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KERNEL-BASED FEATURE EXTRACTION 

 PCA can only extract a linear projection of the data 
 To do so, we first compute the covariance matrix 

𝑆 =
1
𝑁
� x𝑛x𝑛𝑇
𝑁

𝑛=1

 

 Then, we find the eigenvectors and eigenvalues 
𝑆𝑢𝑖 = 𝜆𝑖𝑢𝑖 and 𝑢𝑖𝑇𝑢𝑖 = 1 

𝑆𝑆 = 𝜆𝑆 
 And, finally, we project onto the eigenvectors with largest 

eigenvalues  
𝑦 = Ux 

 

 Can the kernel trick be used to perform this operation 
implicitly in a higher-dimensional space? 
 If so, this would be equivalent to performing non-linear PCA in the 

feature space 



Scholkopf, B., Smola, A., Muller, K. R., & Kybernetik, M. 
(n.d.). Kernel Principal Component Analysis, 2–7. 



DERIVING KERNEL-PCA 

* Assume zero mean data (centralized data points)  
1. Project the data into the high-dim feature space M 

𝜙:𝑅𝐷 → 𝑅𝑀; x → 𝜙 x  
2. Compute the covariance matrix  
     * Assume that projected data has zero mean (we will deal with it 
later) 

𝐶 =
1
𝑁
�𝜙 x𝑛 𝜙 x𝑛 𝑇
𝑁

𝑛=1

 

3. Compute the principal components by solving the eigenvalue problem 
𝐶𝑣𝑖 = 𝜆𝑖𝑣𝑖        where 𝑖 = 1 …𝑀 

or 𝐶𝑣 = 𝜆𝑣  
 

 The challenge is… how do we do this implicitly?  
 

Schölkopf et al., (Neural Computation, 1998) 



EXPRESSION INTO KERNEL FUNCTION 

𝐶 =
1
𝑁
�𝜙 x𝑛 𝜙 x𝑛 𝑇
𝑁

𝑛=1

 

𝐶𝑣𝑖 = 𝜆𝑖𝑣𝑖         where 𝑖 = 1 …𝑀 

1
𝑁
�𝜙 x𝑛 {𝜙 x𝑛 𝑇𝑣𝑖}
𝑁

𝑛=1

= 𝜆𝑖𝑣𝑖 

Observer that provided 
𝜆𝑖 > 0,𝑣𝑖 is given by linear 
combination of 𝜙 x𝑛  

1
𝑁�𝜙 x𝑛 {𝜙 x𝑛 𝑇𝑣𝑖}

𝑁

𝑛=1

= 𝜆𝑖𝑣𝑖 𝑣𝑖 = �𝑎𝑖𝑛𝜙 x𝑛

𝑁

𝑛=1

 

1
𝑁�𝜙 x𝑛 {𝜙 x𝑛 𝑇 � 𝑎𝑖𝑚𝜙 x𝑚

𝑁

𝑚=1

}
𝑁

𝑛=1

= 𝜆𝑖 � 𝑎𝑖𝑛𝜙 x𝑛

𝑁

𝑛=1

 

Multiply by 𝜙 x𝑙 𝑇 1
𝑁�𝜙 x𝑙 𝑇𝜙 x𝑛 {� 𝑎𝑖𝑚𝜙 x𝑛 𝑇𝜙 x𝑚

𝑁

𝑚=1

}
𝑁

𝑛=1

= 𝜆𝑖 � 𝑎𝑖𝑛𝜙 x𝑙 𝑇𝜙 x𝑛

𝑁

𝑛=1

 

1
𝑁� k(x𝑙 , x𝑛) {� 𝑎𝑖𝑚k(x𝑛, x𝑚)

𝑁

𝑚=1

}
𝑁

𝑛=1

= 𝜆𝑖 � 𝑎𝑖𝑛

𝑁

𝑛=1

k(x𝑙 , x𝑛) 

