given their primary
structure (amino acid sequence/DNA sequence/RNA
sequence)

Types of structure prediction
Protein structure prediction
Ab-initial structure prediction

Homology modeling Structural searching is
Threading important

RNA structure prediction
DNA structure prediction



Protein-ligand / drug |ldentifying potential ligand/drug binding sites in
bindi it dicti proteins using geometric properties such as
In mg SIteé preaicton pocket-like shape and evolutionally conservation

information.

Some methods using geometric properties:

*SURFNET searches for a gap in a protein surface by fitting spheres inside the
convex hull. [Laskowski RA. J Mol Graph1995;13:323-328]

*PocketPicker and LIGSITE locate a protein onto a three-dimensional (3D) grid and
scan it for protein-void-protein events in many directions [Weisel et al. Chem Cent J
2007;1:7, Hendlich et al. J Mol Graph Model 1997;15:359-363]

*VisGrid uses the visibility of surface points to find pockets.

*PocketDepth clusters grid cells using information of the depth of the grid cells.
[Kalidas & Chandra J Struct Biol 2008;161:31-42]

** Several methods consider additional information, such as sequence
conservation and energetics which are often combined while considering
geometrical shape.



© Lead Discovery/ Development

Screening Hits to Leads

Lead
Optimization

LVirtuaI Screening ‘ Docking I l

Y

Protein Design and Optimization

11



Computational quick search of large compound libraries

Virtual in order to identify those structures which are most likely
Screening to bind to a drug target, typically a protein receptor or
enzyme.
Chemoinformatics \\\ Chenisty Spce 102 1010

108

» Similarity between known drugs or ones \\ renl oeeuie
that have predefined properties \s Molecules | 10%
Molecular interaction predict \\\ e |1
» Computational determination of whether a- \d 10
interact. -

Types of interaction prediction
Protein-small molecule interaction prediction

Protein-protein interaction prediction

virtual screening are generally good at eliminate the bulk of inactive
compounds (negative design). Actual selection of bioactive molecules for a
given target requires more improvement(positive design).

13



“Computational methods that predict the preferred orientation
Docking of one molecule to a second when bound to each other to form

a stable complex.”[Lengauer & Rarey Curr. Opin. Struct. Biol. 1996; 6 (3):
402-6]

Protein-ligand docking
Catalyze enzymatic reactions
Metabolic processes
Pocket like shapes

1AOI: ATP binding | +
protein legx 1jr8
[Chikhi et al Proteins 2010] [Sael et al. UMS 2010]

Protein-protein docking
Permanent complex
Transient interaction
Mostly flat region

1AY7: Ribénuclease Sa/Barstar
complex

[Venkatraman et al. BMC Bioinformatics 2009]

Many of these problems deals with bio-molecular surface comparison.

14



CHEMOINFORMATICS &
LIGAND-BASED VIRTUAL SCREENING

Resource:

* Brown, N. (2009). Chemoinformatics—an introduction for computer scientists. ACM Computing Surveys, 41(2), 1-38.

» Karsten Borgwardt and Xifeng Yan | Part 8 I: Graph Mining

* Takigawa, |., & Mamitsuka, H. (2013). Graph mining: procedure, application to drug discovery and recent advances. Drug discovery
today, 18(1-2), 50-7.



THE SIMILAR-STRUCTURE, SIMILAR-PROPERTY PRINCIPLE

The fundamental assertion of chemoinformatics is the similar-structure,
similar-property principle (similar property principle)
* similar molecules will also tend to exhibit similar properties; this is
known as
 “ ..the so-called principle of similitude, which states that systems
constructed similarly on different scales will possess similar properties.”
[Johnson and Maggiora 1990, page 18]

Problems are solved by determining of structural similarity between two
molecules, or a larger set of molecules.

Similarity searching in virtual screening from a problem-centric rather than a
method centric perspective is needed, depending on what is already known
about a target and its ligands.




CHEMICAL SEARCH SPACE

Chemistry spaceis the term given to the space that contains all of the theoretically
possible molecules and is therefore theoretically infinite.

Druglike chemistry space : a set of empirically derived rules is used to define
molecules that are more likely to be orally available as drugs.

Reduced druglike chemistry space is estimated to contain anything from 1012
to 1018% molecules

Goal of chemoinformatics is to assist in 1) filtering the space of available
molecules to something more manageable while also 2) maximizing the chances
of a) covering the molecules with the most potential to enter the clinic and b)
maintaining some degree of structural diversity to avoid prospective
redundancies or premature convergence.

Brown, N. (2009).



CHEMISTRY AND GRAPH THEORY

The molecular graph is a type of graph that is undirected and where the nodes are
colored and edges are weighted where the nodes are the atoms of a molecule and

the edges are the bonds.

The individual nodes are colored according to the particular atom type: carbon
(C), oxygen (0), nitrogen (N), chlorine (Cl),etc.,
The edges are assigned weights according to the bond order: single, double,
triple, and aromatic.
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Fig. 5. The hydrogen-depleted molecular graphs of
(a) caffeine, (b) aspirin, and (c) D-lysergic acid
diethylamide. (N Brown 2009)



VARIOUS GRAPH MINING-BASED APPROACHES

Structures / features as graphs

COOOO—COJ

™ b e

Two-step approaches

Applications

General statistical methods Data profiling

Discriminant analysis
Regression analysis

Fingerprint
Data visualization
Topological index

= =

Cluster analysis Database searching

Similarity measure . )
ty Machine learning

T U TR S

%b’d Graph-based approaches

2> ‘graph kernels’: show similarities between
two graphs or chemical compounds to

Kernel methods

evaluate similarities between two graphs
“graph” kernels + Inner-product based models

i QSAR prediction
SWVM, Ridge regression, FDA, PCA. ... ) .

3> ‘frequent subgraph mining’, which
enumerates all subgraphs that occur more
than or equal to a preset threshold to indentify
Frequent/Significant subgraph minin{  structural features embedded in given graphs.

Explicit pattern discovery

Sparse machina-learning models
Adaboost, LPboost, LARS/LASSO, PLS, ..

Drug Discovery Today

FIGURE 1

Three types of graph mining approaches. Abbrevations: ADME/Tox: absarption, distribution, metabolism, excretion and toxicology; LARS: least square regression;
LASS0O: least absolute shrinkage and selection operator; PCA: principal component analysis; PLS: partial least squares; Q5SAR: quantitative structure-activity

relationship; SVM: support vector machines.

Fig. from Takigawa, I., & Mamitsuka, H. (2013).



FREQUENT SUBGRAPH MINING

Frequent subgraph mining is used for analyzing structural fragments or partial
structures and molecular graphs.

A data set of molecular graphs “Frequent” subgraph pattems
OH
o 5/5 4/5
Oy _OH OH
AN HN o =
© Frequent subgraph mining
F HN @ HNT
HN
- - F . Cl Cl — o
5/5
OH HC :
OH List all subgraph patterns
D)D D)D that occur in at least N of @
HN i
given graphs 4/5
H.C Hil n Ok
: H,C
Ci
Dirug Discovary Today

FIGURE 3
Frequent subgraph mining. Mote that this example does not consider aromaticity, however, it can be incorporated.

Fig. from Takigawa, |., & Mamitsuka, H. (2013).



SUBGRAPH ISOMORPHISM

Problem: Given two graphs G and H as input, determine whether G contains
a subgraph G’ that is where two vertices u and v of G’ are adjacent in G’ if
and only if f(u) and f(v) are adjacent in H (isomorphic to H)
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“subgraph isomorphism problem’ is theoretically proven to be NP-complete.
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*  “Graph kernels and chemoinformatics” Jean-Philippe Vert. Slides from Gbr'2007



GRAPH ISOMORPHISM

Graph isomorphism

Find a mapping f of the vertices of (; to the vertices of G, such that G4
and G, are identical; i.e. (x,y) is an edge of G4 iff (f(x),f(y)) is an edge of G,.
Then f is an isomorphism, and G; and G, are called Isomorphic

* No polynomial-time algorithm is known for graph isomorphism
 Neither is it known to be NP-complete

Subgraph isomorphism

(; and G, are isomorphic if there exists a subgraph isomorphism
from G, to G, and from G, to G4

e Subgraph isomorphism is NP-complete

We want polynomial-time similarity measure for graphs



MEASURING GRAPH SIMILARITY 1

Graph Edit Distances

Principle

 Count operations that are necessary to transform G1 into G2

* Assign costs to different types of operations (edge/node
insertion/deletion, modification of labels)

Advantages

* Captures partial similarities between graphs

* Allows for noise in the nodes, edges and their labels

* Flexible way of assigning costs to different operations

Disadvantages

 Contains subgraph isomorphism check (NP-complete) as one
intermediate step

* Choosing cost function for different operations is difficult




MEASURING GRAPH SIMILARITY 2

Topological Descriptors

Principle
 Map each graph to a feature vector (ex> finger printing methods)
* Use distances and metrics on vectors for learning on graphs

Advantages
e Reuses known and efficient tools for feature vectors

Disadvantages
* Most feature vector transformation leads to loss of topological information
* Orincludes subgraph isomorphism as one step



MEASURING GRAPH SIMILARITY 3:

Graph Kernels: Kernels on pairs of graphs

Principle
* Let ¢(x) be a vector representation of the graph x
The kernel between two graphs is defined by:
K(x,x) = ¢()" ¢p(x)
To solve convex optimization with kernels, kernels needs to be
 Symmetric, that is, k(x, x’) = k(X’, x), and
* Positive semi-definite (p.s.d.)
Comparing nodes in a graph involves constructing a kernel between nodes
Comparing graphs involves constructing a kernel between graphs.

