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Chapter 2 of Elements of Information Theory, 2" ed.

ENTROPY, RELATIVE ENTROPY, AND
MUTUAL INFORMATION



OUTLINE

Probability Review

Entropy

Joint entropy, conditional entropy
Relative entropy, mutual information
Chain rules

Jensen’s inequality

Data processing inequality

Fano’s inequality



PROBABILITY REVIEWED

A discrete random variable X takes on values x from the discrete alphabet y.
The probability mass function (pmf) is described by

px(x) = p(x) =Pr{X = x},forx e y

The joint probability mass function of two random variables X and Y taking on
values in alphabets y and .

pX,Y(xly) — p(X,y) — PF{X = le =y},f07'x,y€)(>(l/)

If px(X = x) > 0, the conditional probability that the outcome Y =y given that

X = x is defined as:

Product Rule
_ PX,Y(X, y)

px(x)

PY|X(Y =y|X =x)



BASIC PROBABILITY RULES

Marginalization

p(¥) = Xxp(x,y) = X p(y|x)p(x)

p(y) = [ r(xy) = [ pGl0px)
Bayes’ Rule

p(y|x)p(x)
p(y) Convention

p(xly) =

Product Rule . 0log0 =0

e alog==o ,ifa>0
pxy(x,y) = PY|X(Y|X)PX(3C) 59

0
=px)y x|y (V) * Ologa =0



INDEPENDENCE REVIEWED

The events X = x and Y =y are statistically independent if

X, y) = px)ply).

The random variables X and Y defined over the alphabets y and ¢ , resp. are
statistically independent if

pxy(x,y) = px(X)py(y), for V(x,y) € x X ¢

The variables X4, X,, ..., Xy are called independent if for all (x4, x5, ..., x5 ) €
X1 X X X" X XN

N
p(xlerJ '"rxN) = HpXi(xi)
i=1

They are furthermore called identically distributed if all variables X; have the
same distribution px (x).



EXPECTED VALUE

1 Discrete random variable, finite case, taking x4, x,, ..., x5y With prob. p{,p,, ..., Py

E[X] = X1P1 + X2p2 + o+ XkPn
pL+py+ -+ pN Sum to 1 if probability

2 Discrete random variable X, countable case, taking x1, x5, ... with prob. p4, p,, ...

(0]

ElX] = ) xip

i=1
3 Univariate continuous random variable:

E[X] = jooxf(x) dx

General definition: random variable defined on a probability space (Q, Z, P), then the
expected value of X, denoted by E[X], (X), X or E[X], is defined as the Lebesgue integral

E[X]=j XdpP =J X(w) P(dw)
Q Q



ENTROPY

Definition:
The entropy H(X) of a discrete random variable X with pmf py(x) is given by

HOO = = ) px() logpx (x) = ~Epy o [logpx ()]

The entropy H(X) of a continuous random variable X with pdf fy(x) in support set S
is given by

R(X) = — f £ (O l0g fie () = —E; (o [l0g fie (X)]
S

Meaning:
 Measure of the uncertainty of the r.v.
e Measure of the amount of information required on the average to describe the r.v.

Denote H(X) and H(p)
as same when X is
binary rv

Use log base 2



JOINT ENTROPY
Definition:
The joint entropy H(X,Y) on a pair of discrete r.v. (X,Y) with a joint distribution p(x,y) is
defined as

HX,Y)=— Z z p(x,y)logp(x,y)
X Yy

= _Ep(x,y) logp(x, Y)

CONDITIONAL ENTROPY

Definition:
The conditional entropy H(Y | X) on a pair of discrete r.v. (X,Y) with a joint distribution
p(x,y) is defined as

HIYIX) = = ) pGOHYIX = x)

= Z p(x) Z p(y|x) logp(y|x)
X y

= —z Z p(x,y)logp(y|x)
X Yy

= _Ep(x,y) logp(y|x)



CHAIN RULE

Theory (Chain Rule)