Dual variable notation 



1
𝑁
� k(x𝑙 , x𝑛) {� 𝑎𝑖𝑚k(x𝑛, x𝑚)

𝑁

𝑚=1

}
𝑁

𝑛=1

= 𝜆𝑖 � 𝑎𝑖𝑛

𝑁

𝑛=1

k(x𝑙 , x𝑛) 

𝐊2𝒂𝑖 = 𝜆𝑖𝑁𝐊𝒂𝑖 
Remove K from 
each side 𝐊𝒂𝑖 = 𝜆𝑖𝑁𝒂𝑖 

* Right differs only by eigenvector of K having 0 eigenvalues and do not effect other 
PC projections 

Normalization condition for the coefficients 𝒂𝑖 is obtained by requiring the 
eigenvector in feature space be normalized.  

𝐊𝒂𝑖 = 𝜆𝑖𝑁𝒂𝑖 

𝑣𝑖 = �𝑎𝑖𝑛𝜙 x𝑛

𝑁

𝑛=1

 1 = 𝑣𝑖𝑇𝑣𝑖 = � � 𝑎𝑖𝑛𝑎𝑖𝑚𝜙 x𝑛 𝑇
𝑁

𝑚=1

𝜙 x𝑚

𝑁

𝑛=1

 

 

= 𝒂𝑖𝐓𝐊𝒂𝑖 = 𝜆𝑖𝑁𝒂𝑖𝐓𝒂𝑖 



PROJECTION USING KERNEL FUNCTION 

𝒂𝑖𝐓𝐊𝒂𝑖 = 𝜆𝑖𝑁𝒂𝑖𝐓𝒂𝑖 

Having solved the eigenvector problem, the resulting principal component projections 
can then also e cast in terms of the kernel function 

𝑦𝑖 𝐱 = 𝜙 𝐱 𝑇𝒗𝑖 = ∑ 𝑎𝑖𝑛𝜙 𝐱 𝑇𝜙 𝐱𝒏 = ∑ 𝑎𝑖𝑛k(𝐱, 𝐱𝒏)𝑁
𝑛=1

𝑁
𝑛=1  

𝑣𝑖 = �𝑎𝑖𝑛𝜙 x𝑛

𝑁

𝑛=1

 



ZERO MEAN PROJECTION DATA REVISITED 

We assumed that ∑ 𝜙 x𝑛 = 0𝑁
𝑛=1   which is in most cannot be controlled 

Need to adjust for the zero mean assumption as follows: 

𝜙� 𝐱𝑛 = 𝜙 x𝑛 −
1
N
� 𝜙 x𝑙

𝑁

𝑙=1
 zero mean 

projection data  

𝐾�𝑛𝑚 = 𝜙� 𝐱𝑛 𝑇𝜙� 𝐱𝑚  
 

K� = K − 1NK − K1N + 1NK1N Where 1N is NxN matrix where 
every elements is 1/N 

2. use K� to find the eigenvalues and eigenvector.  

𝒂𝑖𝐓𝐊�𝒂𝑖 = 𝜆𝑖𝑁𝒂𝑖𝐓𝒂𝑖 

1. Evaluate  K� to using kernel function K and  

𝑦𝑖 𝐱 = � 𝑎𝑖𝑛k�  (𝐱, 𝐱𝒏)
𝑁

𝑛=1
 



EXAMPLE : GAUSSIAN KERNELS 
Lines: projection onto the 
corresponding principal component, 



DIFFERENCES AND SHORTCOMES OF KERNEL PCA 

 Kernel PCA involves finding the eigenvectors of the N × N 
matrix 𝑲�  rather than the D × D matrix S of conventional linear 
PCA, and so in practice for large data sets approximations are 
often used 

 In standard linear PCA, we often retain some reduced number L 
< D of eigenvectors and then approximate a data vector 𝒙𝑛 by 
its projection 𝒙�𝑛 onto the L-dimensional principal subspace 
 

 
     kernel PCA, this will in general not be possible 
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