Advantages
e Similarity of two graphs are inferred through kernel function

Disadvantages
* Defining a kernel that captures the semantics inherent in the graph structure
and is reasonably efficient to evaluate is the key challenge.



GRAPH KERNELS TERMINOLOGY

 Agraph G as a triplet (V, E, [), where Vis the set of vertices, E is the set of
undirected edges, and [ : V — X is a function that assigns labels from an
alphabet X to nodes in the graph.

* The neighborhood N (v) of a node v is the set of nodes to which v is
connected by an edge, thatis N (v) = {v'|(v,v") € E}.

For simplicity, we assume that every graph has nnodes, medges, and a
maximum degree of d. The size of G is defined as the cardinality of V.

* A path is a walk that consists of distinct nodes only.

« Awalkis a sequence of nodes in a graph, in which consecutive nodes are
connected by an edge. walk extends the notion of path by allowing nodes to
be equal

* A (rooted) subtreeis a subgraph of a graph, which has no cycles, but a
designated root node.

* The height of a subtree is the maximum distance between the root and any
other node in the subtree.




GRAPH KERNELS TERMINOLOGY CONT.

Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

VG]_,GZ € X,dK (61,62) — Oﬁ G]. = GZ

Equivalently, ¢(G,) # &(G4) if G; and G, are not isomorphic.

* If a graph kernel is not complete, then there is cannot cover all
possible functions over X: the kernel is not expressive enough.

 On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical applications.

* Can we define tractable and expressive graph kernels?

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem. (Gartner et al., 2003)




GRAPH KERNELS TERMINOLOGY CONT.

subtree patterns (also called tree-walks, Bach, 2008) can have
nodes that are equal .

! ol - Pt T
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Figure 1: A subtree pattern of height 2 rooted at the node 1.
Note the repetitions of nodes in the unfolded subtree pattern
on the right.

Note that all subtree kernels compare subtree patterns in two graphs,
not (strict) subtrees.



PATH KERNEL

A path of a graph (V,E) is sequence of distinct vertices

Vy,..., 0 €V (I #j= v; #v;)suchthat (v;,v;4q) €Efori=1,...

Equivalently the paths are the linear subgraphs.

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpaen(G1,G2) = ) Ay by (G)bi (G2)

HEeP

where P C X is the set of path graphs.

NOTE: Computing the path kernel is NP-hard. (Gartner et al., 2003)



EXPRESSIVENESS VS COMPLEXITY TRADE-OFF

It is intractable to compute complete graph kernels.
It is intractable to compute the subgraph kernels.

Restricting subgraphs to be linear does not help:

it is intractable to compute the path kernel.

One approach to define polynomial time computable graph
kernels is to have the feature space be made up of graphs
homomorphic to subgraphs, e.g., to consider walks instead of

paths.




RANDOM WALKS

Principle (Kashima et al., ICML 2003, Gaertner et al., COLT 2003)
« Compare walks in two input graphs G and G’
 Walks are sequences of nodes that allow repetitions of nodes

Computation

 Walks of length k can be computed by looking at the k-th power of the adjacency
matrix

e Construct direct product graph of G and G’

« Count walks in this product graph Gy = (Vy, Ex)

« Each walk in the product graph corresponds to one walk in G and G’

Vx| oo

kx(G,G) = ) ) A ALy

ij=1 k=0

Some proposed speed up:

e Fast computation of random walk graph kernels (vishwanathan
et al., NIPS 2006)

* Label enrichment and preventing tottering (vane et al., ICML 2004)
* Graph kernels based on shortest pathskriegel, Icom 2005)

Runtime in 0(n®)



PRODUCT GRAPH

Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled
vertices. The product graph G = G1 X G2 is the graph G = (V,E) with:
V = {(vy,v,) €V; X V,: vy and v, have the same label},

E = {((vli Vz); (v:’l)vé)) € VxV: (vllv:’l) € El and(UZJ vé) € EZ}

1 a b 1b Z2a 1d
o—C o—0O O
1o le
2 c
la 2b 2d
~ O
e
3 4 d =
4c de
Gl G2 Gl x G2

* Product graph consists of pairs of identically labeled nodes and edges
from G1 and G2




WALKS

A walk of a graph (V,E) is sequence of v4,..., v, € V such that
(vi,vi+1)€eEfori = 1,...,n — 1.

We note W,,(G) the set of walks with n vertices of the graph G, and
W (G) the set of all walks.




WALK KERNELS
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TOTTERING

Tottering (Mahe et al., ICML 2004)

A tottering walk isa walk w = v, ...v, withv; = v; + 2 for some i.
* A walk can visit the same cycle of nodes all over again

* Kernel measures similarity in terms of common walks

* Hence a small structural similarity can cause a huge kernel value

* Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).

— —. _ .
_\A_’) {A/_ .—C)—. Non-tottering

Tottering o 0 @
E' ': ® @ Tottering

G G*




LABEL ENRICHMENT:; MORGAN INDEX (1965)

e Size of product graph affects runtime of kernel computation

 The more node labels, the smaller the product graph

 Trick: Introduce new artificial node labels

* Topological descriptors of nodes are natural extra labels
* Forinstance, the Morgan Index that counts k-th order neighbours

of a node:

03

No Morgan Indices  O1 Order 1 indices 01 Order 2 indices 03



GRAPH KERNELS

G1 a2) (63) ... (6N How to define a valid kernel function

K(G;, Gj), between two graphs G; and ;.

®
= \
K(G1, G2 * K(Gj, G;) should provide relationship
2 (similarity / dissimilarity / correlation
etc.) measure for between two graphs.
o Kernel matrix K
* K(Gj, G;) should be able to be applied
in kernel based machine learning
methods such that it provide optimal
D
pZa

classification / clustering performance.

We will look at graph kernels that states similarity between kernels.



PREVENTING TOTTERING CONT.

¢ Motivation:

y F“\. F’““._@

c - \C&J
_ Only “real” chemical path are matched
Length 1 Length 2, no tottering
™
C/\'&_/\ \%?_) = Compounds are now seen as different
'F"k_\__f"‘l

e Solution : increase the order of the random walk model :
= pa(h) = ps(vy)pe(va|vy) nllgpt(“ih’i—mvi—l)



2P ORDER MARKOV RANDOM WALK

c(h)

o

= ps(v1)pe(va

V1) ]_[:1:3 pe(vilvi_a,vi_1)

8

The function is stil
first order Markov

ps(v) = po(v) ;uq (),
| (v)
pi(ulv) = pul ,II Palulv)p, (u),
" (o)
h.'fa’:'(’f-'|’”f’a v) = Ipif; Do (u|w, v)p,(u).

| a valid kernel but the implementation described for the
random walk cannot be directly used anymore.

=> Instead of explicitly working with 2"d Order Markov Random walk,

transform the origi
information.

nal graph G to G’ such that G’ contains the look ahead



GRAPH TRANSFORMATION CONT,

Transformation

e V' =VUE

e F'={(v,(v,t)) |lveV,(v,t) € E}

* Don’t confuse G’ used in the
last notation for compared Graph

- G=(V.E,l) = G = (V',E".l') where :

Uil(w,v), (v,1) | (u,v), (v.t) € E,u#t]

I{“-
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\\\ CE W ij
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Transformation : G = (V,E,l) = G'= (V', E",l') where :
e V' =VUEFE

e ' = {(v,(v,t)) v eV, (vt) e E}
J{((u,v), (v, t)) | (u,v), (v, t) € E,u+# t}

F
/ 8] 3 v3 a
1
H—C < ...... > @q—";_f‘; 3 ’fi — @___@ @_.@
> »
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b @

G=(V.E] ~—



Transformation : G = (V. E,l) = G' = (V',E",l') where :
e VI =VUF

o E'={(v,(v,t)) v €V, (v,t) € E}
U {((u,v), (v, t)) | (u,v), (v, t) € E,u#t}

H—C< ...... @...—"_@/ — @"‘@ @—:@

‘Ir CS Ly o
Cl @.—@l
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G=(VEI N~



Original Graph

I 0
H—C
Cl
vd
T gl r—afi
AN .
vl = a] VI ——— | @2
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el e
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Transformed Graph

Corresponding directed graph G = (V,E,|)

Labels in the transformed graph



MODIFIED KERNEL COMPUTATION CONT.

