

Instructor: Sael Lee CS549 Spring – Computational Biology

LECTURE 20: GRAPH KERNELS

Resources:

- Shervashidze, N., et al. (2011). Weisfeiler-Lehman Graph Kernels. *Journal of Machine Learning Research*, 12, 2539–2561.
- "Graph Mining and Graph Kernels" K. Borgwardt and X. Yan KDD2008 Tutorial
- Vishwanathan, S. V. N., et al. (2010). Graph Kernels. *Journal of Machine Learning Research*, 11, 1201–1242.
- "Graph kernels and chemoinformatics" Jean-Philippe Vert. Slides from Gbr'2007

FREQUENT SUBGRAPH MINING

Frequent Subgraph Mining seeks to find patterns in a dataset of graphs

Given

 \checkmark a set $D = \{G_1, G_2, \dots, G_N\}$ of graphs

✓ a minimum frequency $0 \le \theta_{min} \le 1$ Find the set of **frequent subgraphs**, i.e.

 $F(\theta_{min}) = \{H \mid |\{i: H \text{ subgraph of } G_i\}| \ge N\theta_{min}\}$

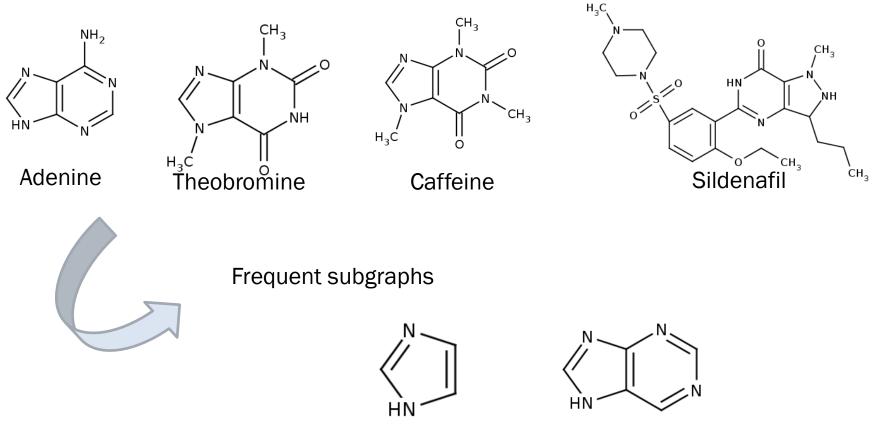
• The frequency of subgraph H is called the support of H

 $supp(H) = |\{i : H \text{ subgraph of } G_i\}|$

- θ_{min} is called the **minimum support**
- Often focus on **connected** subgraphs

EX. APPLICATION

Finding moieties in chemical compounds



Imidazole

Purine

GRAPH COMPARISON

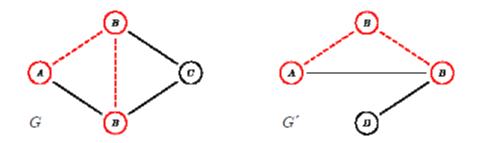
Graph Kernels aim at computing similarity scores between graphs in a dataset

Definition 1 (Graph Comparison Problem)

Given two graphs G and G' from the space of graphs G. The problem of graph comparison is to find a mapping

 $s: G \times G' \rightarrow R$

such that s(G,G') quantifies the similarity (or dissimilarity) of G and G'.



Graph isomorphism

Find a mapping f of the vertices of G_1 to the vertices of G_2 such that G_1 and G_2 are identical; i.e. (x,y) is an edge of G_1 iff (f(x),f(y)) is an edge of G_2 . Then f is an **isomorphism**, and G_1 and G_2 are called **Isomorphic**

- No polynomial-time algorithm is known for graph isomorphism
- Neither is it known to be NP-complete

Subgraph isomorphism

 G_1 and G_2 are **isomorphic** if there exists a subgraph isomorphism from G_1 to G_2 and from G_2 to G_1

• Subgraph isomorphism is NP-complete

We want polynomial-time similarity measure for graphs

MEASURING GRAPH SIMILARITY 1

Graph Edit Distances

Principle

- <u>Count operations that are necessary to transform G1 into G2</u>
- Assign costs to different types of operations (edge/node insertion/deletion, modification of labels)

