Chapter 2 of Elements of Information Theory, 2nd ed.

ENTROPY, RELATIVE ENTROPY, AND MUTUAL INFORMATION
OUTLINE

- Probability Review
- Entropy
- Joint entropy, conditional entropy
- Relative entropy, mutual information
- Chain rules
- Jensen’s inequality
- Data processing inequality
- Fano’s inequality
A discrete random variable X takes on values x from the discrete alphabet χ. The probability mass function (pmf) is described by

$$p_X(x) = p(x) = \Pr\{X = x\}, \text{for } x \in \chi$$

The joint probability mass function of two random variables X and Y taking on values in alphabets χ and ψ.

$$p_{X,Y}(x, y) = p(x, y) = \Pr\{X = x, Y = y\}, \text{for } x, y \in \chi \times \psi$$

If $p_X(X = x) > 0$, the conditional probability that the outcome $Y = y$ given that $X = x$ is defined as:

$$p_{Y|X}(Y = y|X = x) = \frac{p_{X,Y}(x, y)}{p_X(x)}$$
BASIC PROBABILITY RULES

Marginalization

\[p(y) = \sum_x p(x, y) = \sum_x p(y|x)p(x) \]

\[p(y) = \int_x p(x, y) = \int_x p(y|x)p(x) \]

Bayes’ Rule

\[p(x|y) = \frac{p(y|x)p(x)}{p(y)} \]

Product Rule

\[p_{X,Y}(x, y) = p_{Y|X}(y|x)p_X(x) = p_{X|Y}(x|y)p_Y(y) \]

Convention

- \(0 \log 0 = 0 \)
- \(a \log \frac{a}{0} = \infty \), if \(a > 0 \)
- \(0 \log \frac{0}{0} = 0 \)
The events $X = x$ and $Y = y$ are **statistically independent** if

\[p(x, y) = p(x)p(y). \]

The random variables X and Y defined over the alphabets χ and ψ, resp. are **statistically independent** if

\[p_{X,Y}(x, y) = p_X(x)p_Y(y), \text{ for } \forall (x, y) \in \chi \times \psi \]

The variables X_1, X_2, \ldots, X_N are called **independent** if for all $(x_1, x_2, \ldots, x_N) \in \chi_1 \times \chi_2 \times \cdots \times \chi_N$

\[p(x_1, x_2, \ldots, x_N) = \prod_{i=1}^{N} p_{X_i}(x_i) \]

They are furthermore called **identically distributed** if all variables X_i have the same distribution $p_X(x)$.
1 Discrete random variable, finite case, taking $x_1, x_2, ..., x_N$ with prob. $p_1, p_2, ..., p_N$

$$E[X] = \frac{x_1p_1 + x_2p_2 + \cdots + x_kp_N}{p_1 + p_2 + \cdots + p_N}$$

2 Discrete random variable X, countable case, taking $x_1, x_2, ...$ with prob. $p_1, p_2, ...$

$$E[X] = \sum_{i=1}^{\infty} x_i p_i$$

3 Univariate continuous random variable:

$$E[X] = \int_{-\infty}^{\infty} xf(x) \, dx$$

General definition: random variable defined on a probability space (Ω, Σ, P), then the expected value of X, denoted by $E[X]$, $\langle X \rangle$, \bar{X} or $E[X]$, is defined as the Lebesgue integral

$$E[X] = \int_{\Omega} X \, dP = \int_{\Omega} X(\omega) \, P(d\omega)$$
Definition:
The entropy $H(X)$ of a discrete random variable X with pmf $p_X(x)$ is given by

$$H(X) = -\sum_x p_X(x) \log p_X(x) = -E_{p_X(x)}[\log p_X(X)]$$

The entropy $H(X)$ of a continuous random variable X with pdf $f_X(x)$ in support set S is given by

$$h(X) = -\int_S f_X(x) \log f_X(x) = -E_{f_X(x)}[\log f_X(X)]$$

Meaning:
- Measure of the uncertainty of the r.v.
- Measure of the amount of information required on the average to describe the r.v.

Denote $H(X)$ and $H(p)$ as same when X is binary rv
Use log base 2
JOINT ENTROPY

Definition:
The joint entropy \(H(X,Y) \) on a pair of discrete r.v. \((X,Y)\) with a joint distribution \(p(x,y) \) is defined as

\[
H(X,Y) = - \sum_x \sum_y p(x,y) \log p(x,y)
\]

\[
= -E_{p(x,y)} \log p(x,y)
\]