H(X, Y) = H(X) + H(YlX) proof
= H(Y)+ HX|Y)
Corollary
HX,Y|Z)=HX|Z)+HY|X,2)
Remark

H(Y|X) £ HX|Y)
H(Y) — H(Y|X) = H(X) — H(X|Y)



RELATIVE ENTROPY

Definition:
The relative entropy ( Kullbuck-Leibler distance, K-L divergence) between two
probability mass function p(x) and q(x) is defined as

p(x) p(X)
D(plla) = ), p()log_ 5 = By log_ 3
XEXY
Meaning: Properties:
» Distance between two distributions * Is non-negative
* A measure of the inefficiency of * D(p|lg) = 0 if and only if p=q
assuming that the distribution is g * Isasymmetric: D(p|lq) + D(q|lp)
when the true distribution is p * Does not satisfy triangle inequality

Definition:
The conditional relative entropy between two probability mass function p(x,y) and
q(x,y) is defined as

DO = Y Pl logE >

XEx

pOylx) _ log r(Y|X)
aOylx) ~ PEN P8 yx)




MUTUAL INFORMATION

Definition:
Mutual information I(X;Y) is the relative entropy between the joint distribution p(x,y)
and the product distribution p(x)p(y)

IX;Y) =D, y)|lp()p())

-2 e

log p(X,Y)
Py) =S p (X)p(Y)

=E

Definition:
Conditional mutual information I(X;Y|Z) is the reduction in the uncertainty of X due
to knowledge of Y when Z is given

I(X;Y|Z) = D(p(x,y12)|Ip(x|2)p(y|2))

zxzy p(x|z)p(y|z)
p(X,Y|Z)

= Epeeyn 108 S A 2)
= H(X|Z) — H(X|Y, Z)




RELATIONSHIP BETWEEN ENTROPY AND MUTUAL
INFORMATION

Properties:

H(X,Y) * [(X;Y) is the reduction of uncertainty of X

/\ due to the knowledge of Y (or vise versa)

ot 1Y) = HX) — H(X|Y)
<I(X;Y) = HYY) — H(Y|X)

e |s symmetric: X says about Y as much
H(X|Y) I(X,Y) H(Y|X) and Y says about X

e IX;Y)=HY)+HX)—-HX,Y)
since H(X,Y) = H(X) + H(Y|X)

\ f by chain rule

H(X) HY)  « 1(X;X) = H(X) also called self
information



VARIATIONS OF CHAIN RULES

Theorem (chain rule for entropy)
Let X;,X,, ..., X;,be drawn according to p( x4, X5, ..., X;;). Then,

n
H Xy e Xa) = ) HOKMKimt, e X0)
=

Theorem (chain rule for information)
Let X;,X,, ..., X;,be drawn according to p( x4, X5, ..., X;;). Then,

n
I(Xl,Xz,...,Xn; Y) = z 1I(Xi;Y|Xi_1, ""Xl)

i=

Theorem (chain rule for relative entropy)
For joint pmf p(x, y)and q(x, y).

D(p(x,y)llq(x,y)) = D(p(x)|lg(x)) + D(py[x)|lg(y[x))



JENSEN'S INEQUALITY

Theorem (Jensen’s Inequality)
If f is @ convex function and X is a random variable,
Ef(X) = f(EX)
Moreover, if f is strictly convex, the equality implies that X=EX with probability 1
(i.e. X is a constant)

proof




JENSEN'’S INEQUALITY CONSEQUENCES

Theorem (Information Inequality)
Let p(x), q(x), x € y, be two probability mass funcions. Then,

D(pllg) = 0 il
With equality if and only if p(x) = q(x) for all x.

Corollary (No-negativity of mutual information)
For any two random variable X and Y. Then,

I(X;Y) =0 —
With equality if and only if X and Y are independent.

Corollary

Dp(10llqa(y|x)) = 0
With equality if and only if p(y |x) = q(y|x) for all y and x such that p(x) > O.

