

Instructor: Sael Lee

CS549 Spring - Computational Biology

LECTURE 7: MIXTURE MODELS

Reference:

- O. T. Mensink and J. Verbeek's 2007 slides on Mixture Models and EM
- 1. "Pattern Recognition and Machine Learning" Chapter 9: Mixture Models and EM
- 2. Estimating Gaussian Mixture Densities with EM A Tutorial
- 3. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and HMMs.

- × K-means clustering
 - + Getting the idea with a simple example
- Mixtures of Gaussians
 - + Gradient fixed-points & responsibilities
- × An alternative view of EM
 - + Completing the data with latent variables
- The EM algorithm in general
 - + Understanding EM as coordinate ascent

MIXTURE MODELS AND EM: INTRODUCTION

- * Additional latent variables allows to express relatively complex marginal distributions over latent variables in terms of more tractable joint distributions over the expanded space.
- * Maximum-Likelihood estimator in such a space is the Expectation-Maximization (EM) algorithm.

K-MEANS CLUSTERING: DISTORTION MEASURE

- x Dataset {x1, ..., xN}
- × Partition in K clusters
- × Cluster prototype: μk
- × Binary indicator variable, 1-of-K Coding scheme

$$r_{nk}\in\{0,1\}$$
 $r_{nk}=1$, and $r_{nj}=0$ for $j\neq k$. Only one is 1 and all other 0

- × Hard assignment.
- Distortion measure: a measure of how much data point deviate from the center of their clusters

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

K-MEANS CLUSTERING: EXPECTATION MAXIMIZATION

***** Goal: Find values for $\{r_{nk}\}$ and $\{\mu_k\}$ to minimize:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

x Iterative procedure:

1. Minimize J w.r.t. r_{nk} , keep μ_k fixed (Expectation)

Calculate the membership

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \mu_k\|^2 \\ 0 & \text{otherwise} \end{cases}$$

2. Minimize J w.r.t. μ_k , keep r_{nk} fixed (Maximization)

Calculate the center

$$2\sum_{n=1}^{N} r_{nk}(x_n - \mu_k) = 0$$

$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

K-MEANS CLUSTERING: EXAMPLE

- Each E or M step reduces the value of the objective function J
- Convergence to a local maximum

K-MEANS CLUSTERING: CONCLUDING REMARKS

- × Direct implementation of K-Means can be slow
- × Online version:

$$\mu_k^{\text{new}} = \mu_k^{\text{old}} + \eta_n(\mathbf{x}_n - \mu_k^{\text{old}})$$

× K-mediods, general distortion measure

$$\tilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \mathcal{V}(\mathbf{x}_n, \mu_k)$$

Any type of dissimilarity measure

* K-means uses Euclidean measure which is limited

MIXTURE OF GAUSSIANS: LATENT VARIABLES

Gaussian Mixture Distribution:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

- Introduce latent variable z
 - + z is binary 1-of-K coding variable
 - + p(x, z) = p(z)p(x|z)

MIXTURE OF GAUSSIANS: LATENT VARIABLES (2)

The use of the joint probability p(x, z), leads to significant simplifications

Prior probability of components

$$p(z_k=1)=\pi_k$$
 constraints: $0\leq \pi_k\leq 1$, and $\sum_k \pi_k=1$ $p(\mathbf{z})=\prod_k \pi_k^{z_k}$

Gaussian function of each K mixing components

$$p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$
$$p(\mathbf{x}|\mathbf{z}) = \prod_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)^{z_k}$$

Redistribution of Gaussian mixture model

$$p(\mathbf{x}) = \sum_{z} p(\mathbf{x}, \mathbf{z}) = \sum_{z} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k} \pi_{k} \mathcal{N}(x|\mu_{k}, \Sigma_{k})$$

MIXTURE OF GAUSSIANS: LATENT VARIABLES (3)

- Responsibility that component k takes for "explaining" observation x:
 - + the posterior probability once we observed X.

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_k p(z_k = 1)p(\mathbf{x}|z_k = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}$$

MIXTURE OF GAUSSIANS: MAXIMUM LIKELIHOOD

× Log Likelihood function of observations

$$\mathsf{X} = \{\mathsf{x}_1, \dots, \mathsf{x}_N\}$$

$$\ln p(\mathbf{X}|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \right\}$$

- Problems with Log Likelihood
 - + Singularity when a mixture component collapses on a data point
 - + Identifiability for a ML solution in a K-component mixture there are K! equivalent solutions.
 - + * We assume we can use heuristics to overcome these problems.

MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES

- Informal introduction of expectation-maximization algorithm (Dempster et al., 1977).
- × Maximum of log likelihood:
 - + Derivatives of $\ln p(X|\pi,\mu,\Sigma)$ w.r.t parameters to 0.

$$\ln p(\mathbf{X}|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \right\}$$

EM FOR GAUSSIAN MIXTURES: SOLVE FOR μ_k

× Set derivative of $\ln p(X|\pi,\mu,\Sigma)$ w.r.t means μ_k of the Gaussian components to zero.

$$0 = -\sum_{n=1}^{N} \underbrace{\frac{\pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}}_{\gamma(z_k)} \Sigma_k^{-1}(\mathbf{x}_n - \mu_k)$$

$$\mu_k = \frac{1}{\sum_n \gamma(z_k)} \sum_n \gamma(z_k) \mathbf{x}_n$$
Multiply by Σ_k

EM FOR GAUSSIAN MIXTURES: SOLVE FOR Σ_k

× Set derivative of $\ln p(X|\pi,\mu,\Sigma)$ w.r.t Σ_k of the Gaussian components to zero.

$$\Sigma_k = \frac{1}{\sum_n \gamma(z_k)} \sum_n \gamma(z_k) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T$$

Each data point weighted by the corresponding posterior probability and with the denominator given by the effective number of point.

EM FOR GAUSSIAN MIXTURES: SOLVE FOR π_k

- \times Take into account constraint $\sum_k \pi_k = 1$
 - + Can be done by introducing Lagrange multiplier

$$\ln p(\mathbf{X}|\pi,\mu,\Sigma) + \lambda(\sum_k \pi_k - 1)$$

 ${\sf x}$ Set derivative of modified log likelihood w.r.t π_k of the Gaussian components to zero

$$0 = \sum_{n} \frac{\mathcal{N}(\mathbf{x}|\mu_{k}, \Sigma_{k})}{\sum_{k} \pi_{k} \mathcal{N}(\mathbf{x}|\mu_{k}, \Sigma_{k})} + \lambda$$
$$\pi_{k} = \frac{\sum_{n} \gamma(z_{k})}{N}$$

MIXTURE OF GAUSSIANS: EM FOR GAUSSIAN MIXTURES SUMMARY

- 1. Initialize $\{\mu_k, \Sigma_k, \pi_k\}$ and evaluate log-likelihood
- 2. E-Step: Evaluate responsibilities $\gamma(z_k)$
- 3. M-Step: Re-estimate paramters θ , using current responsibilities $\gamma(z_k)$

$$\mu_k^{\text{new}} = \frac{1}{\sum_n \gamma(z_k)} \sum_n \gamma(z_k) \mathbf{x}_n$$

$$\Sigma_k^{\text{new}} = \frac{1}{\sum_n \gamma(z_k)} \sum_n \gamma(z_k) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T$$

$$\pi_k^{\text{new}} = \frac{\sum_n \gamma(z_k)}{N}$$

4. Evaluate log-likelihood $\ln p(X|\pi,\mu,\Sigma)$ and check for convergence of either the parameters or the log likelihood. If convergence criterion is not satisfied return to step 2.

AN ALTERNATIVE VIEW OF EM: LATENT VARIABLES

- x Let X observed data, Z latent variables, parameters.
- Goal: maximize marginal log-likelihood of observed data

$$\ln p(\mathbf{X}|\theta) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta) \right\}.$$

- Optimization problematic due to log-sum.
- Assume straightforward maximization for complete data

$$\ln p(X, Z \mid \theta)$$

× Latent Z is known only through $p(X, Z | \theta)$.

AN ALTERNATIVE VIEW OF EM: GENERAL EM ALGORITHM

Consider expectation of complete data log-likelihood.

- 1. Initialization: Choose initial set of parameters θ^{old}
- 2. **E-step**: use current parameters θ^{old} to compute $p(X, Z | \theta^{old})$.

$$Q(\theta, \theta^{old}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\theta).$$

3. M-step: determine θ^{new} by maximizing $Q(\theta, \theta^{old})$

$$\theta^{new} = \arg\max_{\theta} \mathcal{Q}(\theta, \theta^{old})$$

4. Check convergence either the log likelihood or the parameter values: stop, or $\theta^{old} \leftarrow \theta^{new}$ and go to step 2.

