
LECTURE 20: 
GRAPH KERNELS 

Instructor: Sael Lee 
CS549 Spring – Computational Biology 

Resources: 
• Shervashidze, N., et al. (2011). Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12, 

2539–2561. 
• “Graph Mining and Graph Kernels” K. Borgwardt and X. Yan KDD2008 Tutorial  
• Vishwanathan, S. V. N., et al.  (2010). Graph Kernels. Journal of Machine Learning Research, 11, 1201–1242. 
• “Graph kernels and chemoinformatics” Jean-Philippe Vert. Slides from Gbr’2007 
  



FREQUENT SUBGRAPH MINING 

Given 
 a set 𝐷 =  {𝐺1,𝐺2, … ,𝐺𝑁} of graphs 
 a minimum frequency  0 ≤  𝜃𝑚𝑚𝑚 ≤ 1 

Find the set of frequent subgraphs, i.e.  
 

𝐹 𝜃𝑚𝑚𝑚 = 𝐻  | 𝑖:  𝐻 subgraph of 𝐺𝑚 | ≥   𝑁𝜃𝑚𝑚𝑚} 
 

• The frequency of subgraph H is called the support of H 
 

𝑠𝑠𝑠𝑠(𝐻)  = | 𝑖 ∶  𝐻 subgraph of 𝐺𝑚 | 
 

•  𝜃𝑚𝑚𝑚 is called the minimimum support 
 

•  Often focus on connected subgraphs 

Frequent Subgraph Mining seeks to find patterns in a dataset of 
graphs 



EX. APPLICATION 

Caffeine Theobromine Sildenafil Adenine 

Frequent subgraphs 

Imidazole Purine 

Finding moieties in chemical compounds 



GRAPH COMPARISON 

Definition 1 (Graph Comparison Problem)  
 
Given two graphs G and G′ from the space of graphs G. The problem of 
graph comparison is to find a mapping 
 

𝑠 ∶  𝐺 × 𝐺′ →  𝑅 
 
such that s(G,G′) quantifies the similarity (or dissimilarity) of G and G′. 

Graph Kernels aim at computing similarity scores between graphs in a 
dataset 



GRAPH ISOMORPHISM 

Graph isomorphism 
 

Find a mapping  f of the vertices of 𝐺1 to the vertices of 𝐺2 such that 𝐺1 
and 𝐺2 are identical; i.e. (x,y) is an edge of 𝐺1 iff (f(x),f(y)) is an edge of 𝐺2. 
Then f is an isomorphism, and 𝐺1 and 𝐺2 are called  Isomorphic 
 
•  No polynomial-time algorithm is known for graph isomorphism 
•  Neither is it known to be NP-complete 

Subgraph isomorphism 
 

 𝐺1 and 𝐺2 are isomorphic if there exists a subgraph isomorphism 
from 𝐺1 to 𝐺2 and from 𝐺2 to 𝐺1 
  
• Subgraph isomorphism is NP-complete 

We want polynomial-time similarity measure for graphs 



MEASURING GRAPH SIMILARITY 1 

Graph Edit Distances 
 
Principle 
• Count operations that are necessary to transform G1 into G2 
• Assign costs to different types of operations (edge/node 

insertion/deletion, modification of labels) 
 
Advantages 
•  Captures partial similarities between graphs 
•  Allows for noise in the nodes, edges and their labels 
•  Flexible way of assigning costs to different operations 

 
Disadvantages 
•  Contains subgraph isomorphism check (NP-complete) as one 

intermediate step 
•  Choosing cost function for different operations is difficult 



MEASURING GRAPH SIMILARITY 2 

Topological Descriptors 
 
Principle 
•  Map each graph to a feature vector (ex> finger printing methods) 
•  Use distances and metrics on vectors for learning on graphs 
 
Advantages 
•  Reuses known and efficient tools for feature vectors 
 
Disadvantages 
• Most feature vector transformation leads to loss of topological information  
• Or includes subgraph isomorphism as one step  



feature vectors (chemical fingerprints)  

Modulo Compression (lossy) Elias-Gamma Monotone Encoding (lossless) 
[Baldi et al., 2007] 



MEASURING GRAPH SIMILARITY 3: 
Graph Kernels: Kernels on pairs of graphs  
 

Principle 
• Let 𝜙(x) be a vector representation of the graph x 
• The kernel between two graphs is defined by:  

𝐾(𝑥, 𝑥′)  =  𝜙 𝑥 𝑇  𝜙(𝑥′)  
• To solve convex optimization with kernels, kernels needs to be  

• Symmetric, that is, k(x, x′) = k(x′, x), and 
• Positive semi-definite (p.s.d.) 