Hy(G) = {Non tottering paths of G}

e Consider : ,
H,(G") = {Paths of G’ starting from a node v € V' }

e Theorem: p’ factorizes as

T
p'(h) = P (o)) | | h(wilvl_y)
i=2

p(v') = ps(v')

I, 'Pt{HI'U’} if v eV and v’ = (t}’,u) = )
py(u'|v') = _ e ;o
Pt{H|U,’[L] if v/ = ('L-_. 'U'J]l and u' = (ﬂ;!u} c FE

e Corollary :

- graph transformation

. = tottering paths removed
- original graph kernel



MODIFIED KERNEL COMPUTATION

Hy(G) = {Non tottering paths of G}

e Consider : ,
H,(G") = {Paths of G’ starting from a node v € V' }

e The mapping [ : Hy(G) — H;(G’) defined by

1

)
v; = (vi_1,v;)

!
b= (v1, ..., v) = k' = (v], ..., v".) such that {”;
establishes a bijection between Hy(G) and H{(G')

e Let p’ be the image of ps by f:

vh € Hi(G'), p'(K):=pe(f~HR))



ROC VS PRECISION
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Slide from The UT Austin, CS 395T, Spring 2008, Prof. William H. Press



ROC (“Receiver Operating Characteristic”) curves

plot TPR vs. FPR as the classifier goes from

“conservative” to “liberal”

e
X
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O c a ; 3 Effﬂm-
= Ton and EPR most
|MCreade '1' as
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L
-
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blue dominates red and green
neither red nor green dominate the other
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true pos rate (TPR)
= sensitivity
= recall

actual
+ -
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—-| FN [ TN

classifier

false pos rate (FPR)
ROC curve

You could get the best of the red and
green curves by making a hybrid or
“Frankenstein” classifier that switches

between strategies at the cross-over
points.

The University of Texas at Austin, C5 395T, Spring 2008, Prof. William H. Press



Precision

Precision-Recall curves overcome this issue by comparing TP with FN and FP

not AE--;

TPA,F
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precision-recall curve
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true pos rate (TPR) pos. predictive value (PFV)
= sensitivity = precision
= recall
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Continue our toy example:
note that P and N now entei/

prec = tpr*100./(tpr*100+fpr*9900) ;

prec(l) = prec(2); % fix up 0/0
reca = tpr;
plot(reca,prec)

The University of Texas at Austin, CS 395T, Spring 200w, + 1wv. svum

By the way, this shape “cliff" is what the
ROC convexity constraint looks like in
a Precision-Recall plot. It's not very

intuitive. \
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Introduction: biological networks

Biological nets
Other network types

X—>Y represents

transcription
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Metabolic networks

Used for studying and modeling metabolism

Biochemical reactions in cells that allow an organism to:
Respond to the environment
Grow
Reproduce
Maintain its structure

l.e., the main biochemical reactions needed to keep an
organism in homeostasis

An internal regulation that maintains a stable, constant
condition of a living system



Metabolic networks

Metabolites
Small molecules such as glucose and amino acids

Also, macromolecules such as polysaccharides and glycans
(carbohydrates)
Metabolic pathways

Series of successive biochemical reactions for a specific
metabolic function, e.g., glycolysis, or penicillin synthesis, that
convert one metabolite into another

Enzymes: proteins that catalyze (accelerate) chem. reactions

Thus, in a metabolic pathway: Bipartite graph
Nodes correspond to metabolites and enzymes
In an alternate order - bipartite graphs
Directed edges correspond to metabolic reactions

Simpler approaches: nodes are metabolites, directed edges
are reactions that convert one metabolite into the other; or .
nodes are enzymes and metabolites as edges



Metabolic networks

All metabolic pathways of a cell form a
metabolic network

Complete view of cellular metabolism and
material/mass flow through the cell

Cell relies on this network to digest substrates from
the environment, generate energy, and synthesize
components needed for its growth and survival

Insights from analyzing them used to, for example:

Cure human metabolic diseases through better
understanding of the metabolic mechanisms

Control infections of pathogens by understanding the
metabolic differences between human and pathogens




Transcriptional regulation networks

Model regulation of gene expression
Recall: gene - mRNA - protein

Gene regulation

Gives a cell control over its structure and function,

e.g.:
Cellular differentiation — a process by which a cell turns
into a more specialized cell type

Morphogenesis (a process by which an organism

develops its shape) '




Transcriptional regulation networks

Nodes correspond to genes

DNA sequences which are transcribed into mRNAs that translate into
proteins

Directed edges correspond to interactions through which the
products of one gene affect those of another
Protein-protein, protein-DNA and protein-mRNA interactions

% = O-©
gene x geney

Transcription factor X (protein product of gene X) binds
regulatory DNA regions of gene Y to regulate the production
rate (i.e., stimulate or repress transcription) of protein Y

Note: proteins are products of gene expression that play a key role in
regulation of gene expression 20




Transcriptional regulation networks

Problem

Stimulation and repression of gene transcription are
both represented the same way in the network

Available for model organisms
Non-human species manipulated and studied to get
insights into workings of other organisms, e.g.:
Baker's yeast, S. cerevisiae (Milo et al., 2002)
E. coli (Shen-Orr et al., 2002)
Sea urchin (Davidson et al., 2002)
Fruitfly, D. melanogaster

Available from dBs: EcoCyc, GeneNet, KEGG,
RegulonDB, Reactom, TRANSPATH,
TRANSFAC



Cell signaling networks

Cell signaling

Complex communication system that governs basic
cellular activities, e.g., development, repair, immunity

Errors in signaling cause diseases
E.g., cancer, autoimmune diseases, diabetes

/S &
TGF-B .
eeeeeeee umorigenesis
Type i a " Typ;:y,; Elne S R o Su;[‘l‘:zjon E . g o Tra nsfo rm i ng

i \ Py growth factor beta
\ ;2 (TGF-B) is a protein
-

,,,,,,,,,,,,,, that controls

@}/ S| ‘ proliferation, cellular

. differenciation, and
other functions in
\
,, most cells.

24



Cell signaling networks

Signaling pathways

Ordered sequences of signal transduction reactions in
a cell, as shown in the previous figure

Cascade of reversible chemical modifications of
proteins
E.g., phosphorylation catalyzed by protein kineases:
enzymes that modify other proteins by adding phosphate
groups to them (process called phosphorylation)

Signaling pathways in the cell form the cell
signaling network

Nodes are proteins and edges are directed

25



Cell signaling networks

Famous examples (lots of literature on them):

Mitogen-activated protein kinase (MAPK) pathway
Originally called “ERK” pathway

MAPK protein: an enzyme, a protein kinase, which can attach
phosphate groups to a target protein, causing its spatial
reorganization and affecting its function

Other enzymes can restore protein’s initial function
E.g.
MYC

An oncogene transcription factor expressed in a wide range of human
cancers (oncogene — when mutated or over-expressed, the gene helps turn
a normal into a tumor cell)

MAPK can phosphorylate (attach phosphate group to) MYC and alter gene
transcription and cell cycle progression

EGFR = “epidermal growth factor receptor”
Activates MAPK pathway
Mutations affecting its expression/activity can result in cancer 26



Cell signaling networks

Famous examples (lots of literature on them) cont'd:
Hedgehog signaling pathway

One of the key regulators of animal development
Conserved from fly to human

Establishes basis of fly body plan

Important during embryogenesis (the process by which the embryo
develops) and metamorphosis (from larva to pupa to adult)

TGF-beta signaling pathway

The “transforming growth factor” (TGF) signaling pathway
Involved in:

Cell growth

Cell differentiation

Apoptosis (programmed cell death)
27



Cell signaling networks

Compared to metabolic networks:
Limited mass flow

Instead, sig. nets provide information transmission along a sequence
of reactions — one enzyme modulates the activity of another one,
which then modulates the activity of the third enzyme, etc., but
enzymes are not consumed in the reactions they catalyze

Compared to transcriptional reg. networks:

They overlap, but gene expression, i.e., transcription factors, can be
seen as the “final targets” of signaling pathways

Compared to PPI networks:

Signal transduction is indeed mediated between proteins, but PPls are
undirected without a defined input and output (as we will discuss soon)

Not all PPls are involved in chemical reactions, or part of signal
transduction

Also, many components of signaling are not proteins
These networks have much in common
At the same time, they reflect different aspects of cellular activity



Protein-protein interaction (PPI) networks

A protein-protein interaction (PPI) usually refers

to a physical interaction, i.e., binding between
proteins

Can be other associations of proteins such as
functional interactions — e.g., synthetic lethality:

type of a “genetic interaction” (will introduce
later)

