\
Korea q\\\\ Stony Brook
e University

Instructor: Sael Lee
CS549 Spring - Computational Biology

LECTURE 18;
PROTEIN DYNAMICS AND PCA



Bakan, A., & Bahar, I. (2009). PNAS, 106(34), 14349-54.

THE INTRINSIC DYNAMICS OF ENZYMES PLAYS A DOMINANT
ROLE IN DETERMINING THE STRUCTURAL CHANGES INDUCED
UPON INHIBITOR BINDING.



ABSTRACT

Motivation: The conformational flexibility of target proteins continues to be a
major challenge in accurate modeling of protein-inhibitor interactions.

Problem: A fundamental issue, yet to be clarified, is whether the observed
conformational changes are controlled by the protein or induced by the inhibitor.
Solution Approach: The wealth of structural data for target proteins in the
presence of different ligands now permits us to make a critical assessment of
the balance between these two effects in selecting the bound forms. We
focused on three widely studied drug targets, HIV-1 reverse transcriptase, p38
MAP kinase, and cyclin-dependent kinase 2. A total of 292 structures
determined for these enzymes in the presence of different inhibitors and
unbound form permitted us to perform an extensive comparative analysis of the
conformational space accessed upon ligand binding, and its relation to the
intrinsic dynamics before ligand binding as predicted by elastic network model
analysis.

Results: Our results show that the ligand selects the conformer that best
matches its structural and dynamic properties among the conformers
intrinsically accessible to the protein in the unliganded form. The results suggest
that simple but robust rules encoded in the protein structure play a dominant
role in predefining the mechanisms of ligand binding, which may be
advantageouslv exploited in designing inhibitors.




PROBLEM

Are conformational changes controlled by
1. the protein native dynamics or
2. induced by the inhibitor

Protein native dynamics
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STRUCTURAL DYNAMICS OBSERVED VS THEORY

Functional variations in Expected from a physical
structures observed theory and method based on
experimentally native contact topology.
Using NMR models Using anisotropic network
model (ANM)
Top-ranking PCA modes Top ranking ANM modes

In all three proteins, show how the
ensembles of conformations observed in
experiments (in the presence of different
ligands) may be explained by the intrinsic
dynamics of the protein (in the absence of
ligands).

http://ignm.ccbb.pitt.edu/Dynomics.htm
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DATASET

Table S1. Datasets: HIV-1 RT*, p38 MAP kinase®, and Cdk2* structures
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STRUCTURAL DATA ANALYSIS PROCEDURE : ST

The experimental structural data are analyzed as follows:

EP 1

1. The ensemble of structures are superimposed using the Kabsch algorithm
in an iterative procedure (see Sl Text),

« mean positions (R;) [{x;){y;){z;)]" are determined for a-carbons 1 <i < N
(or those with known coordinates),




ITERATIVE SUPERIMPOSITION METHOD

Iterative Procedure for Optimal Superimposition of Ensembles of

Structures.

(i) Each structure in the ensemble is first pairwise superimposed
onto a randomly selected reference structure

(ii) An average set of coordinates is calculated for the
superimposed set obtained in i, referred to as the “‘average
model,”

(iii) all structures are pairwise superimposed on the newly
generated ‘average model’
two successive iterations changes by less than the threshold
RMSD of 0.001 A.



STEP 2

2. Departures from their mean positions,

AR = [Ax] Ay? Az7]" where Ax] = x7 — (x;)
are organized in a 3Mdimensional deformation vector
AR® where (ARS)T = [(ART(AR3)T ... (ARY)T],
for all structures, S, in the dataset;

and their cross-correlations, averaged over the entire set
are combined in a 3N x 3N covariance matrix C



STEP 3

3. C is diagonalized to determine the principal modes of
structural variations, p(i), observed in experiments.

The principal modes (m of them, for an ensemble of
m < 3N — 6 structures) are rank-ordered:

PCA mode 1 (PC1), pV, refers to the direction of
maximal variance, succeeded by PC2, etc.

Of interest is to view the distribution of dataset structures in
the subspace spanned by PC1 and PC2, which permit us to
discriminate, or cluster, the conformations based on their
most distinctive structural similarities and/or dissimilarities.