Advantages

- Captures <u>partial similarities</u> between graphs
- Allows for noise in the nodes, edges and their labels
- Flexible way of assigning costs to different operations

Disadvantages

- <u>Contains subgraph isomorphism check (NP-complete)</u> as one intermediate step
- Choosing cost function for different operations is difficult

MEASURING GRAPH SIMILARITY 2

Topological Descriptors

Principle

- Map each graph to a <u>feature vector (ex> finger printing methods</u>)
- Use distances and metrics on vectors for learning on graphs

Advantages

• <u>Reuses</u> known and efficient tools for feature vectors

Disadvantages

- Most feature vector transformation leads to loss of topological information
- Or includes subgraph isomorphism as one step

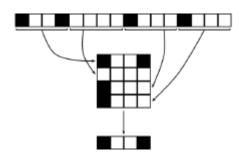
feature vectors (chemical fingerprints)

$$\phi(A) = (\phi_s(A))_s$$
 substructure

where

$$\phi_s(A) = \begin{cases} 1 & \text{if } s \text{ occurs in } A \\ 0 & \text{otherwise} \end{cases}$$

Modulo Compression (lossy)



Elias-Gamma Monotone Encoding (lossless) [Baldi et al., 2007]

- $\mbox{ index } j \rightarrow \lfloor log(j) \rfloor$ 0 bits + binary encoding of j
- $-j_i < j_{i+1} \colon \lfloor \log(j_{i+1}) \rfloor \to \lfloor \log(j_i) \log(j_{i+1}) \rfloor$
- average compressed size = 1,800 bits

MEASURING GRAPH SIMILARITY 3:

Graph Kernels: Kernels on pairs of graphs

Principle

- Let $\phi(x)$ be a vector representation of the graph x
- The kernel between two graphs is defined by:

 $K(x,x') = \phi(x)^T \phi(x')$

- To solve convex optimization with kernels, kernels needs to be
 - Symmetric, that is, k(x, x') = k(x', x), and
 - Positive semi-definite (p.s.d.)
- Comparing nodes in a graph involves constructing a kernel between nodes
- Comparing graphs involves constructing a kernel between graphs.

Advantages

• Similarity of two graphs are inferred through kernel function

Disadvantages

• Defining a kernel that captures the semantics inherent in the graph structure and is reasonably efficient to evaluate is the key challenge.

BRIEF HISTORY OF GRAPH KERNELS

- The idea of constructing kernels on graphs (i.e., between the nodes of a single graph) was first proposed by Kondor and Lafferty (2002), and extended by Smola and Kondor (2003).
- Idea of <u>kernels between graphs</u> were proposed by G[¨]artner et al. (2003) and later extended by Borgwardt et al. (2005).
- Idea of marginalized kernels (Tsuda et al., 2002) was extended to graphs by Kashima et al. (2003, 2004), then further refined by Mah´e et al. (2004).

GRAPH KERNELS TERMINOLOGY

- A graph G as a triplet (V, E, l), where V is the set of vertices, E is the set of undirected edges, and $l : V \rightarrow \Sigma$ is a function that assigns labels from an alphabet Σ to nodes in the graph.
- The **neighborhood** N(v) of a node v is the set of nodes to which v is connected by an edge, that is $N(v) = \{v' | (v, v') \in E\}$.

For simplicity, we <u>assume that every graph has *n* nodes</u>, <u>*m* edges, and a maximum degree of <u>*d*</u>. The **size of** <u>*G*</u> is defined as the cardinality of *V*.</u>

- A **path** is a walk that consists of distinct nodes only.
- A **walk** is a sequence of nodes in a graph, in which consecutive nodes are connected by an edge. walk extends the notion of path by allowing nodes to be equal
- A (rooted) subtree is a subgraph of a graph, which has no cycles, but a designated root node.
- The **height of a subtree** is the maximum distance between the root and any other node in the subtree.

GRAPH KERNELS TERMINOLOGY CONT.