CONDITIONAL ENTROPY

Definition:
The conditional entropy \(H(Y|X) \) on a pair of discrete r.v. \((X,Y)\) with a joint distribution \(p(x,y) \) is defined as

\[
H(Y|X) = - \sum_x p(x) H(Y|X = x)
\]

\[
= \sum_x p(x) \sum_y p(y|x) \log p(y|x)
\]

\[
= - \sum_x \sum_y p(x,y) \log p(y|x)
\]

\[
= -E_{p(x,y)} \log p(y|x)
\]
Chain Rule

Theory (Chain Rule)

\[
H(X, Y) = H(X) + H(Y|X) \\
= H(Y) + H(X|Y)
\]

Corollary

\[
H(X, Y|Z) = H(X|Z) + H(Y|X, Z)
\]

Remark

\[
H(Y|X) \neq H(X|Y) \\
H(Y) - H(Y|X) = H(X) - H(X|Y)
\]
RELATIVE ENTROPY

Definition:
The relative entropy (Kullback-Leibler distance, K-L divergence) between two probability mass function \(p(x) \) and \(q(x) \) is defined as

\[
D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_p \log \frac{p(X)}{q(X)}
\]

Meaning:
- **Distance** between two distributions
- A measure of the inefficiency of assuming that the distribution is \(q \) when the true distribution is \(p \)

Properties:
- Is non-negative
- \(D(p||q) = 0 \) if and only if \(p=q \)
- Is asymmetric: \(D(p||q) \neq D(q||p) \)
- Does not satisfy triangle inequality

Definition:
The conditional relative entropy between two probability mass function \(p(x,y) \) and \(q(x,y) \) is defined as

\[
D(p(y|x)||q(y|x)) = \sum_{x \in \mathcal{X}} p(y|x) \log \frac{p(y|x)}{q(y|x)} = \mathbb{E}_{p(x,y)} \log \frac{p(Y|X)}{q(Y|X)}
\]
Mutual Information

Definition:

Mutual information $I(X;Y)$ is the relative entropy between the joint distribution $p(x,y)$ and the product distribution $p(x)p(y)$

$$I(X;Y) = D(p(x,y) \| p(x)p(y))$$

$$= \sum_x \sum_y p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= E_{p(x,y)} \log \frac{p(X,Y)}{p(X)p(Y)}$$

Definition:

Conditional mutual information $I(X;Y|Z)$ is the reduction in the uncertainty of X due to knowledge of Y when Z is given

$$I(X;Y|Z) = D(p(x,y|z) \| p(x|z)p(y|z))$$

$$= \sum_x \sum_y p(x,y|z) \log \frac{p(x,y|z)}{p(x|z)p(y|z)}$$

$$= E_{p(x,y,z)} \log \frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}$$

$$= H(X|Z) - H(X|Y,Z)$$
Relationship Between Entropy and Mutual Information

Properties:

- \(I(X;Y)\) is the reduction of uncertainty of \(X\) due to the knowledge of \(Y\) (or vice versa)

 \[
 I(X; Y) = H(X) - H(X|Y)
 \]

 \[
 I(X; Y) = H(Y) - H(Y|X)
 \]

- Is symmetric: \(X\) says about \(Y\) as much and \(Y\) says about \(X\)

- \(I(X; Y) = H(Y) + H(X) - H(X, Y)\) since \(H(X, Y) = H(X) + H(Y|X)\) by chain rule

- \(I(X; X) = H(X)\) also called **self information**
THEOREM (chain rule for entropy)
Let X_1, X_2, \ldots, X_n be drawn according to $p(x_1, x_2, \ldots, x_n)$. Then,

$$H(X_1, X_2, \ldots, X_n) = \sum_{i=1}^{n} H(X_i|X_{i-1}, \ldots, X_1)$$

THEOREM (chain rule for information)
Let X_1, X_2, \ldots, X_n be drawn according to $p(x_1, x_2, \ldots, x_n)$. Then,

$$I(X_1, X_2, \ldots, X_n; Y) = \sum_{i=1}^{n} I(X_i; Y|X_{i-1}, \ldots, X_1)$$

THEOREM (chain rule for relative entropy)
For joint pmf $p(x, y)$ and $q(x, y)$.

$$D(p(x, y)||q(x, y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x))$$
Theorem (Jensen’s Inequality)
If f is a convex function and X is a random variable,

$$ Ef(X) \geq f(EX) $$

Moreover, if f is strictly convex, the equality implies that $X=EX$ with probability 1 (i.e. X is a constant)
Theorem (Information Inequality)
Let $p(x), q(x), x \in \chi$, be two probability mass functions. Then,

$$D(p||q) \geq 0$$

With equality if and only if $p(x) = q(x)$ for all x.

Corollary (No-negativity of mutual information)
For any two random variable X and Y. Then,

$$I(X; Y) \geq 0$$

With equality if and only if X and Y are independent.

Corollary

$$D(p(y|x)||q(y|x)) \geq 0$$

With equality if and only if $p(y|x) = q(y|x)$ for all y and x such that $p(x) > 0$.

