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LECTURE 7:
MIXTURE MODELS

Reference:

0. T. Mensink and J. Verbeek’s 2007 slides on Mixture Models and EM

1. “Pattern Recognition and Machine Learning” Chapter 9: Mixture Models and EM

2. Estimating Gaussian Mixture Densities with EM - A Tutorial

3. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and HMMs.



K-means clustering
Getting the idea with a simple example

Mixtures of Gaussians
Gradient fixed-points & responsibilities

An alternative view of EM
Completing the data with latent variables

The EM algorithm in general
Understanding EM as coordinate ascent



MIXTURE MODELS AND EM: INTRODUCTION

Additional latent variables allows to express relatively
complex marginal distributions over latent variables in
terms of more tractable joint distributions over the
expanded space.

Maximum-Likelihood estimator in such a space is the
Expectation-Maximization (EM) algorithm.




K-MEANS CLUSTERING: DISTORTION MEASURE

Dataset {x1, ..., XN}

Partition in K clusters

Cluster prototype: uk

Binary indicator variable, 1-of-K Coding scheme

Tnk € {U*- 1}
rnk = 1, and r,; = 0 for 7 # k. Only one is 1 and all other O
Hard assignment.

Distortion measure: a measure of how much data
point deviate from the center of their clusters

N K
J = ZZTnk”Xn - J“kHQ

n=1 k=1



K-MEANS CLUSTERING: EXPECTATION MAXIMIZATION

Goal: Find values for {ry,; } and {u, } to minimize:

N K
J = ZZ?’"nk”Xﬂs - J“*FGHQ

n=1 k=1
Iterative procedure:

1. Minimize J w.r.t. rpy, keep p1 fixed (Expectation)

12

Calculate the membership R 1 if k= argmin; ||x, — iz
"= 0 otherwise

2. Minimize J w.r.t. j, keep ry fixed (Maximization)

N
2 Z Pk (Tn — ) =0
n=1

Calculate the center

D

n | nk

e =



K-MEANS CLUSTERING: EXAMPLE

Each E or M step reduces the value of the objective function J
Convergence to a local maximum

Q
1000 |




K-MEANS CLUSTERING: CONCLUDING REMARKS

Direct implementation of K-Means can be slow
Online version:

new old

e = Hp + n(Xn — .-“Eld)

K-mediods, general distortion measure

i N K
J = ZZT‘nkV(Xm#k)

n=1 k=1
Any type of dissimilarity
measure
* K-means uses Euclidean
measure which is limited



MIXTURE OF GAUSSIANS: LATENT VARIABLES

Gaussian Mixture Distribution:

K
p(x) = Z TN (x| pge, Xk
k=1

Introduce latent variable z 2
z is binary 1-of-K coding variable
p(x, ) = p(z)p(x|2)



MIXTURE OF GAUSSIANS: LATENT VARIABLES (2)

The use of the joint probability p(x, z), leads to significant
simplifications

Prior probability of components

plzp =1)=m
constraints: 0 < m, < 1,and ), m. =1

p(z) = H;; '?Tzk

Gaussian function of each K mixing components

p(x|zk = 1) = N (x|pg, Xi)
p(x|z) = [T NV (x|, X ) *

Redistribution of Gaussian mixture model

p(x) =3, p(x.2) = 3, p(2)p(x[z) = 32 meN (2|, )



MIXTURE OF GAUSSIANS: LATENT VARIABLES (3)

Responsibility that component k takes for “explaining”
observation x:
the posterior probability once we observed X.

_ p(zk = 1)p(x|zk = 1)
Y 2L ) = 2. =1
F( R) p( k — |}{) Z;Lp( = l) (}{|~;L . l)
_ ;L,Ig,eﬂ& (x|;¢;¢,2;¢)
> o TN (X ek, Xi)




MIXTURE OF GAUSSIANS: MAXIMUM LIKELIHOOD

Log Likelihood function of observations
= {Xll cee XN}

In p(X|m, p, X) Z]H{ZTLJ\ (z|pr, L) }

Problems with Log Likelihood

Singularity when a mixture component
collapses on a data point

|dentifiability for a ML solution in a K-
component mixture there are K! equivalent
solutions.