• Comparing nodes in a graph involves constructing a kernel between nodes 
• Comparing graphs involves constructing a kernel between graphs.  
 
Advantages 
• Similarity of two graphs are inferred through kernel function 
 
Disadvantages 
• Defining a kernel that captures the semantics inherent in the graph structure 

and is reasonably efficient to evaluate is the key challenge. 
 



BRIEF HISTORY OF GRAPH KERNELS  

 The idea of constructing kernels on graphs (i.e., between the 
nodes of a single graph) was first proposed by Kondor and 
Lafferty (2002), and extended by Smola and Kondor (2003).  
 

 Idea of kernels between graphs were proposed by G¨artner et 
al. (2003) and later extended by Borgwardt et al. (2005).  
 

 Idea of marginalized kernels (Tsuda et al., 2002) was extended 
to graphs by Kashima et al. (2003, 2004), then further refined 
by Mah´e et al. (2004).  



GRAPH KERNELS TERMINOLOGY 

• A graph G as a triplet (𝑉,𝐸, 𝑙), where V is the set of vertices, E is the set of 
undirected edges, and 𝑙 ∶  𝑉 → Σ is a function that assigns labels from an 
alphabet Σ to nodes in the graph.  

• The neighborhood N (v) of a node v is the set of nodes to which v is  
connected by an edge, that is 𝑁 (𝑣)  =  {𝑣′|(𝑣, 𝑣′)  ∈  𝐸}. 

 
For simplicity, we assume that every graph has n nodes, m edges, and a 
maximum degree of d. The size of G is defined as the cardinality of V.  

• A path is a walk that consists of distinct nodes only.  
• A walk is a sequence of nodes in a graph, in which consecutive nodes are  

connected by an edge. walk extends the notion of path by allowing nodes to 
be equal  

• A (rooted) subtree is a subgraph of a graph, which has no cycles, but a 
designated root node.  

• The height of a subtree is the maximum distance between the root and any 
other node in the subtree.  



GRAPH KERNELS TERMINOLOGY CONT.  

Complete graph kernels 

A graph kernel is complete if it separates non-isomorphic graphs, i.e.: 

∀𝐺1,𝐺2  ∈  𝑋,𝑑𝐾  𝐺1,𝐺2 =  0 ⇒  𝐺𝐺 ≅  𝐺𝐺 . 

Equivalently,  ϕ(𝐺1) ≠  ϕ(𝐺1) if 𝐺1 and 𝐺2 are not isomorphic. 

• If a graph kernel is not complete, then there is cannot cover all 

possible functions over X: the kernel is not expressive enough. 

• On the other hand, kernel computation must be tractable, i.e., no 

more than polynomial (with small degree) for practical applications. 

• Can we define tractable and expressive graph kernels? 

Computing any complete graph kernel is at least as hard as the graph 
isomorphism problem. (Gärtner et al., 2003) 



SUBGRAPH KERNEL 

Let λ 𝐺 𝐺∈𝑋 a set or nonnegative real-valued weights 

For any graph G ∈ X, let 

∀𝐻 ∈ 𝑋, 𝜙𝐻 𝐺 = |G′ is a subgraph of G : G′ ≅ H 

The subgraph kernel between any two graphs 𝐺1 and 𝐺2 ∈ X is defined 

by: 

𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺1,𝐺2)  =  � λ𝐻
𝐻∈𝑋

𝜙𝐻 𝐺1 𝜙𝐻(𝐺2) 

NOTE: Computing the subgraph kernel is NP-hard. (Gärtner et al., 2003) 



GRAPH KERNELS TERMINOLOGY CONT.  

Note that all subtree kernels compare subtree patterns in two graphs, 
not (strict) subtrees. 

Figure 1: A subtree pattern of height 2 rooted at the node 1. 
Note the repetitions of nodes in the unfolded subtree pattern 
on the right. 

subtree patterns (also called tree-walks, Bach, 2008) can have 
nodes that are equal .  



PATH KERNEL 

A path of a graph (V,E) is sequence of distinct vertices 

𝑣1, . . . , 𝑣𝑚 ∈ 𝑉 (𝑖 ≠ 𝑗 ⇒  𝑣𝑚  ≠ 𝑣𝑗 ) such that (𝑣𝑚 , 𝑣𝑚+1) ∈ 𝐸 for i = 1, . . . , n − 1. 