30



Protein-protein interaction (PPI) networks

PPls are very important for structure and function of a cell:
Participate in signal transduction (transient interactions)
Play a role in many diseases (e.g., cancer)
Can be stable interactions forming a protein complex

(a form of a quaternary protein structure, set of proteins which bind
to do a particular function, e.g., ribosome, hemoglobin — illustrated
below)

31



Protein-protein interaction (PPI) networks

PPls are very important for structure and function of a cell:

Can be transient interactions

Brief interactions that modify a protein that can further change PPls
e.g., protein kineases (add a phosphate group to a target protein)

A protein can carry another protein, e.g., nuclear pore importins
(proteins that carry other proteins from cytoplasm to nucleus and
vice versa)

Transient interactions form the dynamic part of PPI networks
Some estimates state that about 70% of interactions are stable and
30% are dynamic (transient)
PPls are essential to almost every process in a cell

Thus, understanding PPls is crucial for understanding life,
disease, development of new drugs (most drugs affect PPIs)

32



Protein-protein interaction (PPI) networks

Methods to detect PPlIs
Biological and computational approaches

None are perfect

High rates of false positives

Interactions present in the data sets that are not
present in reality

High rates of false negatives
Missing true interactions

33



Protein-protein interaction (PPI) networks

Methods to detect PPIs

PPls initially studied individually by small-scale
biochemical techniques (SS)

However, large-scale (high-throughput) interaction
detection methods (HT) are needed for high discovery
rates of new protein interactions

SS of better “quality,” i.e., less noisy than HT

However, HT are more standardized, while SS are
performed differently each time

SS are biased — the focus is on the subsets of proteins
iInteresting to particular researchers

HT — view of the entire proteome 34



Protein-protein interaction (PPI) networks

Methods to detect PPIs
Physical binding

Yeast 2-hybrid (Y2H) screening
Mass spectrometry of purified complexes

Functional associations
Correlated mRNA expression profiles

Genetic interactions
In silico (computational) methods

In many cases, functional associations do take
the form of physical binding

35



Protein-protein interaction (PPI) networks

Functional associations

Correlated mRNA expression profiles (Dr. Rice’s lectures)
Results in a gene expression correlation network

Co-expression means that resulting proteins could
interact

Co-expression overlaid over PPI data, e.g. tool
KeyPathwayMiner

42



Protein-protein interaction (PPI) networks

Functional associations

Genetic interactions

Two non-essential genes that cause lethality when mutated at
the same time form a synthetic lethal interaction

Such genes are often functionally associated and their encoded
proteins may also interact physically

Charles Boone’s group from University of Toronto published
genetic interaction networks

43



Protein-protein interaction (PPI) networks

Functional associations

In silico (computational) methods

Gene fusion (if two genes are present in one species and fused
in another)

45



Other biological networks

Neuronal synaptic connection networks

X Y
C=C= = (O=={v)
Brain functional networks

Simultaneous (correlated) activities of brain regions
during a task

Ecological food webs

Phylogenetic networks (trees)
Evolutionary relationships between species 53



Other biological networks

Correlation networks (e.g., gene co-expression)
Different from transcriptional regulation networks
Not a direct result of experiments

Determined by:
Collecting large amounts of high-throughput data
Calculating the correlations between all elements

Biolayout Express 3-D: a tool for generating
correlation networks

54



Other biological networks

Disease — “disease gene” association networks
Link diseases that are caused by the same gene
Link genes if they cause the same disease

Drug — “drug target” association networks
Link drugs if they target the same gene (protein)

Link genes (protiens) if they are targeted by the
same drug

55



Systems Biology: The
inference of networks from
high dimensional genomics
data

Ka Yee Yeung
Nov 3, 2011
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A gene-regulation
function describes
how inputs such as
transcription
factors and
regulatory
elements, are
transformed into a
gene’s mRNA

-~ level.

2
Kim et al. Science 2009


Presenter
Cis input: eg. Promoter sequences
Trans input: DNA-protein, nucleosome positions in vivo, protein-binding microarrays


Network construction methods

» Co-expression networks
+ Bayesian networks
* Regression-based methods



Correlation: pairwise similarity

1 Experiments p
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£ | Raw matrix j>
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X  genes n
« | Similarity matrix
S
Q
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Correlation (X,Y) =1
Correlation (X,Z) = -1
Correlation (X,W) =1



Clustering algorithms

* Inputs:

- Similarity matrix

- Number of clusters or some other
parameters

» Many different classifications of
clustering algorithms:

- Hierarchical vs partitional

- Heuristic-based vs model-based

- Soft vs hard


Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results


Hierarchical Clustering

+ Agglomerative (bottom-up)
———— * Algorithm:

— - Initialize: each item a
A e W cluster
[ X ) o0 00
- Iterate:
dendrogram - select two most similar
clusters
* merge them

- Halt: when required number
of clusters is reached


Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results


Hierarchical: Single Link

+ cluster similarity = similarity of two
most similar members

- Potentially
long and skinny
clusters

+ Fast

10


Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results


Hierarchical: Complete Link

+ cluster similarity = similarity of two least
similar members

+ Tight clusters

- slow

11


Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results


Hierarchical: Average Link

+ cluster similarity = average similarity of
all pairs

+ Tight clusters

- slow

12


Presenter
I will start by motivating the work 
next describe the Novel algorithm we developed
and then describe the experimental evaluation and present our results
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KEY ISSUES IN SEQUENCE ALIGNMENT

What sort of alignment should be considered?

What scoring system should be used to rank
alighment ?

What algorithm should be used to find optimal ( or
good) scoring alighnments ?

What statistical methods should be used to
evaluate the significance of an alignment score?



TYPES OF ALGINMENT

Global Alignment

Assuming that the complete sequences are the results of
evolution from the same ancestor sequence

Local Alignment

Align segments of the sequences so that the segments are
evolutionarily related




SCORING (1)

Match - mismatch
Match : +1, mismatch: O
|dentity matrix (often used for DNA sequences)

DNA ajlc|g|t Amino acid A|R[N|D|..
al1]0]0(0 Al1]1]0[(0|0]O0
c|O[1]0]O0 R{O0O[1]0]0]|O0
glolo|1]o0 N|lo|lo|[1]0]|O
t{O0O[O0)| O] 1 D|O0O[{O0O]|]O0O|1]|0O0

0j]0(0]0O0




ALIGNMENT SCORE

Add up the terms (assume independence).
DNA

atgatcaagtactttaagaagcagaagcggc
e e rrrrr et T

atgataaagcactttaagaaacaaaagaggc

26 matches / 31 nt (= 83.9%) (identity)
Protein

ASWRILSSIEQKEEA

10 matches / 15 aa ( = 66.7%) (identity)



SCORING (2)

Amino acid substitution (similarity) matrix
Counting similarity of amino acids
Analyze statistics of known alignments

PAM, BLOSUM series, matrices specific for a certain type of
proteins, e.g. membrane proteins

A|IR|N|[D

Al 5|-2|-1]|-2

R|-2|71]0|-1

N(-1]0]| 6|2

D|(-2|1]|2 |7
(BLOSUM45)



SCORING MATRICES FOR PROTEIN SEQUENCE ALIGNMENT

Define scores for amino acid pairs in sequence
alignments

Reflect “similarity” of amino acid residues
Most often a substitution matrix is used.

Amino acid substitution matrix is not necessarily
symmetric,

Reflecting the difference of the mutation probability of A > B
from B > A (A, B: two different amino acids)

Correspond to the logarithm of the relative likelihood that
the sequences are related, compared to being unrelated.



ALIGNMENT SCORE: SMITH-WATERMAN SCORE

BLOSUMA45, Gap penalty: -12/-2
Add up each term.

Sequence identity: 15/29 = 51.7%
Smith-Waterman Score: 63

ASWRILSSIEQOKEEAKGNDVSVKRIKEYR

1+4+15+7+3+2+4+4+5+6+.... +6-2-12-2+46... L1200



GAPLESS ALIGNMENT

Gaps not allowed in the middle
Scan one sequence along the other one
Number of possible alighments
Sequence length: m, n

_—_

»

m m
m+n+1,Ifm=n, 2n+1;i.e O(n)

Application: finding a known motif in a sequence

How to choose the “best” alignment?
Scoring scheme




ALIGNMENT WITH GAPS

Scoring: AA matrix + gap penalty
Gap penalty for a gap of length g:

Linear model: -gd (d : gap penalty, d>0)

Affine model: -d - (g-1)e

(d: opening penalty, e: extension penalty.d > e > 0)
Number of possible alignments

(m+n) If m=n, (m+n)=(2n)—(2n)!= 2 i.e. O(4")

m m n _(n!)z_\/%

Algorithmic challenge: Given AA matrix, gap penalty, find th
e alignment with the best score.