Corollary
[(X;Y]|Z2) =0
With equality if and only if X and Y are independent given Z.



JENSEN'’S INEQUALITY CONSEQUENCES CONT.

Theorem [UPPER BOUND IN ENTROPY] proof
Let H(X) < log|x|, where | x| denotes the number of elements in the range of X
with equality if and only X has a uniform distribution over y.

Proof Hint) show D (p||u) = log|x| — H(X), where u(x) = |Xi|

Theorem (Conditioning reduces entropy)

H(X|Y) < H(X), il

With equality if and only if X and Y are independent.

NOTE>

The theorem says that knowing another r.v. Y can only reduce the uncertainty in X.
Note that this in true only on the average. Specific H(X|Y=y) may be greater than or
less than or eugal to H(X).



JENSEN'’S INEQUALITY CONSEQUENCES CONT,

Theorem (Independence Bound on Entropy)
Let X,,X,, ..., X;,be drawn according to p( x4, X5, ..., X;,). Then

n
X, X, Xa) < ) HOXD,
i=1

With equality if and only if X; are independent.

Proof Hint> use chain rule of entropy




LOG-SUM INEQUALITY

Theorem (Log sum inequality) proof
For nonnegative numbers a4, a,, ..., a, and b4, b, ..., b,,. Then, e’
n
n
D ailog() 2 (2 a )log((z /). b))
i=1 t=1
with equality if and only if % = constant.
Convention -
e 0log0=0

. alog%=oo Jifa>0
. Olog%=0



LOG-SUM INEQUALITY CONSEQUENCES

Theorem (Convexity of relative entropy)
D(p||lq) is convex in the pair (p,q), so that for pmf’s (py, q1) and (p,, q,), we have
forall0 <A1 < 1:

D(Ap; + (1 — Dp)llAq, + (1 — Dqz) < AD(p4llg1) + (1 —)D(p2, q2)

Theorem (Concavity of entropy)
For X~p(x), we have that

H(p) = H,(X)is concave function of p(x).




LOG-SUM INEQUALITY CONSEQUENCES CONT.

Theorem (Concavity of the mutual information in p(Xx))

Let (X, Y) ~ p(x, y) = p(x)p(y|X). Then, I(X; Y ) is a concave function of p(x) for fixed
ply | x).

Theorem (Convexity of the mutual information in p(y /X))

Let (X, Y) ~ p(x, y) = p(x)p(y|Xx). Then, I(X; Y ) is a convex function of p(y|x) for fixed
p(x)




MARKQOV CHAINS

Definition:
X, Y,Z form a Markov chain in that order (X = Y — 2) iff

p(x, y, 2) = pX)ply I¥)p(zly) =p(zly, X) = pz]y)
With equality if and only if X and Y are independent given Z.

N1 N2

b

X— D—p D——p-7

X - Y- Ziff Xand Z are conditionally independent given Y

X=>Y->Z=>7Z-Y—-X.Thus, we canwrite X & Y & Z.



DATA-PROCESSING INEQUALITY

Theorem (Data-processing inequality)
If X =Y —/Z then
I(X;Y)=21(X;2)

with equality iff I(X;Y|Z) = O.

proof

T I‘iz T
K i D (‘B—hz X—h—(‘BThf( )—l-Z
Corollary
IfZ=1(Y), thenI(X;Y) = I(X; f(Y)).
Corollary

If X =Y —Z then
I(X;Y)=21(X;Y|Z)



SUFFICIENT STATISTIC

Definition:

A function T(X) is said to be a sufficient statistic relative to the family {fy (x)}if the
conditional distribution of X, given T(X) = t, is independent of 8 for any distribution
on 6 (Fisher-Neyman):.

fo(x) = f(x|O)fa(t) =0 > TX) = 1(6; T(X)) = 1(6;X)

Hence, 1(0; X)= 1(6; T(X)) for a sufficient statistics (suf stat. preserves mutual
info.)




