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LECTURE 16:
PCA AND SVD

Resource:

e PCA Slide by lyad Batal

e Chapter 12 of PRML

e Shlens, J. (2003). A tutorial on principal component analysis.



CONTENT

Principal Component Analysis (PCA)
Singular Value Decomposition (SVD)



PRINCIPLE COMPONENT ANALYSIS

PCA finds a linear projection of high dimensional data
Into a lower dimensional subspace such as:

The variance retained is maximized.

The least square reconstruction error is minimized




PCA STEPS

Linearly transform an NXd matrix X into an NXm matrix Y
Centralized the data (subtract the mean).

Calculate the d X d covariance matrix; C = ﬁXTX

1
Ll N-1

C;; (diagonal) is the variance of variable i.

N
¢ q=1Xq,in,i

C; ;j (off-diagonal) is the covariance between variables i and j.

Calculate the eigenvectors of the covariance matrix
(orthonormal).

Select m eigenvectors that correspond to the largest m
eigenvalues to be the new basis.



EIGENVECTORS

If A is a square matrix, a non-zero vector v is an
eigenvector of A if there is a scalar A (eigenvalue) such
that

Av = v

Example: @ 2) (3) _ (182) — 4 (3)

If we think of the squared matrix A as a transformation
matrix, then multiply it with the eigenvector do not
change its direction.



PCA EXAMPLE

X :the data matrix with N=11 objects and d=2
dimensions

4
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Step 1: subtract the mean and calculate the

covariance matrix C.

c=(

0.716 0.615
0.615 0.616

)

' " jpCAdata.dat”

+




Step 2: Calculate the eigenvectors and eigenvalues of
the covariance matrix:
\,>1.28, v, = [-0.677 -0.735]", A, =0.49, v, = [-0.735 0.677]"

Mean adjusted data with eigenvectors overlayed
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Step 3: project the data

LetV = [vq, ... U] is dXm matrix where the columns vi are
the eigenvectors corresponding to the largest m eigenvalues

The projected data: Y=X I/ is NXm matrix.
If m=d (more precisely rank(X)), then there is no loss of

information!

Mean adjusted data with eigenvectors overlayed
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Step 3: project the data

A,=1.28, v, = [-0.677 -0.735]", A, =0.49, v, = [-0.735 0.677]"

The eigenvector with the highest eigenvalue is the
principle component of the data.

if we are allowed to pick only one dimension, the
principle component is the best direction (retain the
maximum variance).

OurPCis v; ~ [—0.677 — 0.735]T




USEFUL PROPERTIES

The covariance matrix is always symmetric

1 1
CT = (== XTX) = ———X"X"" = ¢

The principal components of X are orthonormal

"]

1 ifi=j
Ty, =
vit v {0 if i # ]

V=[v,....v, ].then VT = V! 1e VTV =1



USEFUL PROPERTIES

Theorem 1: if square d Xd matrix S is a real and
symmetric matrix (S = ST) then

S =VAVT

Where V = [v4, ... v4] are the eigenvectors of S and
A = diag (14, ... 1) are the eigenvalues.

Proof:

e SV=VA

e [Sv; .. Svy] =[A1.v1 ... 44.V4]:the definition of eigenvectors.
e S VAV

e S = VAVT because Vis orthonormal V=1 = VT




USEFUL PROPERTIES

The projected data: Y=XV
The covariance matrix of Y is

1 1
v N—lYY N—lVXXV ViCyV

because the covariance matrix Cy is
symmetric

=VIVAVTY

=V IV A VIV pecause Vis orthonormal
= A

After the transformation, the covariance matrix becomes diagonal.



DERIVATION OF PCA : 1. MAXIMIZING VARIANCE

Assume the best transformation is one that maximize
the variance of project data.

Find the equation for variance of projected data.

Introduce constraint

Maximize the un-constraint equation. ( find derivative
w.r.t projection axis and set to zero)



DERIVATION OF PCA :
2. MINIMIZING TRANSFORMATION ERROR

Define error

|dentify variables that needs to be optimized in the
error

Minimize and solve for the variables.

Interpret the information



SINGULAR VALUE DECOMPOSITION(SVD)

Any N Xd matrix X can be uniquely expressed as:

N xd N xr rXTr rxd

X=UxXxVI

r is the rank of the matrix X (# of linearly independent

columns/rows).
U is a column-orthonormal N Xr matrix.
2 is a diagonal rXr matrix where the singular values ai are sorted
in descending order.
V is a column-orthonormal d Xr matrix.




PCA AND SVD RELATION

Theorem:
Let X = U X VT be the SVD of an NXd matrix X and

C = ﬁXTX be the d Xd covariance matrix.

The eigenvectors of C are the same as the right singular
vectors of X.

Proof:
XTX=VXUTuxvi=vyzsvr=yx2yr
ZE
C=V VT
N-1

But C is symmetric, hence C = VAVT
Therefore, the eigenvectors of the covariance matrix C are the same as

matrix V (right singular vectors) and
2
i

the eigenvalues of C can be computed from the singular values A; = v



X=UxXxVl

The singular value decomposition and the

eigendecomposition are closely related. Namely:
The left-singular vectors of X are eigenvectors of XX
The right-singular vectors of X are eigenvectors of X' X.

The non-zero singular values of X (found on the diagonal

entries of 2) are the square roots of the non-zero eigenvalues of
both XX and XXT.



ASSUMPTIONS OF PCA

|. Linearity

[l. Mean and variance are sufficient statistics.
Gaussian distribution assumed

lll. Large variances have important dynamics.
IV. The principal components are orthogonal



PCA WITH EIGENVALUE DECOMPOSITION

function [signals,PC,V] = pcal(data)

% PCA1: Perform PCA using covariance.
% data - MxN matrix of input data

% (M dimensions, N trials) % find the eigenvectors and eigenvalues
% signals - MxN matrix of projected data [PC, V] = eig(covariance);
% PC - each columnis a PC
% V - Mx1 matrix of variances % extract diagonal of matrix as vector
V = diag(V);

[M,N] = size(data);
% sort the variances in decreasing order
% subtract off the mean for each dimension  [junk, rindices] = sort(-1*V);

mn = mean(data,2); V = V(rindices);

data = data - repmat(mn,1,N); PC = PC(;,rindices);

% calculate the covariance matrix % project the original data set
covariance = 1 / (N-1) * data * data’; signals = PC’ * data;

Shlens, J. (2003). A tutorial on principal component analysis.



PCA WITH SVD

function [signals,PC,V] = pca2(data)

% PCA2: Perform PCA using SVD.

% data - MxN matrix of input data

% (M dimensions, N trials)

% signals - MxN matrix of projected data
% PC - each column is a PC

% V - Mx1 matrix of variances

[M,N] = size(data);
% subtract off the mean for each dimension
mn = mean(data,2);

data = data - repmat(mn,1,N);

% construct the matrix Y
Y = data’ / sqrt(N-1);

Shlens, J. (2003). A tutorial on principal component analysis.

% SVD does it all
[u,S,PC] = svd(Y);

% calculate the variances
S = diag(S);
V=S.*¥S;

% project the original data
signals = PC’ * data;
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