LINEAR AND AFFINE GAP PENALTIES

Linear:

g =gl o 1

Affine:

gl =g0pen +(l_1).gextend gt




GLOBAL ALIGNMENT



FINDING THE HIGHEST SCORING ALIGNMENT

Problem:

Given two sequences, a scoring matrix, and a gap penalty,
find the alignment with the highest score

Large number of possible alignments
Cannot generate all and score them to find the best
Algorithm: dynamic programming (DP) algorithm
(Needleman-Wunsch Algorithm)



RECURRENCE RELATION IN DP

Assume that, ;. 1D H,

H q]..i—]

i-1,; d, ;
di.i-1

Hz'—l -1 d

] 1.j-1

q .

H. . 1.0
b/ d; i

Y

_]’j)

H, ;. are known

H.

= MaX —

” Hi—l,j — 8

S(xiayj)"'Hi—l,j—l

Hi,j—l_g

Where g is the gap open penalty and S(x.))js the similarity score obtained
from substitution matrix for residue type of x, and y;



CALCULATING SCORE OF BEST ALIGNMENT USING MATRIX

Hy,=0

o Use to/fill rest
@ Use tonfill first row row
\

Use tolfill

H matrix

Score of best
alignment




GLOBAL DP MATRIX, H(l,J)

LI LI- LI
-V --V V-
or or

BLOSUM45
S(V,L) =1
S(V,1)=3
Gap =-8

H(i,j) = max{

H(i-1, j-1) + s(x,,

H(i-1,j) -d
H(i, -1) -d

Y;)

—

BLOSUMA45

L I

-16

l_ﬁ 24_ 5

—rlmisSImi<




TRACEBACHK, ALIGNMENT

I-1

I-1

i-1




GLOBAL DP MATRIX, H(l,J)

Fill this table from top-left to bottom-right
Trace back to get the alignment!

L|1|E|Y|G|D]|A
0+ -8.-16-24|-32|-4C | -48 | -56
V| -8 1 [-5]-13]-21[-2¢-37.(-45
E|-16|-7 |2 | 1{-7|-15]-23-31
W 24|15 9 [ 5| 4| -4 | 12|20
F |-32]-23[-15]-12 2: 174 14]  LIEYGDA
L [-40|-27|-21|-17|-10| -5 | -2 | -8 ~-VEWF-L




TIME COMPLEXITY

Sequences of lengths n and m

O(nm)

Two sequences of length |

0(1%)



LOCAL ALGINMENT



THE LOCAL ALIGNMENT

Aims to identify only very similar region of two protein
sequences

Should ignore negatively contributing suffixes of align
ments

Score of best local alignment - highest value in dyna
mic programming matrix

Alignment found by tracing back from maximum value
until cell with value O (zero) has been reached



DP RECURRENCE RELATION

qi..i- - _ _
Hl-_ljj h] l-] q, Hi—l,j g
1..j -
H di1.i-1 | 49; qu.,dj +Hi—1,j—1
L by | d
H. ; =max
qr.i | - H,, -8
H;; Wl d -
1..j-1 g

Empty alignment -

Effectively allows for removal of negatively contributing prefixes.



CALCULATING BEST LOCAL ALIGNMENT

_ Use to fill rest
@ Use tonfill first row row by row
\

Use tolfill 0
first colum
\ Best alignment
H matrix

. Score of best
alignment




EXAMPLE OF LOCAL DP MATRIX, H(l,J)

0
H(i,j) = max H(i-1, j-1) + s(x;, yj)
H(i-1,]j) -d
H(, j-1) -d
L1 |E|Y|G|DI|A
olololo|o|lo]|oO]oO
Vvio|l1]3]o0o|l0]|0|0]oO BLOSUMAS
Elo|O0|O0|9|1]0]|21|0 Gap penalty = -8
L.\
Wlol|lo|o|1|12]/4]01]0
Flo]1]0/0)4]9|1]0 IEY
Llo|5|3|0|l0|1]|6]0 VEW




TIME COMPLEXITY OF LOCAL ALIGNMENT

Sequences of lengths n and m
O(nm)

Two sequences of length |

0(1%)



AFFINE GAP ALGORITHM 2

v ST L I [E |Y |G |D |A
0 -12 (-14 |-16 |-18 |-20 |-22 |-24
V -12
E -14
W |-16
F -18
Gap: L -20
Opening: -12
Extension: -2 MGi—1,j—1)+s(S, T) S, align with T,
M(i, j) = max I(i—1,j—-1)+s(S;, T) Si align with gap

Ji-1,j—1)+s(S, T) gap align with T,



AFFINE GAP ALGORITHM 2

- |S/T L I E |Y (G |D |A

-12

Si: 14

-16

-18

—lT s m <

-20

M(Gi-1,j)—d S, align with initial gap
I(i, j) = max

I(i—1,j)—e S, align with extension gap



AFFINE GAP ALGORITHM 2

Tj:
J: |S/T L I E Y G |[D |A
0 -12 -14  |-16 -18  [-20 |-22 -24
Si: |V (%)
E ()
W | (=)
F (=)
L ()
M, j— 1) —d initial gap align with T,
J(i, j) = max

Ji,j—1)-e extension gap align with T,



AFFINE GAP ALGORITHM 2

M:
SIT L 1t |E |y |l b |A
0 |12 |14 |-16 |18 |-20 |-22 |24
vV 1291
E |14 T T T——
W |-16
F o |-18
L |20

M(1, 1)=max‘

0+1=1
0+1=1
0+1=1

from
1(0, 0)

from
J(0, 0)



AFFINE GAP ALGORITHM 2

0

-12

14

-16

-18

-20

1(1, 1) = max

24 -2 =-26

from M(1, 1)



AFFINE GAP ALGORITHM 2

J:
S/T, L I |[E |Y |G |D |A
0 -12 |14 |16 |18 |-20 |-22 |-24
V| (-) |-24 =11
E |(-) |-26
W |(-=) |-28
F (=) |-30
L |(-0) |-32
1-12=-11
J(1, 1) = max

24 -2 =-26

from M(1, 1)




BLOSUM62 SCORE MATRIX

O B G H I L K M F P S T W Y V
-1 -1 -1 1

-1

A R N D C

0
-3
-3

0 -3 -2
-1 -1 -3 -2

-2

-1 -1

4 -1 -2 -2 0 -1 0 -2
-1 -2 -3 -2

A

-3 -2

-1
-2
-1 -3 -3 -1

2
0

0 0 -3 -2
1

1

0

5

0 -4 -2
-1 -4

1
0
-3 -1 -1 -2

-3 -3 -3 -2
-3 -4

0
-1 -1

-3 -3
-2
-1

1 6 -3 0 2
9 -3 -4

-2

D -2

-1
-2
-2

-3 -3

-2

-3 -1

-1

-3 -3 -1

=2
-2

-3 -3 -3

0

C

-1 -2

-3 -2 1 0 -3 -1 ©0
1 -2 0
-2 0

-3 -3 -1 -2

0
0

-1 -3 -2
-2
-1 -2

-3 -1

-3 -3
-4

5
-2

-2
-2

-3 -3 -2

-4

0 -1 -3 -2 6 -2
1 -2
-3 -3 -3 -1 -3 -3 -4
-2

-2
0
-2
2

3
3

2

-2

-1

0 8
-3
-3
-1

0

-1 -3

-2
-1

L -1

-1 -3 -1
-1 =2

-3 =2

0
0
-3 -1

2 -3 1
-2 2

4

I

-1

-3 -2

-1 -3 -4

-3 -4

0 -1 -3 -2 -2
-1 -1 -1

-2

5 -1
-1
-3

-3 =2

-2

1
-2
-3 -3 -3 -1

-1 -3 1
-3 -1 0

0

-1
-1
F -2
P -1

-1

0 -2
6 -4
-4
-2
-2

2 5
0

0

1

0
-3 -3 -1 -2

-2
-1

-3 -2

-1 -2

M

-2

-3 -3 -3 -2

-2

-1 -1 -4 -3 -2

7
-1
-1
-4

-2
-1
-2
-2
2
-3 -3

-1 -2

-1 -3 -1

-2

1 -3 -2 -2

4

1
-3 -2 11

0 -1
-1 -1
-3 -1
-2
-2

-2
-1

0

0
-1 =2
-3 =2
-2
-2

-2

5 -2

-1
-2
-1
-2

0 -1 -1

-1
-3 -3 -4

-2

-3

2

1

-3 =2
-1

-2

-4
-3 -2

W
Y
\Y

-1 3 -3 -2 =2

-1

-3

-2

-2

-1 -2 -2 0 -3 -1 4

1

1

3

-3 -3 -3 -1

0



AFFINE GAP ALGORITHM 2

M L [t |E |Y |G |D |A |] L |1 E |Y |G |D
0 \|-12 |14 |-16 |-18 | -20 | -22 | -24 01O |6 e e 16 |6
V|2 |1 {9 |16 |17 |-21 |23 | 22 V|12 |24 |26 |-28 |-30 | -32 |-34
E |-14 |15 |-2 |4 |-15|-17 |-15 | -20 E|-14|-11 |-21 |-30 |-32 | -33 | -35
W |-16 |16 [-14 |5 N2 |17 |21 |18 W|-16 |-13 | -13 | -16 | 27 | 29 | -27
F |18 |-16 |-13 |-16 |-2y |-5 |-17 |-18 F|-18]-15 |-15 |-17 | -14 | -29 | -29
L |-20 |14 |-13 |16 |17A|-6 |9 |-17 L |20 |17 |17 |-19 | -16 | -17 | -29