CALCULATION OF THE COVARIANCE MATRIX

The covariance matrix C is a 3N X 3N matrix for a protein of
N residues (with known coordinates), which may be written
in terms of a set of N x N submatrices CY (1 <i,j <

N), each of size 3x3, given by

(Ax;Ax;) (Ax;Ay;) (AxAzp)
C% = | (Ay;Ax;) (AyAy;) (Ay;Az))
{‘j": r':'."-ln:I l‘:':'.’“-‘E-e‘:"‘_]fr } r:‘l:e‘j" Zj }

(Ax;Ay;) represents the cross correlation between (i) the X-
component of the fluctuation vector AR; representing the
departure of the ith residue from its mean position, and (ii)
the Y-component of ARf representing the departure of the jth

residue from its mean position, averaged over all structures
(1 < s < m)inthe examined dataset



OBTAINING PRINCIPAL MODES

 Decomposing the covariance matrix C for each dataset as
Cp(l) — O-l.p(i)
where pMand o;, are the respective ith eigenvalue and

eigenvector of C, g; corresponding to the largest variance
component.

The fractional contribution of p() to structural variance in the

dataset is given by
fi = Ui/z: 0;
J

where the summation is performed over all m components.

The square displacement of the kth residue along p(1) and p(2)
(or PC1 and PC2) is

(AR )<<z = tr {[Ziz=1 Uip(i)P(i)T]kk}
where the subscript kk denotes the kth diagonal element (a 3X3
matrix) of the 3Nx3N matrix enclosed in square brackets.



PROJECTION OF CONFORMATIONS ONTO THE SUBSPACE
SPANNED BY THE PCS

The projection of a given conformational change As onto pi).
The points in the Figs represent the projection of each structure s onto PC1 and
PC2. In the extreme case of (AS)T perfectly aligned along pi),
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RESULTS FOR HIV-1 RT

Projection of 6 unliganded

(red), 97 NNRTI bound (blue),
8 dsDNA/RNA-bound (green),

and 1 ATP-bound (black) RT
structures onto PC1 and PC2

PC1: The most distinctive
feature is the large
movement of the thumb
and anti-correlated
displacements of the
fingers and thumb

PC2 describes the out-
of-plane fluctuations of
the thumb
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RESULTS FOR P38 MAP KINASE
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RESULTS FOR CDK2

Projection of 2
unliganded (red), 3 ATP-
bound (green), and 101
inhibitor-bound (blue)
Cdk?2 structures onto
PC1 and PC2.

Structural
variation along
PC1
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RESULTS CONT




CONCLUSION

presented a detailed analysis of conformational changes
experimentally observed for three enzymes upon binding a
broad range of ligands, and those predicted by simple
physics-based models based on their native fold contact

topology

First principal mode of structural change, PC1, observed
in experiments exhibits a correlation of 0.78 0.1 with a
top ranking mode (ANM1-ANM3) intrinsically preferred by
the unliganded protein.

The three PCs describe between 50% (Cdk2) and 80% (RT)
of the structural variance observed in the datasets of

enzymes.



Maisuradze, G. G., Liwo, A., & Scheraga, H. a. (2009).
Journal of molecular biology, 385(1), 312-29

PRINCIPAL COMPONENT ANALYSIS FOR PROTEIN FOLDING
DYNAMICS.



ABSTRACT

Protein folding is considered here by studying the dynamics of the folding
of the triple p-strand WW domain from the Formin-binding protein 28.
Starting from the unfolded state and ending either in the native or
nonnative conformational states, trajectories are generated with the coarse-
grained united residue (UNRES) force field. The effectiveness of principal
components analysis (PCA), an already established mathematical technique
for finding global, correlated motions in atomic simulations of proteins, is
evaluated here for coarse-grained trajectories. The problems related to PCA
and their solutions are discussed. The folding and nonfolding of proteins
are examined with free-energy landscapes. Detailed analyses of many
folding and nonfolding trajectories at different temperatures show that PCA
is very efficient for characterizing the general folding and nonfolding
features of proteins. It is shown that the first principal component captures
and describes in detail the dynamics of a system. Anomalous diffusion in
the folding/nonfolding dynamics is examined by the mean-square dis-
placement (MSD) and the fractional diffusion and fractional kinetic
equations. The collisionless (or ballistic) behavior of a polypeptide under-
going Brownian motion along the first few principal components is
accounted for.

© 2008 Elsevier Ltd. All rights reserved.



DATA

Data set: various
fold/unfold states of
small 37-residue protein,
triple B-strand WW
domain from the Formin-
binding protein 28
(FBP28) (1EOL in Protein
Data Bank notationl).

formation of
intermolecular B-
sheets is

thought to be a
crucial event in the
initiation and
propagation of
amyloid diseases

Loop 2

Fig. 1. Experimental NMR structure’ of the triple p-
strand WW domain from FBP28 (1E0L).