Complete graph kernels

A graph **kernel is complete** if it <u>separates non-isomorphic graphs</u>, i.e.: $\forall G_1, G_2 \in X, d_K (G_1, G_2) = 0 \Rightarrow G1 \cong G2$. Equivalently, $\phi(G_1) \neq \phi(G_1)$ if G_1 and G_2 are not isomorphic.

- If a graph kernel is not complete, then there is cannot cover all possible functions over X: the kernel is not expressive enough.
- On the other hand, kernel computation must be tractable, i.e., no more than polynomial (with small degree) for practical applications.
- Can we define tractable and expressive graph kernels?

Computing any <u>complete graph kernel is at least as hard as the graph</u> <u>isomorphism problem</u>. (Gärtner et al., 2003)

SUBGRAPH KERNEL

Let $\lambda(G)_{G \in X}$ a set or **nonnegative** real-valued weights

For any graph $G \in X$, let

 $\forall H \in X$, $\phi_H(G) = |G'|$ is a subgraph of $G : G' \cong H$

The **subgraph kernel** between any two graphs G_1 and $G_2 \in X$ is defined by:

$$K_{subgraph}(G_1, G_2) = \sum_{H \in X} \lambda_H \phi_H(G_1) \phi_H(G_2)$$

NOTE: Computing the subgraph kernel is NP-hard. (Gärtner et al., 2003)

GRAPH KERNELS TERMINOLOGY CONT.

subtree patterns (also called *tree-walks*, Bach, 2008) can have nodes that are equal .

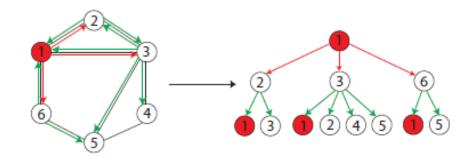


Figure 1: A subtree pattern of height 2 rooted at the node 1. Note the repetitions of nodes in the unfolded subtree pattern on the right.

Note that all subtree kernels compare subtree *patterns* in two graphs, not (strict) subtrees.

A path of a graph (V,E) is sequence of **distinct vertices**

 $v_1, \ldots, v_n \in V$ $(i \neq j \Rightarrow v_i \neq v_j)$ such that $(v_i, v_{i+1}) \in E$ for i = 1, ..., n – 1. Equivalently the paths are the **linear subgraphs**.

The path kernel is the subgraph kernel restricted to paths, i.e.,

$$K_{path}(G_1, G_2) = \sum_{H \in P} \lambda_H \phi_H(G_1) \phi_H(G_2)$$

where $P \subset X$ is the set of path graphs.

NOTE: Computing the path kernel is NP-hard. (Gärtner et al., 2003)

EXPRESSIVENESS VS COMPLEXITY TRADE-OFF

- * It is **intractable** to compute **complete graph kernels**.
- * It is intractable to compute the subgraph kernels.
- * Restricting subgraphs to be linear does not help:
 - + it is intractable to compute the path kernel.
- One approach to define polynomial time computable graph kernels is to have the feature space be made up of graphs homomorphic to subgraphs, e.g., to consider walks instead of paths.

THREE CLASSES OF GRAPH KERNELS

- Graph kernels based on walks and paths
 - + Compute the number of matching pairs of random walks (resp. paths) in two graphs
 - + Random walk kernel are generated by direct product graph of two graphs
 - + Walks (Kashima et al., 2003; G"artner et al., 2003)
 - + Paths (Borgwardt and Kriegel, 2005),
- × Graph kernels based on limited-size subgraphs
 - + Kernels based on **graphlets**, that represent graphs as counts of all types (or certain type of) of subgraphs of size $k \in \{3,4,5\}$.
 - + (Horv´ath et al., 2004; Shervashidze et al., 2009),
- × Graph kernels based on subtree patterns
 - + Subtree kernels iteratively compares all matchings between neighbors of two nodes v from G and v' from G'. In other words, for all pairs of nodes v from G and v' from G', it counts all pairs of matching substructures in subtree patterns rooted at v and v'.
 - + (Ramon and G"artner, 2003; Mah'e and Vert, 2009)

RANDOM WALKS

Principle (Kashima et al., ICML 2003, Gaertner et al., COLT 2003)

- Compare walks in two input graphs G and G'
- Walks are sequences of nodes that allow repetitions of nodes