28 |28 | -26 |-17 [\-14 | -16 | -18 VEWF- - L
30 | -28 |25 |27 |14 T-16 | -18 LIEYGDA

|—'n§rr|<
/\/\/l\/‘\/\




TIME COMPLEXITY

Sequences of lengths n and m

O(nm)

Two sequences of length |

0(1%)
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SCORING MATRICES



SCORING MATRICES FOR AA SEQUENCE
ALIGNMENT

Define scores for amino acid pairs in sequence alignments
Reflect “similarity” of amino acid residues

Amino acid scoring matrix/Amino acid similarity matrix =>
symmetric

Amino acid substitution matrix => not necessarily
symmetric,

reflecting the difference of the mutation probability of A to B from
B to A (A, B: two different amino acids)



PAM MATRICES (DAYHOFF, 1978)

PAM: A Point Accepted Mutations.

Models the replacement of a single AA in the primary
structure of a protein with another single AA that is accepted

by natural selection.

Does not include silent mutations , mutations which are lethal, or
mutations which are rejected by natural selection in other ways.

PAM matrix: 20x20 AA substitution matrix

Each entry indicates the likelihood of the AA of that row
being replaced with the AA of that column through a series
of one or more PAM during a specified evolutionary interval,
compared to these two AA being aligned by chance.



PAM MATRIX CONT,

Different PAM matrices correspond to different lengths of
time in the evolution of the protein sequence.

EX> PAM1: one accepted mutation per 100 residues

(n in the PAM, matrix represents the number of mutations per
100 amino acids,)

Start from a set of well manually curated sequence
alignments

>85% sequence identity

71 groups of homologous sequences
Construct phylogenetic trees and estimate the history of
the mutation events in the family

1572 observed mutations in the phylogenetic trees of 71 families
of closely related proteins.



PAM: COLLECTION OF DATA FROM
PHYLOGENETIC TREES

PAM SCORING MATRICES

ACGH ACGH DKGH DDIL CKIL ACDGHIKL
12

1

o O
O X
H G
= T

;

o

(wiw)
?\
CRERTIDOg O

(@) (b)

Figure 5.4 (a) A small phylogenetic tree of four observed sequences, and two derived parent

sequences. (b) The mutations are on the edges. The numbers of different mutations are shown
in the table.



COMPUTING PROBABILITY OF A CHANGING
TO B IN A CERTAIN TIME T

Count for each branch in the phylogenetic trees, the
number of mismatches recorded and compute
fequencey

f,, : frequency of mutation from a => b or b => a ( assume

symmetry i.e. f,, =f,,)
Compute mutability of a: f,= 2, _.f.,

the total number of mutation involving a
Compute f= 21, :

twice the total number of mutations
Compute p, where 2 p_=1.:

the frequency of amino acid a,

Compute m, : the relative mutability of a
the probability that a will mutate in the evolutionary time <



CALCULATING M, AND M,z IN THE TIME T

Consider the time 1 = 1 PAM
the time while one mutation is accepted per 100 res.

The probability that mutation is from a is:

2 f/(t/2) =1 /1,

(1/2 comes from f, =1, )
Among 100 res., there are 100p_ occurrences of a
The relative mutability of a is
m_=(1/100p,) f /f
The prob. that a will be mutated to b in the time t
M,,=m,(f,/f,)forazb; M_,=1-m,



SUBSTITUTION MATRIX M?

Table 5.1 Substitution {nutation probability) matrix for the evolutionary distance of 1 PAM. To simplify the appearance. the elements are shown
multiplied by 10000, The probabilities for not changing are replaced by *, the values vary between 9822 (N) and 9976 (W). An element of this
matrix, M ;4. gives the probability that the amino acid in row a will be replaced by the amino acid in column b after a given evolutionary interval, in
this case | accepted point mutation per 100 amino acids. Thus there is a 0.56% probability that D (Asp) will be replaced by E (Glu). The amino acids
are alphabetically ordered on their names. Reproduced from Dayhoff (1978) with permission of the MNational Biomedical Research Foundation.

A R N D C @ E G H I L kK M F P 5 T W Y V¥V
A 1 4 6 1 3w 21 1 2 3 2 1 1 13 28 22 0 13
R 20 = | 0 1 9 0 1 8 2 1 37 1 1 5 11 2 2 0 2
N 9 I * 42 0 4 7 12 18 3 i 25 0 1 2 34 13 0 3 1
D 10 0 36 = a 5 56 11 3 1 a 6 o o0 1 7 4 a a 1
C 3 1 o o * o 0 1 1 2 o o 0 0 111 1 0 3 3
Q 5 10 4 6 0 % 35 320 1 6 12 2 0 8 4 3 o 0 2
E 17 0 6 53 0 27 * 7 1 2 1 7 o 0 3 6 2 0 1 2
G 2l 0 6 6 0 1 4 * 0 0 l 2 0 1 2 16 2 0 0 3
H 2 10 21 4 I 23 2 1 * 0 4 2 o 2 3 2 1 0 4 3
I i} 3 3 1 1 1 3 0 o * 22 4 3 8 1 211 0 1 57
L 4 1 1 o 0 3 1 1 1 9 * 1 5 6 2 1 2 0 111
K 2 19 13 3 o 6 4 2 1 2 2 - 4 0 2 7 5 o 0 1
M 6 4 0 0 0 4 1 1 0 12 45 20 * 4 1 4 6 0 o 17
F 2 1 l 0 0 0 0 1 2 T 13 0 1 * 1 3 1 1 21 1
P 22 4 2 1 1 6 3 3 3 0 3 3 o o * 17 5 0 0 3
5 35 6 20 3 3 2 4 21 1 1 1 8 1 2 12 * 32 1 1 2
T 32 1 9 3 1 2 2 3 1 7 3011 2 1 4 38 % 0 110
w0 8 1 o o o0 0o 0 1 o 4 o 0o 3 0 3 o = 2 0
Y 2 0 4 0 3 0 1 0 4 1 yi 1 0 28 0 2 2 TR 2
VoIS 1 | 1 2 1 2 5 I 33 15 1 4 0 2 2 9 0 1 =




CALCULATE M4 BY MATRIX MULTIPLICATION

Example Z=2
2 mutations per 100 residues

A residue a can be changed to residue b after 2 PAM of following
reasons:

a is mutated to b in first PAM, unchanged in the next, with
probability M, M,

a is unchanged in first PAM, changed in the next, probability
I\/IaaMab

a is mutated to an amino acid x in the first PAM, and then to b

in the next, probability M_,M,, x being any amino acid unequal
(a,b)

These three cases are disjunctive, hence

Mcfb :Mabeb +MaaMab T ZMaxbe = ZMaxbe

xef{a,b} xeM



CONVERTING FROM A SUBSTITUTION MATRIX TO

A SCORING MATRIX
In a substitution matrix not symmetric in general,
M., # M, (a in sequence g, b in sequence d)

To remove the effect of the frequent occurrence of b in
sequence d, the odds scoring matrix is

C)ab - Mab/pb
O,, is symmetric (O,, = O, p. 110, middle)

Log-odds matrix R:
R, =108 Oy



BLOSUM (HENIKOFF & HENIKOFF)

BLOSUM (BLOcks SUbstitution Matrix) matrix is a substitution
matrix used to score alignments between evolutionarily
divergent protein sequences introduced by Henikoff and
Henikoff in 1992

Make multiple alignments consist of sequences sharing more
than X% sequence identity

Discover blocks not containing gaps (used over 2,000 blocks)

.. .KIFIMK....... GDEVK. ..
.. .NLFKTR GDSEKK. ..
KIFKTK GDPKA
KLFESR GDAER
KIFKGR GDAAK

For each column in each block, counted the number of
occurrences of each pair of AA
210 different pairs (combination with repetition: (20+2-1)! /(2!(20-1)!) )



BLOSUM CONT

A block of length w from an alignment of n sequences has
T=w*n(n-1)/2 possible occurrences of amino acid pairs

Let h,, be the number of occurrences of the pair (ab) in
all blocks (h_,=h,,)

T total number of pairs
fab=hab/T
Constructing logodds matrix : R_,=log(f,,/€.;)

with background probabilities of finding the amino
acids a and in any protein sequence as p,

eaa=papa
€ap=PaPp T PoPa = 2 PPy fOr a #b



COMPARING PAM AND BLOSUM

PAM: based on an evolutionary model (tree)

PAM1 is multiplied to obtain PAMXx (the larger x, the
more distant)

BLOSUM: Based on common regions in protein
families

Simple to compute
BLOSUMXx (e.g. x=45, 62, 80, the larger more closer)



ANALYSIS OF SCORING MATRICES

PAMx or BLOSUMy is designed for aligning
sequences of that range

i.e. BLOSUMb5O0 cannot align very distantly related
sequences by definition

Starts from a set of pairwise (multiple) alignments
alignments > scoring matrix > alignment

Can develop a scoring matrix from any set of
alignments following the BLOSUM’s method

There are many AAindex database
http://www.genome.ad.jp/dbget/aaindex.html



MULTIPLE ALIGNMENT



USE OF ALIGNMENTS

High sequence similarity usually means significant
structural and/or functional similarity.