Equivalently the paths are the linear subgraphs. 

The path kernel is the subgraph kernel restricted to paths, i.e., 

𝐾𝑠𝑠𝑝𝑠(𝐺1,𝐺2)  =  �λ𝐻
𝐻∈𝑃

𝜙𝐻 𝐺1 𝜙𝐻(𝐺2) 

where P ⊂ X is the set of path graphs. 

NOTE: Computing the path kernel is NP-hard. (Gärtner et al., 2003) 



EXPRESSIVENESS VS COMPLEXITY TRADE-OFF 

 It is intractable to compute complete graph kernels. 

 It is intractable to compute the subgraph kernels. 

 Restricting subgraphs to be linear does not help:  

 it is intractable to compute the path kernel. 

 One approach to define polynomial time computable graph 
kernels is to have the feature space be made up of graphs 
homomorphic to subgraphs, e.g., to consider walks instead of 
paths. 



THREE CLASSES OF GRAPH KERNELS 

 Graph kernels based on walks and paths 
 Compute the number of matching pairs of random walks (resp. paths) in 

two graphs  
 Random walk kernel are generated by direct product graph of two 

graphs  
 Walks (Kashima et al., 2003; G¨artner et al., 2003) 
 Paths (Borgwardt and Kriegel, 2005), 

 Graph kernels based on limited-size subgraphs 
 Kernels based on graphlets, that represent graphs as counts of all types 

(or certain type of) of subgraphs of size k ∈{3,4,5}. 
 (Horv´ath et al., 2004; Shervashidze et al., 2009), 

 Graph kernels based on subtree patterns 
 Subtree kernels iteratively compares all matchings between neighbors 

of two nodes v from G and v’ from G’. In other words, for all pairs of 
nodes v from G and v’ from G’, it counts all pairs of matching 
substructures in subtree patterns rooted at v and v’.  

 (Ramon and G¨artner, 2003; Mah´e and Vert, 2009) 



RANDOM WALKS 

Principle (Kashima et al., ICML 2003, Gaertner et al., COLT 2003) 
•  Compare walks in two input graphs G and G’ 
•  Walks are sequences of nodes that allow repetitions of nodes 

Computation 
•  Walks of length k can be computed by looking at the k-th power of the adjacency 

matrix 
•  Construct direct product graph of G and G’ 
•  Count walks in this product graph G× = (𝑉×,𝐸×) 
•  Each walk in the product graph corresponds to one walk in G and G’ 

Runtime in 𝑂(𝑛6) 
Some proposed speed up:  
• Fast computation of random walk graph kernels (Vishwanathan 

et al., NIPS 2006)  

• Label enrichment and preventing tottering (Mahe et al., ICML 2004) 

• Graph kernels based on shortest paths(Kriegel, ICDM 2005)  



PRODUCT GRAPH 

Let 𝐺𝐺 =  (𝑉𝐺,𝐸𝐺) 𝑎𝑛𝑑 𝐺𝐺 =  (𝑉𝐺,𝐸𝐺) be two graphs with labeled 

vertices. The 𝑠𝑝𝑝𝑑𝑠𝑝𝑝 𝑔𝑝𝑎𝑠𝑔 𝐺 =  𝐺𝐺 ×  𝐺𝐺 is the graph G = (V,E) with:  

𝑉 =  {(𝑣1,𝑣2) ∈ 𝑉1  ×  𝑉2 ∶  𝑣1 and 𝑣2 have the same label} , 

𝐸 = {( 𝑣1, 𝑣2 , 𝑣1′ ,𝑣2′ ) ∈ 𝑉x𝑉: 𝑣1,𝑣1′ ∈ 𝐸1 𝑎𝑛𝑑 𝑣2, 𝑣2′ ∈ 𝐸2} 

. 

• Product graph consists of pairs of identically labeled nodes and edges 
from G1 and G2 



WALKS 

A walk of a graph (V,E) is sequence of 𝑣1, . . . , 𝑣𝑚  ∈  𝑉 such that 
(𝑣𝑖 ,𝑣𝑖 + 1) ∈ 𝐸 for 𝑖 =  1, . . . ,𝑛 −  1.  
 