Corollary

$$I(X; Y|Z) \geq 0$$

With equality if and only if X and Y are independent given Z.

Theorem [UPPER BOUND IN ENTROPY]
Let $H(X) \leq \log |\chi|$, where $|\chi|$ denotes the number of elements in the range of X, with equality if and only if X has a uniform distribution over χ.

Proof Hint) show $D(p||u) = \log|\chi| - H(X)$, where $u(x) = \frac{1}{|\chi|}$

Theorem (Conditioning reduces entropy)

$$H(X|Y) \leq H(X),$$

With equality if and only if X and Y are independent.

NOTE>
The theorem says that knowing another r.v. Y can only reduce the uncertainty in X. Note that this in true only on the average. Specific $H(X|Y=y)$ may be greater than or less than or euqal to $H(X)$.
Theorem (Independence Bound on Entropy)
Let X_1, X_2, \ldots, X_n be drawn according to $p(x_1, x_2, \ldots, x_n)$. Then

$$H(X_1, X_2, \ldots, X_n) \leq \sum_{i=1}^{n} H(X_i),$$

With equality if and only if X_i are independent.

Proof Hint: use chain rule of entropy
Theorem (Log sum inequality)
For nonnegative numbers a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n. Then,

$$\sum_{i=1}^{n} a_i \log \left(\frac{a_i}{b_i} \right) \geq \left(\sum_{i=1}^{n} a_i \right) \log \left(\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i} \right)$$

with equality if and only if $\frac{a_i}{b_i} = \text{constant}$.

Convention
- $0 \log 0 = 0$
- $a \log \frac{a}{0} = \infty$, if $a > 0$
- $0 \log \frac{0}{0} = 0$
Theorem (Convexity of relative entropy)

$D(p||q)$ is convex in the pair (p,q), so that for pmf’s (p_1, q_1) and (p_2, q_2), we have for all $0 \leq \lambda \leq 1$:

$$D(\lambda p_1 + (1 - \lambda)p_2 || \lambda q_1 + (1 - \lambda)q_2) \leq \lambda D(p_1 || q_1) + (1 - \lambda)D(p_2, q_2)$$

Theorem (Concavity of entropy)

For $X \sim p(x)$, we have that

$$H(p) := H_p(X)$$

is concave function of $p(x)$.
LOG-SUM INEQUALITY CONSEQUENCES CONT.

Theorem (Concavity of the mutual information in \(p(x) \))
Let \((X, Y) \sim p(x, y) = p(x)p(y|x)\). Then, \(I(X; Y)\) is a concave function of \(p(x)\) for fixed \(p(y|x)\).

Theorem (Convexity of the mutual information in \(p(y|x) \))
Let \((X, Y) \sim p(x, y) = p(x)p(y|x)\). Then, \(I(X; Y)\) is a convex function of \(p(y|x)\) for fixed \(p(x)\).
Definition:

X, Y, Z form a Markov chain in that order ($X \rightarrow Y \rightarrow Z$) iff

$$p(x, y, z) = p(x)p(y|x)p(z|y) \equiv p(z|y, x) = p(z|y)$$

With equality if and only if X and Y are independent given Z.

$X \rightarrow Y \rightarrow Z$ iff X and Z are conditionally independent given Y.

$X \rightarrow Y \rightarrow Z \Rightarrow Z \rightarrow Y \rightarrow X$. Thus, we can write $X \leftrightarrow Y \leftrightarrow Z$.
Theorem (Data-processing inequality)
If $X \rightarrow Y \rightarrow Z$, then

$$I(X; Y) \geq I(X; Z)$$

with equality iff $I(X; Y | Z) = 0$.

Corollary
If $Z = f(Y)$, then $I(X; Y) \geq I(X; f(Y))$.

Corollary
If $X \rightarrow Y \rightarrow Z$, then

$$I(X; Y) \geq I(X; Y | Z)$$
Definition:
A function $T(X)$ is said to be a **sufficient statistic** relative to the family \(\{f_{\theta}(x)\} \) if the conditional distribution of X, given $T(X) = t$, is independent of θ for any distribution on θ (Fisher-Neyman):

\[
f_{\theta}(x) = f(x|t)f_{\theta}(t) \Rightarrow \theta \rightarrow T(X) \Rightarrow I(\theta; T(X)) \geq I(\theta; X)
\]

Hence, $I(\theta; X) = I(\theta; T(X))$ for a sufficient statistics (suf stat. preserves mutual info.)
FANO’S INEQUALITY

Problem: using the observation of r.v. Y. we want to guess the value of X that is correlated to r.v. Y.
-> Fano’s inequality relates the probability of error in guessing the r.v. X to its conditional entropy H(X|Y).
* We can estimate X for Y with 0 prob. Of error if and only if H(X|Y) = 0;