Homolog proteins (common ancestor) can vary significantly
in large parts of the sequences, but still retain common 2D-
patterns, 3D-patterns or common active site or binding site.

Comparison of several sequences in a family can reveal
what is common for the family. Conserved regions can be
significant when regarding all of the sequences, but need
not if regarding only two.

Multiple alignment can be used to derive evolutionary
history.

Conserved positions : structurally/functionally important



USE OF ALIGNMENTS
- MAKE PATTERNS/PROFILES

Can make a profile or a pattern that can be used to m
atch against a sequence database and identify new fa
mily members

Profiles/patterns can be used to predict family memb
ership of hew sequences

Databases of profiles/patterns
PROSITE
PFAM
PRINTS



PATTERN FROM ALIGNMENT

[FYL]-x-[LIVMC]-[KR]-W-x-[GDNR]-[FY WLE]-x(5,6)-[ST]-W-[ES]-[PSTDN]-x(3)-[LIVMC]
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ALIGN BY USE OF DYNAMIC PROGRAMMING

Dynamic programming finds best alignment of k
seqguences with given scoring scheme

For two sequences there are three different column
types

For three sequences there are seven different column

types
X means an amino acid, - a blank
Sequencel X - X X -
Sequence? X X - X - x -
Sequence?3 X X X - X - X

Time complexity of O(n¥) (sequence lengths = n)



SCORING MULTIPLE SEQUENCE ALIGNMENTS
Alignment

AR-L
ARSL ? }
AWTL
AWT -

Sum of scores for each row
Sum of the pairwise

r m-1 m
sequence score U\ \
m=1 m S(MS54) = 24 24 ZJRS;S,{
_ =1 i=l j=i+l
S(MSA) =) > S(s;,s,) k=1 =1 j=i+
i=l j=i+l
m: the number of sequences r: number of columns

S, S sequence |, |
S(s;;s;) = score of ;s



USE OF K-DIMENTIONAL DYNAMIC PROGRAMMING

Dynamic programming finds
best alignment of k sequences
given a scoring scheme

D--Q-LF
DNVQ- - -
- --QGL-

(a) (b)



MULTI-DIMENSIONAL DP |

3 sequences: kl\j

Linear gap cost: y(d) = -gd

Score of the whole MSA: S(m) = ZiS(mi)

F(i, j,k)=maxs

(F(i-1j-Lk=1)+S(x.,y,.2;)

F(i,j—Lk=1)+S(=y,,2,)~ | -d-d+s(yz)

or
F(i-Lj,k-1)+8(x;,—z) -d+s(y;,z,) etc.
F(i-1,j-Lk)+S(x,y;,)
FG-1,7,k)+S(x,,—,—

(=L R+ 3=~ T

F(iaj_lak)+S(_ayja_) or

\F(iajak_l)—l_S(_:_azk) droete



PROFILE HIDDEN MARKOV MODEL

REF: Biological sequence analysis: Probabilistic models of proteins
and nucleic acids Richard Durbin et al.

Slides by SNU Biolntelligence Lab. (http://bi.snu.ac.kr)
Sildes by D. Kihara @ Purdue




PROFILE HMM

An HMM which model a multiple sequence alignment
of a protein family

Concentrate on features that are conserved in the wh
ole family (consensus modeling):

Improves alignment of distantly related sequence of the sa
me family.

Able to characterize the family.

Dj Deletion

(silent states)
& Insertion




ADD INSERTIONS

Introduce insert states |,

Emission prob. €; (a)

Normally set to equal back ground distribution

Transition prob. For
M; to 1,

I, to itself (multiple insertion)

I;1o My,

Log-odds score of a gap of length £

Assuming that e (a)=¢, there is no logg-odds from emission

log At T loganMjH +(k—1)log a1,

Begin

—

End




ADD DELETION

Introduce delete states (silent state)
No emission prob.

Cost of a deletion sum cost of J
M—D transition

D—D transitions

D—M transition Begin — M End

Each D—D might be different prob. Unlike |->] that have
same prob.




COMPONENTS OF PROFILE HMMS (5)

Combining all parts

Begin

Figure 5.2 The transition structure of a profile HMM.



DERIVING PROFILES HMM FROM MSA

Assume correct multiple seq. alignment is given

HBA HUMAN
HBB_HUMAN
MYG PHYCA
GLB3 CHITP
GLB5 PETMA
LGB2 LUPLU
GLB1 GLYDI

. .VGA--HAGEY. ..
. .V-——=NVDEV. ..
. .VEA--DVAGH. ..

. VYS--TYETS. ..
.FNA--NIPKH. ..
. IAGADNGAGV. ..

* Kk K * Kk kK%K

Figure 5.3 Ten columns from the multiple alignment of seven globin
protein sequences shown in Figure 5.1 The starred columns are ones
that will be treated as ‘matches’ in the profile HMM.



HMMS FROM MULTIPLE ALIGNMENTS

Basic profile HMM parameterization
Aim: generate distribution peak around members of the family

Parameters

Probabilities values: various ways to do it but let assume
iIndependent samples aligned independently to the HMM

Ay = Ay e, (a) = :
Z,.Akl' z E,(a")

Length of the model: heuristics or systematic way

Deciding which MSA columns to assign to match states and which to
insert states.

One Heuristics: columns that are more than half gap should be
modelled buy inserts.



SEARCHING WITH PROFILE HMMS (1)

Main usage of profile HMMs
Detecting potential membership in a family
By (global) matching a sequence to the profile HMMs

Scoring a match:

Viterbi equations - gives h most probable alignment of a seq
together with its probability

Forward equation - calculates the full probabilities of seq summed
overall possible paths.

Either case, what we want is the log-odd ratio x being the
family compared to the random model

P(x|R)=]]aq,



DNA Sequencing




Two main assembly problems

* De Novo Assembly

* Resequencing




Reconstructing the Sequence
(De Novo Assembly)

—— reads

Cover region with high redundancy

Overlap & extend reads to reconstruct the original genomic region



Definition of Coverage

Length of genomic segment: G
Number of reads: N
Length of each read: L
Definition: Coverage C=NL/G

How much coverage is enough?

Lander-Waterman model:  Prob[ not covered bp ] =e°

Assuming uniform distribution of reads, C=10 results in 1 gapped
region /1,000,000 nucleotides



Fragment Assembly
(in whole-genome shotgun sequencing)



Steps to Assemble a Genome

Some Terminology

read a 500-900 long word that comes —

out of sequencer

mate pair a pair of reads from two ends
of the same insert fragment

contig a contiguous sequence formed — |
by several overlapping reads
with no gaps

supercontig an ordered and oriented set |
(scaffold) of contigs, usually by mate
pairs

consensus sequence derived from the _——
sequene multiple alignment of reads
in a contig

—..ACGATTACAATAGGTT..