PRINCIPLE COMPONENTS ANALYSIS INPUT

Model: using coarse-grained models to carry out molecular
dynamics simulations employing physics-based united-
residue (UNRES) force field generating trajectories starting
from the unfolded state to native state at different

temperatures



Principal component analysis

The PCA method is based on the covariance matrix with
elements C;; for coordinates i and |

Cij = ((xi — (xi)) (x; — (x;))) (3)

where xj,... , x3y are the mass-weighted Cartesian
coordinates of an N-particle system and () is the
average over all instantaneous structures sampled
during the simulations.



The symmetric 3N x 3N matrix
C can be diagonalized with an orthonormal transforma-
tion matrix R:

RYCR =diag(/1, 42, ... A3n), (4)

where N1=N\,=>=N\3y are the eigenvalues, and RT is the
transpose of R. The columns of R are the eigenvectors, or
the principal modes; the trajectory can be projected onto

the eigenvectors to give the principal components g;(t),
i=1, ..., 3N:

q=R"(x(t) - (x)) (5)

The eigenvalue Njis the mean-square fluctuation in the
direction of the principal mode. The first few PCs typically
describe collective, global motions of the system, with the
first PC containing the largest mean-square fluctuation.



RESULTS
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The first principal component and rmsd from the native structure of fast-
(a) and slow- (b) MD trajectories at 330 K for 1EOL.



RESULTS

Free-energy landscapes (in
kilocalories per mole) for 1EOL

with representative structures at

the minima of fast-(a) and slow-
ﬁt (b) MD trajectories at 330K. Al-
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Yang, L.-W., Eyal, E., Bahar, ., & Kitao, A. (2009).
Bioinformatics, 25(5), 606-14

PRINCIPAL COMPONENT ANALYSIS OF NATIVE ENSEMBLES OF
BIOMOLECULAR STRUCTURES (PCA_NEST):
INSIGHTS INTO FUNCTIONAL DYNAMICS.



ABSTRACT

Motivation: To efficiently analyze the ‘native ensemble of
conformations’ accessible to proteins near their folded state and
to extract essential information from observed distributions of
conformations, reliable mathematical methods and computational
tools are needed.

Result: Examination of 24 pairs of structures determined by both
NMR and X-ray reveals that the differences in the dynamics of
the same protein resolved by the two techniques can be tracked
to the most robust low frequency modes elucidated by principal
component analysis (PCA) of NMR models. The active sites of
enzymes are found to be highly constrained in these PCA modes.
Furthermore, the residues predicted to be highly immobile are shown
to be evolutionarily conserved, lending support to a PCA-based
identification of potential functional sites. An online tool, PCA_NEST,
is designed to derive the principal modes of conformational changes
from structural ensembles resolved by experiments or generated by
computations.

Availability: http://ignm.ccbb.pitt.edu/oPCA_Online.htm



PRINCIPAL COMPONENT ANALYSIS

For an ensemble containing M frames (1 <f <=M) and N heavy
atoms (or CG-nodes) (1 <i < N) per frame, we build a covariance
martrix

C=QQ! (4)

Here Q is a matrix of M columns consisting each of 3/NV-dimensional
vectors of N super-elements (3D vectors). The corresponding i-th
super-element

=98 L (s

describes the deviation of atom i from its mean position g;.



PRINCIPAL COMPONENT ANALYSIS CONT

c=QQT=vxVvT= (UE”ZVT)T(UEUZVT) 6)

where V 1s the matrix of the 3N-dimensional eigenvectors v(k)
(1 <k < M) associated with the M non-zero PC modes, and £!/2

is the diagonal matrix of the square root Ekl /2 of the corresponding
eigenvalues, obtained from the singular value decomposition (SVD)



INTERPRETING PRINCIPAL COMPONENTS

The 3N-elements of vK) describe the variations in the
positions of the N nodes associated with PC mode &, each given

by a 3D vector v\ (1 <i <N)

and the _’cf;: /2 represents the weight of the mode &, the modes
being rank-ordered as & = & = ... = &yy. The largest contributions
to conformational variations come from the top-ranking PC modes.
For a system of M < 3N frames, the decomposition of C yields M
non-zero modes. U is the M x M PC coordinates matrix (UUT =I)
that maps the frames in the PC space back to their original coordinate



RESULTS

(a)Anensemble of NMR
models (teal) for ubiquitin
(1xqq) and corresponding
X-ray structure (1ubq;
yellow).

The mean structure of
the NMR ensemble (gray)
moves towards its X-ray
counterpart (yellow)
along the first PC mode.
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RESULTS

300

Fluctuation profiles induced by dominant
PC modes. Four examples are displayed,
which illustrate how the enzyme active
sites (green squares) lie at the minima of
the normalized M,, ; profiles (ordinate)
based on PC modes 1 and 2, drawn a
function of residue index

My, =§sk (v,-[“ -vf”)

reflecting the weighted sum of the top-
ranking two PC modes
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