FANO’S INEQUALITY

Problem: using the observation of r.v. Y. we want to guess the value of X that is
correlated to r.v. Y.

-> Fano’s inequality relates the probability of error in guessing the r.v. X to its
conditional entropy H(X]Y).

* We can estimate X for Y with O prob. Of error if and only if H(X|Y) = O;

Theorem (Fano’s inequality)
For any estimator X such that X —» Y — X, with probability of error

P, = Pr(X # X), we have e
H(R,) + P, loglx| = H(X|X) = H(X|Y) g(¥) =%

This inequality can be weekend to
1+ B loglx| = H(X|Y)
or
HX|Y) -1

log| x|

e —

NOTE: Fano’s bound is a loose bound, but sufficient for many cases of interest.



FANO'’S INEQUALITY CONSEQUENCES

Corollary
Let p = Pr(X #Y). Then
H(p) + ploglx| = H(X|Y) .

Corollary
Let P, = Pr(X # X),and X:¢ - x; Then
H(FP.) + Pelog(lx| — 1) = H(X|Y) .

* Range of possible outcome changed to |y| — 1.

Remark:
Suppose that ther is no knowledge of Y. Thus, X must be guessed. Without any
information. Let X € {1,2,...,m}and p; = p, = - = py,- Then the best guess of X is

AN

X =1 and the resulting probability of error is P, = 1 — p;. Fano’s inequality becomes

H(P,) + P,loglm — 1| = H(X)

The pmf
Pe P,
(plf P2, ""pm) — (1 - Pe'm—l_' ey

achieves this bound with equality.

)

m-—1



FANO'’S INEQUALITY CONSEQUENCES

Lemma

If X and X" are i.i.d. with entropy H(X), assume the probability at X=X’ is given by
P(X =X') = Xxp*(x).

Then
Pr(X =X") = 27HX)

with equality if and only if X has a uniform distribution.

Corollary

Let X, X’ be independent with X ~ p(x), X'~r(x), X, X’ € x, then
Pr(X = X") = 2-H®-D(II"
Pr(X = X") = 2~H@®-D(rlIp)

with equality if and only if X has a uniform distribution.



Chapter 4 of Elements of Information Theory, 2" ed.

ENTROPY RATES OF A STOCHASTIC PROCESS



STOCHASTIC PROCESSES

What about the notion of entropy of a general random
process?

Definition: A stochastic process {X;} is an indexed sequence of random variables.

Definition: A discrete-time stochastic process { X pic7 is one for which we associate
the discrete index set T = {1,2, ...} with time.

Entropy: H({X;}) = H(X,) + H(X2|X;) + - - = 0o (often)

MOTIVATION: Should probably normalize by n somehow.



ENTROPY RATE

e [Fntropy Rate: The entropy rate of a stochastic process {X;} is defined by

1
H(X) = lim —H(X), X2,..., X

n—oo T

when the hmit exists. We ecan also define an alternative notion:

H'(X) = lim H(X,| X0 1. Xn_a....,X:).

F=b 0

Entropy rate estimates the additional entropy per new sample.

e Gives lower bound on number of code bits per sample.

o [[ the X, are not i.i.d the entropy rate limit may not exist.

e X, iid. random variables: H{X) = H{X,)



Defination: A discrete-time stochastic process is said to be stationary il the joint
distribution of any subset of the sequence of random variables is invariant with
respect to shifts in the time index; that is,

Pr{X, =2, Xo=2a,.. ., Xp =2} =Pr{X 1 =2, Xoyy =20, .., X = 20}

for every n and every shift [ and for all zy,39,..., 2, € A"

Lemma: For a stationary stochastic process, H(X | X1, X,,—2...., X1) 1s nonin-
creasing in n and has a limit H'(X).

Lemma: Cesdro mean If a,, — a and b, = 3" a;, then b, — a.

Theorem:  For a stationary stochastic process, H(AX') and H'(X) exisgt and are

equal:
H(X)=H'(X).
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