1. Find Overlapping Reads

aaactgcagtacggatct
aaactgcag
aactgcagt

gtacggatct
tacggatct
gggcccaaactgcagtac
gggcccaaa
ggcccaaac

actgcagta
ctgcagtac
gtacggatctactacaca
gtacggatc
tacggatct

ctactacac
tactacaca

(read, pos., word, orient.)

aaactgcag
aactgcagt
actgcagta

gtacggatc
tacggatct
gggcccaaa
ggcccaaac
gcccaaact

actgcagta
ctgcagtac
gtacggatc
tacggatct
acggatcta

ctactacac
tactacaca

(word, read, orient., pos.)

aaactgcag
aactgcagt
acggatcta

E:tgcag'ta“
ctgcagtaI
acth

cggatctac
ctactacac
ctgcagtac,
tgcagtac|
bcccaaactJ
ggcccaaac
gggcccaaa
gtacggatc
gtaagaaté]
tacggatctJ
acggatet,
tactacacaI



1. Find Overlapping Reads

Find pairs of reads sharing a k-mer, k ~ 24

Extend to full alignment — throw away if not >98% similar

TACA TAGATTACACAGATTACT GA
et
TAGT TAGATTACACAGATTACTAGA

<

>

Caveat: repeats
A k-mer that occurs N times, causes O(N2) read/read comparisons
ALU k-mers could cause up to 1,000,000%2 comparisons

Solution:

Discard all k-mers that occur “too often”

Set cutoff to balance sensitivity/speed tradeoff, according to genome at
hand and computing resources available



1. Find Overlapping Reads

Create local multiple alignments from the overlapping reads



2. Merge Reads into Contigs

* Overlap graph:
Nodes: reads r,.....r,

Edges: overlaps (r;, r, shift, orientation, score)

Reads that come
_— from two regions of

_——— _— the genome (blue
and red) that contain

the same repeat

Note:

of course, we don’t
know the “color” of
these nodes




3. Link Contigs into Supercontigs

N
) Normal density
\
Too dense
= QOvercollapsed
/

Inconsistent links
= Overcollapsed?

-
-
\\




3. Link Contigs into Supercontigs

Find all links between unique contigs

Connect contigs incrementally, if = 2 forward-reverse links

supercontig
(aka scaffold)



3. Link Contigs into Supercontigs

Fill gaps in supercontigs with paths of repeat contigs

Complex algorithmic step
Exponential number of paths
Forward-reverse links

p e

J A\

)
-/




4. Derive Consensus Sequence

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

(Alternative: take maximum-quality letter)
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WHOLE GENOME SEQ. ALIGNMENT

Slides Courtesy of Michael Schatz
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EXACT MATCHING

Slide extracts from Michael Schatz’s Quantitative Biology Class @ CSHL
http://schatzlab.cshl.edu/teaching/2010



EXACT MATCHING OVERVIEW

Where is GATTACA in the human genome?

Brute Force Suffix Array Suffix Tree Hash Table
(3 GB) (>15 GB) (>51 GB) (>15 GB)
6| & —
BANANA = NULL
5| A%
BAN - -
ANA ANAS ]
NAN 1 | ANANAS u i
ANA 0 | BANANAS | CH{ae= 1O {ana=3 O muuL
4 | NAS e
| 2 | NANAS B
i - BLAST, MAQ, ZOOM,
Naive Vmatch, PacBio Aligner MUMmer, MUMmerGPU RMAP. CloudBurst
Slow & Easy Binary Search Tree Searching Seed-and-extend




BRUTE FORCE ANALYSIS

Brute Force:
At every possible offset in the genome:
Do all of the characters of the query match?
Analysis
Simple, easy to understand
Genome length = n
Query length = m
Comparisons: (n-m+1) * m
Overall runtime: O(hm)
If we double genome or query size, takes twice as long
If we double both, takes 4 times as long



SUFFIX ARRAYS

What if we need to check many queries?

Sorting alphabetically lets us immediately skip through the
data without any loss in accuracy

Sorting the genome: Suffix Array (Manber & Myers,
1991)

Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically



SEARCHING THE INDEX

Strategy 2: Binary search Lo

Compare to the middle, refine as higher or | s,
ower

Searching for GATTACA
Lo = 1; Hi = 15; Mid = (1+15)/2 =8
Middle = Suffix[8] = CC
=> Higher: Lo=Mid + 1

Lo =9; Hi = 15; Mid = (9+15)/2 =12
Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - 1

Lo=9; Hi=11; Mid = (9+11)/2 = 10
Middle = Suffix[10] = GATTACC
=> Lower: Hi=Mid - 1

Lo =9; Hi =9; Mid = (9+9)/2 =9
Middle = Suffix[9] = GATTACA... _
=> Match at position 2! Hi

# Sequence Pos
I | ACAGATTACC... 6
2 | ACC... 13
3 | AGATTACC... 8
4 | ATTACAGATTACC... 3
5 | ATTACC... 10
6| C... 15
7 | CAGATTACC... 7
8| CC... 14
9 | GATTACAGATTACC... 2

10 | GATTACC... 9
Il | TACAGATTACC... 5

12 | TACC... 12

13 | TGATTACAGATTACC... | |

14 | TTACAGATTACC... 4

15 | TTACC... I




SUFFIX ARRAY CONSTRUCTION

Searching the array is very fast, but it takes time

to construct P
This time will be amortized over many, many searches =
Run it once "overnight" and save it away for all future 3
queries :2

How do we store the suffix array? 7
Explicitly storing all n strings is not feasible O(n?) :

Instead use implicit representation :
Keep 1 copy of the genome, and a list of sorted offsets 2
Storing 3 billion offsets requires a big server (12GB) ;

Build a separate index for each chromosome "

TGATTACAGATTACC



SUFFIX TREES

# Sequence Pos

ACAGATTACC...

6

ACC...

13

AGATTACC...

ATTACAGATTACC...

3

ATTACC...

10

C...

15

CAGATTACC...

7

CccC...

14

£T= T = - Y I = O . ) - I I B ]

GATTACAGATTACC...

GATTACC...

TACAGATTACC...

TACC...

TGATTACAGATTACC...

TTACAGATTACC...

TTACC...

¢

Suffix Tree = Tree of suffixes (indexes all substrings of a sequence)
» 1 Leaf ($) for each suffix, path-label to leaf spells the suffix
* Nodes have at least 2 and at most 5 children (A,C,G,T,$)



SUFFIX TREE PROPERTIES & APPLICATIONS

Properties
Number of Nodes/Edges: O(n)
Tree Size: O(n)
Max Depth: O(n)
Construction Time: O(n)

Uses suffix links to jump between nodes without rechecking
Tricky to implement, prove efficiency

Applications
Sorting all suffixes: O(n)
Check for query: O(m)
Find all z occurrences of a query O(m + 2)
Find maximal exact matches O(m)
Longest common substring O(m)

Used for many string algorithms in linear time
Many can be implemented on suffix arrays using a little extra work



HASHING

Where is GATTACA in the human genome?
Build an inverted index (table) of every k-mer in the genome

How do we access the table?

We can only use numbers to index
table[GATTACA] <- error, does not compute

Encode sequences as numbers
Easy: A=110,C=210,G =310, T =410
GATTACA = 314412110
Smart: A=002,C=012,G=102,T=112
GATTACA = 100011110001002 = 915610
Running time
Construction: O(n)
Lookup: O(1) + O(z)
Sorts the genome mers in linear time

AAAAAAA

AAAAAAC

v

AAAAAAG

GATTAAT

GATTACA

GATTACC

TTTTTTG

2

5000

32000000




IN-EXACT ALIGNMENT

Slide extracts from Michael Schatz’s Quantitative Biology Class @ CSHL
http://schatzlab.cshl.edu/teaching/2010



IN-EXACT ALIGNMENT

Where is GATTACA approximately in the human genome?
And how do we efficiently find them?

It depends...

Define 'approximately’
Hamming Distance, Edit distance, or Sequence Similarity
Ungapped vs Gapped vs Affine Gaps
Global vs Local
All positions or the single 'best'?

Efficiency depends on the data characteristics & goals
Smith-Waterman: Exhaustive search for optimal alignments
BLAST: Hash based homology searches
MUMmer: Suffix Tree based whole genome alignment
Bowtie: BWT alignment for short read mapping



SEED-AND-EXTEND ALIGNMENT

Theorem: An alignment of a sequence of length m with at most k

differences mustcontain an exact match at least s=m/(k+1) bp long (Baeza-
Yates and Perleberg, 1996)

Proof: Pigeon hole principle

Search Algorithm

Use an index to rapidly find short exact alignments to seed
longer in-exact alignments

RMAP, CloudBurst, ...
Specificity of the seed depends on length

Length s seeds can also seed some lower quality alignments
Won't have perfect sensitivity, but avoids very short seeds



HAMMING DISTANCE LIMITATIONS

Hamming distance measures the
number of substitutions (SNPs)

Appropriate if that’s all we
expect/want to find
lllumina sequencing error model
Other highly constrained sequences
What about insertions and
deletions?

At best the indel will only slightly
lower the score

At worst highly similar sequences
will fail to align

ACGTCTAG

| ]| K xRk EA

ACTCTAG-

Hamming distance=5
: 2 matches, 5
mismatches, 1 not
aligned

ACGTCTAG

NN

AC-TCTAG

Edit Distance = 1

: 7 matches, O
mismatches, 1 not
aligned



EDIT DISTANCE EXAMPLE

TGCATAT - ATCCGAT in 4 steps

TGCATAT - (insert A at front)
ATGCATA - (delete 6t )
ATGCATA = (substitute G for 5th A)

ATGCGTA - (substitute C for 3@ G)
ATCCGAT (Done)

Can it be done in 3 steps???

bioalgorithms.info
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