* We assume we can use heuristics to
overcome these problems.

o

e,
Zn
Xn
)
S




MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES

Informal introduction of expectation-maximization
algorithm (Dempster et al., 1977).

Maximum of log likelihood:
Derivatives of In p(X|m, u, ) w.r.t parameters to O.

In p(X|, e, 22) Z]_ll {Z TN (|, Ek)}

n=1 k=1



EM FOR GAUSSIAN MIXTURES: SOLVE FOR p

Set derivative of In p(X|m, u, ¥) w.r.t means u;, of the
Gaussian components to zero.

Z “’kk K“":L Zk) —1(:{ _P:L)
n— IEFCIJE‘-'K (K“Lk’ EL) g

“.f{z;f} Multiply by Zk

e = Z’}




EM FOR GAUSSIAN MIXTURES: SOLVE FOR X,

Set derivative of Inp(X|m, u, X) w.r.t X, of the
Gaussian components to zero.

1
Y = Yz ) (X — ) (Xp — Mk r
e e s

Each data point weighted by the corresponding
posterior probability and with the denominator given
by the effective number of point.



EM FOR GAUSSIAN MIXTURES: SOLVE FOR 74

Take into account constraint };;, m, = 1
Can be done by introducing Lagrange multiplier

Inp(X|m, 1, X) + A — 1)
k

Set derivative of modified log likelihood w.r.t m, of the
Gaussian components to zero

(x| ek, Xox)
0= + A
Z ZL ?‘Taﬁ (x| pres L)

Zn /(zx)
i‘\."

T =



MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES

SUMMARY
1. Initialize {ug, L, ™} and evaluate log-likeihood
2. E-Step: Evaluate responsibilities y(zy)
3. M-Step: Re-estimate paramters 8, using current
responsibilities y(z)
new __ 1 P
P = S (2 %: /(Zk)Xn
g = don },.-(z;;) ;T"'(ﬂk)(xn — i) (Xn — )"
_new __ Zn '.‘-"'(’Z-IJ)
Jlk — _f\.-'r
4. Evaluate log-likelihood In p(X|m, u, ) and check for

convergence of either the parameters or the log likelihood.
If convergence criterion is not satisfied return to step 2.



AN ALTERNATIVE VIEW OF EM: LATENT VARIABLES

Let X observed data, Z latent variables, parameters.
Goal: maximize marginal log-likelihood of observed data

Inp(X|6) = In {Zp(x. ze)} ,
Z

Optimization problematic due to log-sum.
Assume straightforward maximization for complete data

Inp(X,Z10)

Latent Z is known only through p(X, Z |6).



AN ALTERNATIVE VIEW OF EM: GENERAL EM ALGORITHM

Consider expectation of complete data log-likelihood.
1. Initialization: Choose initial set of parameters 9°!
2. E-step: use current parameters 8°'¢ to compute p(X, Z |6°'%).

Q6,67 = p(Z|X,6°%) Inp(X, Z|6)
Z
3. M-step: determine ™Y by maximizing Q (6, 0°'4)

H" " = arg max, Q(#f. Hﬂfd)

4. Check convergence either the log likelihood or the parameter
values : stop, or 8°'¢ «— "W and go to step 2.



AN ALTERNATIVE VIEW OF EM: GAUSSIAN MIXTURES REVISITED

For mixture assign each x latent assignment variables z,;,. ( the
kth component of z,, )

Complete-data (log-)likelihood,

p(x,z|0) = T N (x5 p, 3g) ™

o

o
I

1

1]~

Inp(x.zld) = zp{ln T + In N (x5 g, i)

x>
I

1

If we know z,, mixing coefficients is simply

N
1
Ty = N E Znk
4
n=1

PROBLEM: We don’t know z,,



Consider the expectation, with respect to the posterior
distribution of the latent variables, of the complete-data log
likelihood