AN ALTERNATIVE VIEW OF EM: GAUSSIAN MIXTURES REVISITED

- * For mixture assign each \mathbf{x} latent assignment variables z_{nk} . (the kth component of z_n)
- Complete-data (log-)likelihood,

$$p(\mathbf{x}, \mathbf{z}|\theta) = \prod_{k=1}^{K} \pi_k^{z_k} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$
$$\ln p(\mathbf{x}, \mathbf{z}|\theta) = \sum_{k=1}^{K} z_k \{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \}$$

 \times If we know z_n mixing coefficients is simply

$$\pi_k = \frac{1}{N} \sum_{n=1}^{N} z_{nk}$$

imes PROBLEM: We don't know z_n

- Consider the expectation, with respect to the posterior distribution of the latent variables, of the complete-data log likelihood

Posterior distribution : since
$$p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$$
. $p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_{nk}}$$

Expected value of the indicator variable z_{nk} under this posterior distribution

$$\mathbb{E}[z_{nk}] = \frac{\sum_{\mathbf{z}_n} z_{nk} \prod_{k'} \left[\pi_{k'} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_{k'}, \boldsymbol{\Sigma}_{k'}) \right]^{z_{nk'}}}{\sum_{\mathbf{z}_n} \prod_{j} \left[\pi_{j} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) \right]^{z_{nj}}}$$

$$= \frac{\pi_{k} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{K} = \gamma(z_{nk}) \leftarrow \text{responsibility of component } k \text{ for data point } \mathbf{x}_n$$

Expected value of the complete-data log likelihood function is therefore given by

$$\mathbb{E}_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}.$$

× Use the derivatives to find for parameter μ_k , Σ_k , π_k

RELATION TO K-MEANS

- K-means algorithm with the EM algorithm for Gaussian mixtures shows that there is a close similarity
 - + K-means algorithm performs a *hard* assignment of data points to clusters, in which each data point is associated uniquely with one cluster,
 - + the EM algorithm makes a soft assignment based on the posterior probabilities.

THE EM ALGORITHM IN GENERAL

- \times Let X observed data, Z latent variables, θ parameters
- Goal: maximize marginal log-likelihood of observed data

$$\ln p(\mathbf{X}|\theta) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta) \right\}$$

- × Maximization of $p(X, Z|\theta)$ simple, but difficult for $p(X|\theta)$.
- Given any q(Z), we decompose the data log-likelihood

$$\ln p(\mathbf{X}|\theta) = \mathcal{L}(q,\theta) + \mathrm{KL}(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X},\theta)),$$

$$\mathcal{L}(q,\theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{X},\mathbf{Z}|\theta)}{q(\mathbf{Z})},$$

$$\mathrm{KL}(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X},\theta)) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X},\theta)}{q(\mathbf{Z})} \ge 0.$$

THE EM ALGORITHM IN GENERAL: THE EM BOUND

- \times L(q| θ)is a lower bound on the data log-likelihood
 - + $-L(q|\theta)$ known as variational free-energy

$$\mathcal{L}(q,\theta) = \ln p(\mathbf{X}|\theta) - \mathrm{KL}(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X},\theta) \le \ln p(\mathbf{X}|\theta)$$

- * The EM algorithm performs coordinate ascent on L
 - + E-step maximizes L w.r.t. q for fixed θ
 - + M-step maximizes L w.r.t. for fixed q

THE EM ALGORITHM IN GENERAL: THE E-STEP

 \times E-step maximizes $L(q|\theta)$ w.r.t. q for fixed θ

$$\mathcal{L}(q, \theta) = \ln p(\mathbf{X}|\theta) - \text{KL}(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X}, \theta))$$

× L maximized for $q(\mathbf{Z}) \leftarrow p(\mathbf{Z}|\mathbf{X}, \theta)$

THE EM ALGORITHM IN GENERAL: THE M-STEP

 \times M-step maximizes L(q| θ) w.r.t. for fixed q

$$\mathcal{L}(q, \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z}|\theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln q(\mathbf{Z})$$

× L maximized for

$$\theta = \arg \max_{\theta} \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} | \theta)$$

THE EM ALGORITHM IN GENERAL: PICTURE IN PARAMETER SPACE

- × E-step resets bound $L(q|\theta)$ on $\ln p(X|\theta)$ at $\theta = \theta^{old}$, it is
 - + tight at $\theta = \theta^{old}$,
 - + tangential at $\theta = \theta^{old}$,
 - + convex (easy) in θ for exponential family mixture components

The EM algorithm involves alternately computing a lower bound on the log likelihood for the current parameter values and then maximizing this bound to obtain the new parameter values.

THE EM ALGORITHM IN GENERAL: FINAL THOUGHTS

- \times Local maxima of L(q|\theta) correspond to those of ln $p(X|\theta)$
- × EM converges to local maximum of likelihood
 - + Coordinate ascent on $L(q|\theta)$ and $L(q|\theta) = \ln p(X|\theta)$ after E-step
- Alternative schemes to optimize the bound
 - Generalized EM: relax M-step from maximizing to increasing L
 - + Expectation Conditional Maximization: M-step maximizes w.r.t. groups of parameters in turn
 - + Incremental EM: E-step per data point, incremental M-step
 - + Variational EM: relax E-step from maximizing to increasing L
 - \times no longer L = $\ln p(X|\theta)$ after E-step