Theorem (Fano’s inequality)
For any estimator \(\hat{X} \) such that \(X \to Y \to \hat{X} \), with probability of error \(P_e = \Pr(X \neq \hat{X}) \), we have

\[
H(P_e) + P_e \log|\chi| \geq H(X|\hat{X}) \geq H(X|Y)
\]

This inequality can be weakened to

\[
1 + P_e \log|\chi| \geq H(X|Y)
\]

or

\[
P_e \geq \frac{H(X|Y) - 1}{\log|\chi|}
\]

NOTE: Fano’s bound is a loose bound, but sufficient for many cases of interest.
Corollary
Let \(p = Pr(X \neq Y) \). Then
\[
H(p) + p \log|\chi| \geq H(X|Y)
\]

Corollary
Let \(P_e = Pr(X \neq \hat{X}) \), and \(\hat{X}: \psi \rightarrow \chi \); Then
\[
H(P_e) + P_e \log(|\chi| - 1) \geq H(X|Y)
\]

* Range of possible outcome changed to \(|\chi| - 1\).

Remark:
Suppose that there is no knowledge of \(Y \). Thus, \(X \) must be guessed. Without any information. Let \(X \in \{1,2,\ldots,m\} \) and \(p_1 \geq p_2 \geq \cdots \geq p_m \). Then the best guess of \(X \) is \(\hat{X} = 1 \) and the resulting probability of error is \(P_e = 1 - p_1 \). Fano’s inequality becomes
\[
H(P_e) + P_e \log|m - 1| \geq H(X)
\]
The pmf
\[
(p_1, p_2, \ldots, p_m) = (1 - P_e, \frac{P_e}{m-1}, \ldots, \frac{P_e}{m-1})
\]
achieves this bound with equality.
FANO’S INEQUALITY CONSEQUENCES

Lemma
If X and X' are i.i.d. with entropy $H(X)$, assume the probability at $X=X'$ is given by

$$P(X = X') = \sum_x p^2(x).$$

Then

$$Pr(X = X') \geq 2^{-H(X)}$$

with equality if and only if X has a uniform distribution.

Corollary
Let X, X' be independent with $X \sim p(x), X' \sim r(x), x, x' \in \chi$, then

$$Pr(X = X') \geq 2^{-H(p) - D(p||r)}$$

$$Pr(X = X') \geq 2^{-H(r) - D(r||p)}$$

with equality if and only if X has a uniform distribution.
ENTROPY RATES OF A STOCHASTIC PROCESS
STOCHASTIC PROCESSES

- What about the notion of entropy of a general random process?

Definition: A stochastic process \(\{X_i\} \) is an indexed sequence of random variables.

Definition: A discrete-time stochastic process \(\{X_i\}_{i \in \mathcal{I}} \) is one for which we associate the discrete index set \(\mathcal{I} = \{1, 2, \ldots\} \) with time.

Entropy:
\[
H(\{X_i\}) = H(X_1) + H(X_2|X_1) + \cdots = \infty \text{ (often)}
\]

MOTIVATION: Should probably normalize by \(n \) somehow.
Entropy Rate

- **Entropy Rate:** The entropy rate of a stochastic process \(\{X_i\} \) is defined by

\[
H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \ldots, X_n)
\]

when the limit exists. We can also define an alternative notion:

\[
H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n | X_{n-1}, X_{n-2}, \ldots, X_1).
\]

- Entropy rate estimates the additional entropy per new sample.

- Gives lower bound on number of code bits per sample.

- If the \(X_i \) are not i.i.d the entropy rate limit may not exist.

- \(X_i \) i.i.d. random variables: \(H(\mathcal{X}) = H(X_i) \)
Definition: A discrete-time stochastic process is said to be stationary if the joint distribution of any subset of the sequence of random variables is invariant with respect to shifts in the time index; that is,

$$
\Pr\{X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n\} = \Pr\{X_{1+l} = x_1, X_{2+l} = x_2, \ldots, X_{n+l} = x_n\}
$$

for every n and every shift l and for all $x_1, x_2, \ldots, x_n \in \mathcal{X}$.

Lemma: For a stationary stochastic process, $H(X_n|X_{n-1}, X_{n-2}, \ldots, X_1)$ is nonincreasing in n and has a limit $H'(\mathcal{X})$.

Lemma: Cesáro mean If $a_n \to a$ and $b_n = \frac{1}{n} \sum_{i=1}^{n} a_i$, then $b_n \to a$.

Theorem: For a stationary stochastic process, $H(\mathcal{X})$ and $H'(\mathcal{X})$ exist and are equal:

$$
H(\mathcal{X}) = H'(\mathcal{X}).
$$