Posterior distribution : since () = ﬁn p{x|z}=ﬁm’{x|nk..zk}“

k

1

N K
plZ|X, p, X H H Tk-"\“ K'i’tl-u'j., H;nk
Expected value of the |nd|0ator variable z,,;. under this posterior
distribution i
5 s T (v s, S
En Ikt
Elznk] = -
S T [ (sen ey, B5)] 7
TN (X pt . i) responsibility of
~— K = ¥(2nk) component k for
Z N (Xn|pe;. ;) data point x,,

=1



Expected value of the complete-data log likelihood
function is therefore glven by

N
Ez[np(X, Z|p, B, Z (znk) {In Tk + In N (x|, Ti) } -

n=1 k=1

Use the derivatives to find for parameter u, X, 7,



RELATION TO K-MEANS

K-means algorithm with the EM algorithm for
Gaussian mixtures shows that there is a close
similarity

K-means algorithm performs a hard assignment of data

points to clusters, in which each data point is associated
uniquely with one cluster,

the EM algorithm makes a soft assignment based on the
posterior probabilities.



THE EM ALGORITHM IN GENERAL

Let X observed data, Z latent variables, 6 parameters
Goal: maximize marginal log-likelihood of observed data

In p(X|#) = In {ZP(X. Z|9)}
Z

Maximization of p(X, Z|8) simple, but difficult for p(X|8).
Given any q(Z), we decompose the data log-likelihood

lnp(X[0) = L(g.9)+KL(a(Z)|p(Z[X.0)).

B P(X.Z)
L(q.0) = ;@(Z)h i(Z)

KL(q(2)[p(ZIX.0) = -3 q@m?Z20 -
Z

q(Z)



THE EM ALGORITHM IN GENERAL: THE EM BOUND

L(q|8)is a lower bound on the data log-likelihood
—L(q|@) known as variational free-energy

£(g.0) = Inp(X|0) — KL(¢(Z)|p(ZX.0) < Inp(X|0)

The EM algorithm performs coordinate ascent on L
E-step maximizes L w.r.t. g for fixed 6
M-step maximizes L w.r.t. for fixed q

KL(q||p)

L(q.6) In p(X|6)




THE EM ALGORITHM IN GENERAL: THE E-STEP

E-step maximizes L(q|@) w.r.t. q for fixed 6

L(q.0) = Inp(X|#) — KL(¢(Z2)|]p(Z]X,0))

L maximized for q(Z) < p(Z|X, 0)

¥ KL{g||p) =0 " i
KL(gllp) ]

ﬂfqﬂ}} lnpﬁ}{|ﬂ] .E-[t’j.g‘jld::l 1113:-1ZX|E“"'}

E step of the EM



THE EM ALGORITHM IN GENERAL: THE M-STEP

M-step maximizes L(q|0) w.r.t. for fixed q

L(q,0) = Y q(Z)lnp(X,Z[0) =) ¢(Z)Ing(Z)

Z Z

L maximized for
f = argmaxy >, q(Z) Inp(X, Z|0)

KI{q|lp)

KL{g||p) =0

KL{gl|p) J

____'__l'_____l__

Lig, &) In p{X|@) g, @™y In p{X|8°) Lig, 0™) In p{ X |87™)

M step of the EM



THE EM ALGORITHM IN GENERAL:
PICTURE IN PARAMETER SPACE

E-step resets bound L(q|8) on Inp(X|0) at 8 = 0°4, it is
tight at 6 = 6°4,
tangential at 6 = 6°4,
convex (easy) in 8 for exponential family mixture components

Inp(X|#)
The EM algorithm involves

alternately computing a
lower bound on the log
likelihood for the current
parameter values and then
maximizing this bound to
obtain the new parameter
values.




THE EM ALGORITHM IN GENERAL: FINAL THOUGHTS

Local maxima of L(q|@) correspond to those of In p(X|6)

EM converges to local maximum of likelihood
Coordinate ascent on L(q|6) and L(q|f) = Inp(X|0) after E-step

Alternative schemes to optimize the bound
Generalized EM: relax M-step from maximizing to increasing L

Expectation Conditional Maximization: M-step maximizes w.r.t.
groups of parameters in turn

Incremental EM: E-step per data point, incremental M-step

Variational EM: relax E-step from maximizing to increasing L
no longer L = Inp(X|0) after E-step
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