Computation

- Walks of length k can be computed by looking at the k-th power of the adjacency matrix
- Construct direct product graph of G and G'
- Count walks in this product graph $G_{\times} = (V_{\times}, E_{\times})$
- Each walk in the product graph corresponds to one walk in G and G'

$$k_{oldsymbol{ imes}}(G,G') = \sum_{i,j=1}^{|V_{oldsymbol{ imes}}|} [\sum_{k=0}^\infty \lambda^k A^k_{oldsymbol{ imes}}]_{ij}$$

Runtime in $O(n^6)$

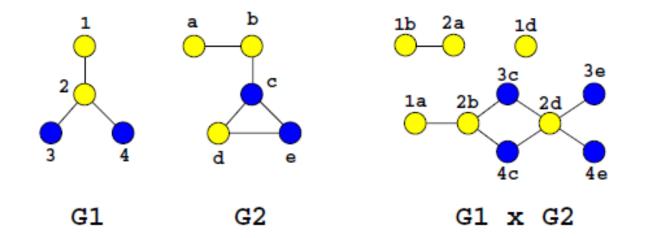
Some proposed speed up:

- Fast computation of random walk graph kernels (Vishwanathan et al., NIPS 2006)
- Label enrichment and preventing tottering (Mahe et al., ICML 2004)
- Graph kernels based on shortest paths(Kriegel, ICDM 2005)

PRODUCT GRAPH

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with labeled vertices. The *product graph* $G = G1 \times G2$ is the graph G = (V,E) with:

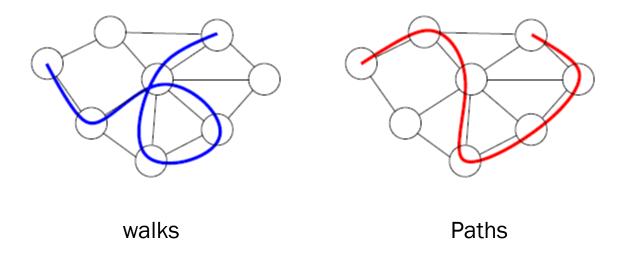
 $V = \{(v_1, v_2) \in V_1 \times V_2 : v_1 \text{ and } v_2 \text{ have the same label}\},\$ $E = \{((v_1, v_2), (v'_1, v'_2)) \in VxV: (v_1, v'_1) \in E_1 \text{ and } (v_2, v'_2) \in E_2\}$

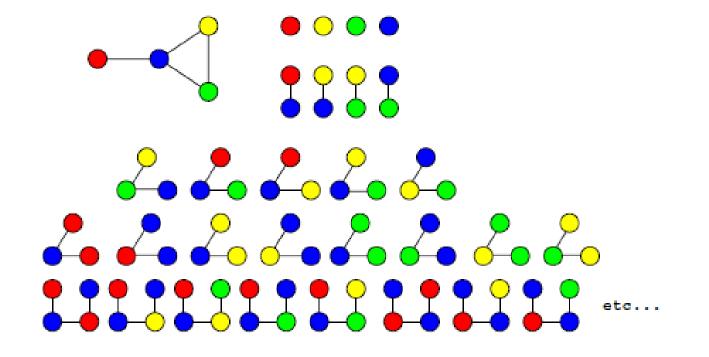


 Product graph consists of pairs of <u>identically labeled nodes and edges</u> from G1 and G2

A walk of a graph (V,E) is sequence of $v_1, \ldots, v_n \in V$ such that $(vi, vi + 1) \in E$ for $i = 1, \ldots, n - 1$.

We note $W_n(G)$ the set of walks with n vertices of the graph G, and W(G) the set of all walks.