We note 𝑾𝒏(𝑮) the set of walks with n vertices of the graph G, and 
𝑾(𝑮) the set of all walks. 

walks Paths 



WALK KERNELS 



WALK KERNEL 

• Let 𝑺𝒏 denote the set of all possible label sequences of walks of length n 

(including vertices and edges labels), and 𝑆 = ∪𝑚≥1 𝑆𝑚. 

• For any graph X let a weight 𝜆𝐺(𝑤) be associated to each walk 𝑤 ∈  𝑊(𝐺). 

• Let the feature vector 𝜙 𝐺 =  𝜙𝑠 𝐺 𝑠∈𝑆 be defined by: 

𝜙𝑠(𝐺)  =  � 𝜆𝐺(𝑤)𝟏
 𝑤∈𝑊(𝐺)

(𝑠 is the label sequence of 𝑤) . 

• A walk kernel is a graph kernel defined by: 

𝐾𝑤𝑠𝑤𝑤(𝐺1,𝐺2)  = �𝜙𝑆 𝐺1 𝜙𝑆(𝐺2) 
𝑠∈𝑆

 

• Walks of length k can be computed by taking the adjacency matrix A to the 
power of k  

• 𝐴𝑤(𝑖, 𝑗)  =  𝑝 means that c walks of length k exist between vertex i and vertex 
j 



WALK KERNEL EXAMPLES 

• The nth-order walk kernel is the walk kernel with 𝜆𝐺(𝑤) = 1 if the  length of w 

is n, 0 otherwise. It compares two graphs through their  common walks of 

length n. 

• The random walk kernel is obtained with 𝜆𝐺(𝑤) = 𝑃𝐺(𝑤), where 𝑃𝐺 is a Markov 

random walk on G. In that case we have:  

𝐾(𝐺1,𝐺2)  =  𝑃(𝑙𝑎𝑙𝑙𝑙(𝑊1)  =  𝑙𝑎𝑙𝑙𝑙(𝑊2)) ,  

     where 𝑊1 and 𝑊2 are two independent random walks on 𝐺1 and 𝐺2,         

     respectively (Kashima et al., 2003). 

• The geometric walk kernel is obtained (when it converges) with 𝜆𝐺(𝑤) =

 𝛽𝑤𝑙𝑚𝑠𝑝𝑠 𝑤 , for 𝛽 > 0. In that case the feature space is of infinite dimension 

(Gärtner et al., 2003). 

These three kernels (nth-order, random and geometric walk kernels) 
can be computed efficiently in polynomial time. 



SUBTREE KERNELS 

Like the walk kernel, amounts to compute the 
(weighted) number of subtrees in the product 
graph. 



Motivation 

• Compare tree-like substructures of graphs 

• May distinguish between substructures that walk kernel deems identical 

Algorithmic principle 

• for all pairs of nodes r from V1(G1) and s from V2(G2) and a predefined 

height h of subtrees: 

• recursively compare neighbors (of neighbors) of r and s 

• subtree kernel on graphs is sum of subtree kernels on nodes 



REPLACING WALKS BY PATHS 

Underlying idea 

•  Paths do not suffer from tottering 

•  Define a graph kernel based on paths 

Setbacks 

•  All paths are NP-hard to compute 

•  Longest paths are NP-hard to compute 

•  But shortest paths are computable in 𝑂(𝑛3) 

Pitfall 

• Number of shortest paths in a graph may be exponential in the number of nodes 

(in pathological cases) 

Workaround 

•  Shortest paths need not be unique, but shortest path distances are 

•  Define graph kernel based on shortest path distances 



TOTTERING  

Tottering (Mahe et al., ICML 2004) 

A tottering walk is a walk 𝑤 =  𝑣1 . . . 𝑣𝑚 with 𝑣𝑚  =  𝑣𝑚 + 𝐺 for some i. 

• A walk can visit the same cycle of nodes all over again 

• Kernel measures similarity in terms of common walks 

• Hence a small structural similarity can cause a huge kernel value 
• Focusing on non-tottering walks is a way to get closer to the path 

kernel (e.g., equivalent on trees). 



LABEL ENRICHMENT: MORGAN INDEX (1965) 

•  Size of product graph affects runtime of kernel computation 

•  The more node labels, the smaller the product graph 

•  Trick: Introduce new artificial node labels 

•  Topological descriptors of nodes are natural extra labels 

•  For instance, the Morgan Index that counts k-th order neighbours 

of a node: 
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