
LECTURE 16: 
PCA AND SVD 

Instructor: Sael Lee 
CS549 – Computational Biology 

Resource:  
• PCA Slide by Iyad Batal 
• Chapter 12 of PRML 
• Shlens, J. (2003). A tutorial on principal component analysis. 

 



CONTENT 

 
 Principal Component Analysis (PCA)  
 Singular Value Decomposition (SVD)  

 



PRINCIPLE COMPONENT ANALYSIS 

 PCA finds a linear projection of high dimensional data 
into a lower dimensional subspace such as:  
 The variance retained is maximized.  
 The least square reconstruction error is minimized  

 



PCA STEPS 

Linearly transform an 𝑁×𝑑 matrix 𝑋 into an 𝑁×𝑚 matrix 𝑌 
 Centralized the data (subtract the mean).  

 Calculate the 𝑑×𝑑 covariance matrix: 𝐶 = 1
𝑁−1

𝑋𝑇𝑋 

 𝐶𝑖,𝑗 = 1
𝑁−1

∑ 𝑋𝑞,𝑖𝑋𝑞,𝑖  𝑁
𝑞=1  

 𝐶𝑖,𝑖  (diagonal) is the variance of variable i.  
 𝐶𝑖,𝑗 (off-diagonal) is the covariance between variables i and j.  

 Calculate the eigenvectors of the covariance matrix 
(orthonormal).  

 Select m eigenvectors that correspond to the largest m 
eigenvalues to be the new basis.  
 
 



EIGENVECTORS 

 If A is a square matrix, a non-zero vector v is an 
eigenvector of A if there is a scalar λ (eigenvalue) such 
that  

𝐴𝐴 = 𝜆𝑣 
 Example:  
   
 
 If we think of the squared matrix A as a transformation 

matrix, then multiply it with the eigenvector do not 
change its direction.  
 



PCA EXAMPLE 

𝑋 : the data matrix with N=11 objects and d=2 
dimensions 



 Step 1: subtract the mean and calculate the 
covariance matrix C. 



 Step 2: Calculate the eigenvectors and eigenvalues of 
the covariance matrix: 

 
Notice that v1 and v2  
are orthonormal:  



 Step 3: project the data 
 Let 𝑉 =  [𝑣1, … 𝑣𝑚] is 𝑑×𝑚 matrix where the columns 𝑣𝑖 are 

the eigenvectors corresponding to the largest m eigenvalues  
 The projected data: 𝑌=𝑋 𝑉 is 𝑁×𝑚 matrix.  
 If m=d (more precisely rank(X)), then there is no loss of 

information! 



 Step 3: project the data 
 
 

 The eigenvector with the highest eigenvalue is the 
principle component of the data.  

 if we are allowed to pick only one dimension, the 
principle component is the best direction (retain the 
maximum variance).  

 Our PC is 𝑣1  ≈  −0.677 − 0.735 𝑇 



USEFUL PROPERTIES 

 The covariance matrix is always symmetric 
 
 

 The principal components of 𝑋 are orthonormal  
 
 
 

   
 



USEFUL PROPERTIES 

Theorem 1: if square 𝑑×𝑑 matrix S is a real and 
symmetric matrix (𝑆 = 𝑆𝑇) then 

 
     
     Where 𝑉 = [𝑣1, … 𝑣𝑑] are the eigenvectors of S and  
     Λ =  𝑑𝑑𝑑𝑑 (𝜆1, … 𝜆𝑑) are the eigenvalues. 

 

𝑺 =  𝑽 𝚲 𝑽𝑻  

Proof: 
• 𝑆 𝑉 = 𝑉 Λ   
• [𝑆 𝑣1  …  𝑆 𝑣𝑑] = [𝜆1. 𝑣1  … 𝜆𝑑 . 𝑣𝑑]: the definition of eigenvectors.  
• 𝑆 =  𝑉 Λ 𝑉−1    
• 𝑆 =  𝑉 Λ 𝑉𝑇  because V is orthonormal 𝑉−1 =  𝑉𝑇  



USEFUL PROPERTIES 
 

 The projected data: 𝑌=𝑋 𝑉 
 The covariance matrix of Y is 

 
because the covariance matrix 𝐶𝑋 is 
symmetric  
 
because V is orthonormal  

 
After the transformation, the covariance matrix becomes diagonal.   



DERIVATION OF PCA : 1. MAXIMIZING VARIANCE 

 Assume the best transformation is one that maximize 
the variance of project data.  
 

 Find the equation for variance of projected data. 
 

 Introduce constraint  
 

 Maximize the un-constraint equation. ( find derivative 
w.r.t  projection axis and set to zero)  



DERIVATION OF PCA :  
2. MINIMIZING TRANSFORMATION ERROR 
 Define error 

 
 Identify variables that needs to be optimized in the 

error  
 

 Minimize and solve for the variables. 
 

 Interpret the information  



SINGULAR VALUE DECOMPOSITION(SVD) 

 Any 𝑁×𝑑 matrix 𝑋 can be uniquely expressed as: 
 
 
 
 
 
 

 r is the rank of the matrix X (# of linearly independent 
columns/rows).  
 U is a column-orthonormal 𝑁×𝑟 matrix.  
 Σ is a diagonal 𝑟×𝑟 matrix where the singular values σi are sorted 

in descending order.  
 V is a column-orthonormal 𝑑×𝑟 matrix.  

 



PCA AND SVD RELATION 

Theorem:  
Let 𝑋 =  𝑈 Σ 𝑉𝑇 be the SVD of an 𝑁×𝑑 matrix X and  

𝐶 = 1
𝑁−1

𝑋𝑇𝑋  be the 𝑑×𝑑 covariance matrix.  

The eigenvectors of C are the same as the right singular 
vectors of X.  

Proof: 

But C is symmetric, hence 𝐶 =  𝑉 Λ 𝑉𝑇  
Therefore, the eigenvectors of the covariance matrix C  are the same as 
matrix V (right singular vectors) and  

the eigenvalues of C can be computed from the singular values 𝜆𝑖 = 𝜎𝑖
2

𝑁−1
 

 



The singular value decomposition and the 
eigendecomposition are closely related. Namely: 
 The left-singular vectors of 𝑋 are eigenvectors of 𝑋𝑋𝑇   
 The right-singular vectors of 𝑋 are eigenvectors of 𝑋𝑇𝑋. 
 The non-zero singular values of 𝑋 (found on the diagonal 

entries of Σ) are the square roots of the non-zero eigenvalues of 
both 𝑋𝑇𝑋 and 𝑋𝑋𝑇. 



ASSUMPTIONS OF PCA 

 I. Linearity 
 II. Mean and variance are sufficient statistics. 

 Gaussian distribution assumed 

 III. Large variances have important dynamics. 
 IV. The principal components are orthogonal 



PCA WITH EIGENVALUE DECOMPOSITION 
function [signals,PC,V] = pca1(data) 
 
% PCA1: Perform PCA using covariance. 
% data - MxN matrix of input data 
% (M dimensions, N trials) 
% signals - MxN matrix of projected data 
% PC - each column is a PC 
% V - Mx1 matrix of variances 
 
[M,N] = size(data); 
 
% subtract off the mean for each dimension 
mn = mean(data,2); 
data = data - repmat(mn,1,N); 
 
% calculate the covariance matrix 
covariance = 1 / (N-1) * data * data’; 

% find the eigenvectors and eigenvalues 
[PC, V] = eig(covariance); 
 
% extract diagonal of matrix as vector 
V = diag(V); 
 
% sort the variances in decreasing order 
[junk, rindices] = sort(-1*V); 
V = V(rindices); 
PC = PC(:,rindices); 
 
% project the original data set 
signals = PC’ * data; 

Shlens, J. (2003). A tutorial on principal component analysis. 



PCA WITH SVD 

function [signals,PC,V] = pca2(data) 
 
% PCA2: Perform PCA using SVD. 
% data - MxN matrix of input data 
% (M dimensions, N trials) 
% signals - MxN matrix of projected data 
% PC - each column is a PC 
% V - Mx1 matrix of variances 
 
[M,N] = size(data); 
 
% subtract off the mean for each dimension 
mn = mean(data,2); 
data = data - repmat(mn,1,N); 
 
% construct the matrix Y 
Y = data’ / sqrt(N-1); 

% SVD does it all 
[u,S,PC] = svd(Y); 
 
% calculate the variances 
S = diag(S); 
V = S .* S; 
 
% project the original data 
signals = PC’ * data; 

Shlens, J. (2003). A tutorial on principal component analysis. 
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