WALK KERNEL

- Let S_n denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and $S = \bigcup_{n \ge 1} S_n$.
- For any graph X let **a weight** $\lambda_G(w)$ be associated to each walk $w \in W(G)$.
- Let the feature vector $\phi(G) = (\phi_s(G))_{s \in S}$ be defined by:

$$\phi_s(G) = \sum_{w \in W(G)} \lambda_G(w) \mathbf{1} (s \text{ is the label sequence of } w).$$

• A walk kernel is a graph kernel defined by:

$$K_{walk}(G_1, G_2) = \sum_{s \in S} \phi_s(G_1) \phi_s(G_2)$$

- Walks of length k can be computed by taking the **adjacency matrix A** to the power of k
- $A^k(i,j) = c$ means that c walks of length k exist between vertex i and vertex j

WALK KERNEL EXAMPLES

- The **nth-order walk kernel** is the walk kernel with $\lambda_G(w) = 1$ if the length of w is n, 0 otherwise. It compares two graphs through their common walks of <u>length n</u>.
- The **random walk kernel** is obtained with $\lambda_G(w) = P_G(w)$, where \underline{P}_G is a <u>Markov</u> random walk on G. In that case we have:

 $K(G_1, G_2) = P(label(W_1) = label(W_2)),$

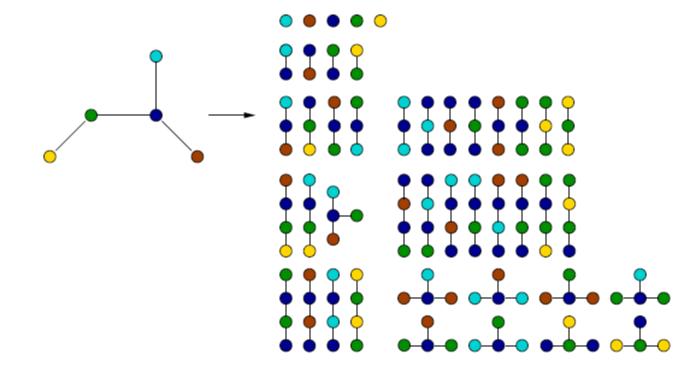
where W_1 and W_2 are two independent random walks on G_1 and G_2 , respectively (Kashima et al., 2003).

• The **geometric walk kernel** is obtained (when it converges) with $\lambda_G(w) = \beta^{length(w)}$, for $\beta > 0$. In that case the feature space is of **infinite dimension** (Gärtner et al., 2003).

These three kernels (nth-order, random and geometric walk kernels) can be computed efficiently in **polynomial time**.

SUBTREE KERNELS

Like the walk kernel, amounts to compute the (weighted) number of subtrees in the product graph.



Motivation

- Compare tree-like substructures of graphs
- May distinguish between substructures that walk kernel deems identical

Algorithmic principle

- for all pairs of nodes r from V1(G1) and s from V2(G2) and a predefined height h of subtrees:
- recursively compare neighbors (of neighbors) of r and s
- subtree kernel on graphs is sum of subtree kernels on nodes

REPLACING WALKS BY PATHS

Underlying idea

- Paths do not suffer from tottering
- Define a graph kernel based on paths

Setbacks

- All paths are NP-hard to compute
- Longest paths are NP-hard to compute
- But shortest paths are computable in $O(n^3)$

Pitfall

 Number of shortest paths in a graph may be exponential in the number of nodes (in pathological cases)

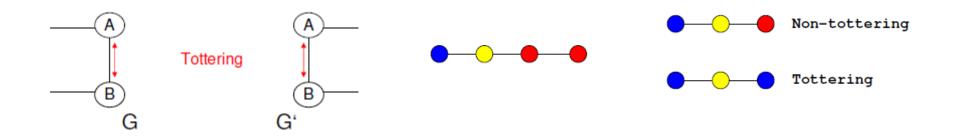
Workaround

- Shortest paths need not be unique, but shortest path distances are
- Define graph kernel based on shortest path distances

Tottering (Mahe et al., ICML 2004)

A tottering walk is a walk $w = v_1 \dots v_n$ with $v_i = v_i + 2$ for some i.

- A walk can visit the same cycle of nodes all over again
- Kernel measures similarity in terms of common walks
- Hence a small structural similarity can cause a huge kernel value
- Focusing on non-tottering walks is a way to get closer to the path kernel (e.g., equivalent on trees).



LABEL ENRICHMENT: MORGAN INDEX (1965)

- Size of product graph affects runtime of kernel computation
- The more node labels, the smaller the product graph
- Trick: Introduce new artificial node labels
- Topological descriptors of nodes are natural extra labels
- For instance, the Morgan Index that counts k-th order neighbours of a node:

