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ENTROPY, RELATIVE ENTROPY, AND  
MUTUAL INFORMATION 



OUTLINE 

 Probability Review  
 Entropy 
 Joint entropy, conditional entropy 
 Relative entropy, mutual information 
 Chain rules 
 Jensen’s inequality 
 Data processing inequality 
 Fano’s inequality 
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A discrete random variable X takes on values x from the discrete alphabet 𝜒. 
The probability mass function (pmf) is described by 

𝑝𝑋 𝑥 = 𝑝 𝑥 = Pr 𝑋 = 𝑥 , 𝑓𝑓𝑓 𝑥 𝜖 𝜒 

𝑝𝑋,𝑌 𝑥,𝑦 = 𝑝 𝑥,𝑦 = Pr 𝑋 = 𝑥,𝑌 = 𝑦 , 𝑓𝑓𝑓 𝑥, 𝑦 𝜖 𝜒 ×𝜓 

The joint probability mass function  of two random variables X and Y taking on 
values in alphabets 𝜒  and 𝜓.  

If 𝑝𝑋 𝑋 = 𝑥 > 0, the conditional probability that the outcome  Y = y given that  
X = 𝑥 is defined as: 
 

𝑝𝑌|𝑋 𝑌 = 𝑦|𝑋 = 𝑥 =
𝑝𝑿,𝒀 𝑥, 𝑦
𝑝𝑿 𝑥  

Product Rule 



BASIC PROBABILITY RULES 
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Marginalization 

𝑝 𝑦 =  ∑ 𝑝 𝑥,𝑦𝑥 = ∑ 𝑝 𝑦 𝑥 𝑝(𝑥)𝑥   

𝑝 𝑦 =  ∫ 𝑝 𝑥,𝑦𝑥 = ∫ 𝑝 𝑦 𝑥 𝑝(𝑥) 𝑥   

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝(𝑥)

𝑝(𝑦)  

Bayes’ Rule 

Product Rule 

𝑝𝑋,𝑌 𝑥,𝑦 = 𝑝𝑌|𝑋 𝑦|𝑥 𝑝𝑋 𝑥  
                   =𝑝𝑋|𝑌 𝑥|𝑦 𝑝𝑌 𝑦  

Convention 
 
• 0 log 0 = 0    
• a log 𝑎

0
= ∞  , if 𝑎 > 0 

• 0 log 0
0

= 0     
 



INDEPENDENCE REVIEWED 
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The events X = x and Y = y are statistically independent if 

The random variables X and Y defined over the alphabets 𝜒 and 𝜓 , resp. are 
statistically independent if  
  

p(x, y) = p(x)p(y). 

𝑝𝑋,𝑌 𝑥,𝑦 = 𝑝𝑋 𝑥 𝑝𝑌(𝑦), for ∀ 𝑥, 𝑦 ∈ 𝜒 × 𝜓  

The variables 𝑋1,𝑋2, … ,𝑋𝑁 are called independent if for all (𝑥1, 𝑥2, … , 𝑥𝑁 )  ∈
χ1 × χ𝑥 × ⋯×  χ𝑁 

𝑝 𝑥1, 𝑥2, … , 𝑥𝑁 = �𝑝𝑋𝑖(𝑥𝑖)
𝑁

𝑖=1

 

They are furthermore called identically distributed if all variables 𝑋𝑖 have the 
same distribution 𝑝𝑋(𝑥). 



EXPECTED VALUE 
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1 Discrete random variable, finite case, taking 𝑥1, 𝑥2, … , 𝑥𝑁 with prob. 𝑝1,𝑝2, … , 𝑝𝑁  

𝐸 𝑋 =
𝑥1𝑝1 + 𝑥2𝑝2 + ⋯+ 𝑥𝑘𝑝𝑁

𝑝1 + 𝑝2 + ⋯+ 𝑝𝑁
 

2 Discrete random variable X, countable case, taking 𝑥1, 𝑥2, … with prob. 𝑝1, 𝑝2, …    

𝐸 𝑋 = �𝑥𝑖𝑝𝑖

∞

𝑖=1

 

Sum to 1 if probability 

3 Univariate continuous random variable:  

𝐸 𝑋 = � 𝑥𝑥 𝑥  d𝑥 
∞

−∞
 

General definition:  random variable defined on a probability space (Ω, Σ, P), then the 
expected value of X, denoted by E[X], 〈X〉, X� or E[X], is defined as the Lebesgue integral 

𝐸 𝑋 = � 𝑋 𝑑𝑑 
Ω

= � 𝑋(𝜔) 𝑃(d𝜔) 
Ω

 



ENTROPY 
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Definition:  
The entropy H(X) of a discrete random variable X with pmf 𝑝𝑋(𝑥) is given by  

𝐻 𝑋 = −�𝑝𝑋 𝑥 log𝑝𝑋 𝑥
𝑥

= −𝐸𝑝𝑋 𝑥 [log𝑝𝑋 𝑋 ] 

Meaning:  
• Measure of the uncertainty of the r.v. 
• Measure of the amount of information required on the average to describe the r.v. 

The entropy H(X) of a continuous random variable X with pdf 𝑓𝑋(𝑥) in support set S 
is given by  

ℎ 𝑋 = −� 𝑓𝑋 𝑥 log𝑓𝑋 𝑥
𝑆

= −𝐸𝑓𝑋 𝑥 [log𝑓𝑋 𝑋 ] 

Denote H(X) and  H(p) 
as same when X is 
binary rv 
Use log base 2  



JOINT ENTROPY 
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Definition: 
The joint entropy H(X,Y) on a pair of discrete r.v. (X,Y) with a joint distribution p(x,y) is 
defined as  

𝐻 𝑋,𝑌 = −��𝑝 𝑥, 𝑦 log𝑝 𝑥,𝑦
𝑦𝑥

 

= −𝐸𝑝 𝑥,𝑦 log𝑝(𝑥,𝑦) 
 CONDITIONAL ENTROPY 
Definition: 
The conditional entropy H(Y|X) on a pair of discrete r.v. (X,Y) with a joint distribution 
p(x,y) is defined as  

𝐻 𝑌|𝑋 = −�𝑝 𝑥 𝐻 𝑌 𝑋 = 𝑥
𝑥

 

= �𝑝(𝑥)
𝑥

�𝑝 𝑦|𝑥 log𝑝 𝑦|𝑥
𝑦

 

= −��𝑝 𝑥,𝑦 log𝑝 𝑦|𝑥
𝑦𝑥

 

= −𝐸𝑝 𝑥,𝑦 log𝑝(𝑦|𝑥) 
 



CHAIN RULE 
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Theory (Chain Rule) 
𝐻 𝑋,𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋  

    = 𝐻 𝑌 + 𝐻 𝑋 𝑌  

Corollary 
𝐻 𝑋,𝑌|𝑍 = 𝐻 𝑋|𝑍 + 𝐻(𝑌|𝑋,𝑍) 

 

Remark 
𝐻 𝑌 𝑋 ≠ 𝐻 𝑋 𝑌  

𝐻 𝑌 − 𝐻 𝑌 𝑋 = 𝐻 𝑋 − 𝐻 𝑋 𝑌  
 

proof 



RELATIVE ENTROPY 
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Meaning:  
• Distance between two distributions 
• A measure of the inefficiency of 

assuming that the distribution is q 
when the true distribution is p 

Definition: 
The relative entropy  ( Kullbuck-Leibler distance, K-L divergence) between two 
probability mass function p(x) and q(x) is defined as  

𝐷(𝑝| 𝑞 =  �𝑝 𝑥 log
𝑝 𝑥
𝑞 𝑥

𝑥∈𝜒

= 𝐸𝑝 log
𝑝 𝑋
𝑞 𝑋  

Properties:  
• Is non-negative 
• 𝐷(𝑝| 𝑞 = 0  if and only if p=q 
• Is asymmetric ∶  𝐷(𝑝| 𝑞 ≠ 𝐷(𝑞| 𝑝  
• Does not satisfy triangle inequality  

Definition: 
The conditional relative entropy between two probability mass function p(x,y) and 
q(x,y) is defined as  

𝐷(𝑝(𝑦|𝑥)| 𝑞(𝑦|𝑥) =  �𝑝 𝑦|𝑥 log
𝑝 𝑦|𝑥
𝑞 𝑦|𝑥

𝑥∈𝜒

= 𝐸𝑝(𝑥,𝑦) log
𝑝 𝑌|𝑋
𝑞 𝑌|𝑋  



MUTUAL INFORMATION 
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Definition: 
Mutual information I(X;Y) is the relative entropy between the joint distribution p(x,y) 
and the product distribution p(x)p(y) 

𝐼 𝑋;𝑌 = 𝐷(𝑝(𝑥,𝑦)| 𝑝 𝑥 𝑝 𝑦  

= � � 𝑝 𝑥, 𝑦 log
𝑝 𝑥,𝑦
𝑝 𝑥 𝑝 𝑦𝑦𝑥

 

= 𝐸𝑝 𝑥,𝑦 log
𝑝 𝑋,𝑌
𝑝 𝑋 𝑝 𝑌  

Definition: 
Conditional mutual information I(X;Y|Z) is the reduction in the uncertainty of X due 
to knowledge of Y when Z is given 

𝐼 𝑋;𝑌|𝑍 = 𝐷(𝑝(𝑥,𝑦|𝑧)| 𝑝 𝑥|𝑧 𝑝 𝑦|𝑧  

= � � 𝑝 𝑥, 𝑦|𝑧 log
𝑝 𝑥,𝑦|𝑧

𝑝 𝑥|𝑧 𝑝 𝑦|𝑧𝑦𝑥
 

= 𝐸𝑝 𝑥,𝑦,𝑧 log
𝑝 𝑋,𝑌|𝑍

𝑝 𝑋|𝑍 𝑝 𝑌|𝑍  

= H X Z − H(X|Y, Z) 



RELATIONSHIP BETWEEN ENTROPY AND MUTUAL 
INFORMATION 
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𝐻(𝑋,𝑌) 

𝐻(𝑋|𝑌) I(𝑋,𝑌) 𝐻(𝑌|𝑋) 

𝐻(𝑌) 𝐻(𝑋) 

Properties: 
 
• I(X;Y) is the reduction of uncertainty of X 

due to the knowledge of Y (or vise versa) 
𝐼 𝑋;𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌  
𝐼 𝑋;𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋  

 
• Is symmetric: X says about Y as much 

and Y says about X 
 

• 𝐼 𝑋;𝑌 = 𝐻 𝑌 + 𝐻(𝑋) −𝐻(𝑋,𝑌)  
      since 𝐻 𝑋,𝑌 = 𝐻 𝑋 + 𝐻(𝑌|𝑋)            
 by chain rule 

 
• 𝐼 𝑋;𝑋 = 𝐻 𝑋  also called self 

information  
 
 

proof 



VARIATIONS OF CHAIN RULES  
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Theorem (chain rule for information) 
Let  𝑋1,𝑋2, … ,𝑋𝑛be drawn according to 𝑝( 𝑥1, 𝑥2, … , 𝑥𝑛). Then, 

𝐼 𝑋1,𝑋2, … ,𝑋𝑛;𝑌 =  � 𝐼(𝑋𝑖;𝑌|𝑋𝑖−1, … ,𝑋1)
𝑛

𝑖=1
 

Theorem (chain rule for entropy) 
Let  𝑋1,𝑋2, … ,𝑋𝑛be drawn according to 𝑝( 𝑥1, 𝑥2, … , 𝑥𝑛). Then, 

𝐻 𝑋1,𝑋2, … ,𝑋𝑛 =  � 𝐻(𝑋𝑖|𝑋𝑖−1, … ,𝑋1)
𝑛

𝑖=1
 

Theorem (chain rule for relative entropy) 
For joint pmf 𝑝(𝑥,𝑦)and q(𝑥, 𝑦).  
 

𝐷(𝑝(𝑥,𝑦)||𝑞 𝑥,𝑦 ) = 𝐷(𝑝(𝑥)| 𝑞 𝑥 + 𝐷(𝑝 𝑦 𝑥 | 𝑞 𝑦 𝑥  



JENSEN’S INEQUALITY 
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Theorem (Jensen’s Inequality) 
If f is a convex function and X is a random variable,   

𝐸𝐸 𝑋 ≥ 𝑓(𝐸𝐸) 
Moreover, if f is strictly convex, the equality implies that X=EX with probability 1  
(i.e. X is a constant) 

proof 



JENSEN’S INEQUALITY CONSEQUENCES 
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Theorem (Information Inequality) 
Let 𝑝 𝑥 , 𝑞 𝑥 , 𝑥 ∈ 𝜒, be two probability mass funcions. Then, 

𝐷(𝑝| 𝑞 ≥ 0 
With equality if and only if p(x) = q(x) for all x.  

proof 

Corollary  
𝐼(𝑋;𝑌|𝑍) ≥ 0 

With equality if and only if X and Y are independent given Z.  

proof 

Corollary 
𝐷(𝑝(𝑦|𝑥)| 𝑞(𝑦|𝑥) ≥ 0 

With equality if and only if p(y|x) = q(y|x) for all y and x such that p(x) > 0.  

Corollary (No-negativity of mutual information) 
For any two random variable X and Y. Then, 

𝐼(𝑋;𝑌) ≥ 0 
With equality if and only if X and Y are independent.  



JENSEN’S INEQUALITY CONSEQUENCES CONT. 
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Theorem [UPPER BOUND IN ENTROPY] 
Let 𝐻 𝑋 ≤ log |𝜒| , where |𝜒| denotes the number of elements in the range of X, 
with equality if and only X has a uniform distribution over 𝜒. 
 
Proof Hint) show 𝐷(𝑝| 𝑢 =  log 𝜒  − 𝐻 𝑋 , where 𝑢 𝑥 = 1

𝜒
  

proof 

Theorem (Conditioning reduces entropy) 
 

𝐻 𝑋|𝑌 ≤ 𝐻(𝑋), 
 
With equality if and only if X and Y are independent.  

proof 

NOTE>  
The theorem says that knowing another r.v. Y can only reduce the uncertainty in X. 
Note that this in true only on the average. Specific H(X|Y=y) may be greater than or 
less than or euqal to H(X).  



JENSEN’S INEQUALITY CONSEQUENCES CONT. 
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Theorem (Independence Bound on Entropy) 
Let  𝑋1,𝑋2, … ,𝑋𝑛be drawn according to 𝑝( 𝑥1, 𝑥2, … , 𝑥𝑛). Then  

𝐻 𝑋1,𝑋2, … ,𝑋𝑛 ≤�𝐻(𝑋𝑖)
𝑛

𝑖=1

, 

With equality if and only if 𝑋𝑖 are independent.  
 
Proof Hint> use chain rule of entropy 



LOG-SUM INEQUALITY 
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Theorem (Log sum inequality) 
For nonnegative numbers 𝑎1, 𝑎2, … , 𝑎𝑛 and 𝑏1, 𝑏2, … , 𝑏𝑛. Then,  
 

�𝑎1log (
𝑎𝑖
𝑏𝑖

)
𝑛

𝑖=1

≥ �𝑎𝑖

𝑛

𝑖=1

 log (� 𝑎𝑖
𝑛

𝑖=1
)/(� 𝑏𝑖

𝑛

𝑖=1
)  

 
with equality if and only if 𝑎𝑖

𝑏𝑖
= constant.  

proof 

Convention 
 
• 0 log 0 = 0    
• a log 𝑎

0
= ∞  , if 𝑎 > 0 

• 0 log 0
0

= 0     
 



LOG-SUM INEQUALITY CONSEQUENCES 
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Theorem (Convexity of relative entropy) 
𝐷(𝑝| 𝑞  is convex in the pair (p,q), so that for pmf’s (𝑝1, 𝑞1) and (𝑝2, 𝑞2), we have 
for all 0 ≤ 𝜆 ≤ 1: 
 

𝐷 𝜆𝑝1 + 1 − 𝜆 𝑝2 ||𝜆𝑞1 + 1 − 𝜆 𝑞2) ≤ 𝜆𝐷(𝑝1| 𝑞1 + 1 − 𝜆 𝐷(𝑝2, 𝑞2) 
 

Theorem (Concavity of entropy) 
For 𝑋~𝑝 𝑥 , we have that  
 

𝐻 𝑝 ≔ 𝐻𝑝(𝑋)is concave function of p(x). 



LOG-SUM INEQUALITY CONSEQUENCES CONT. 
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Theorem (Concavity of the mutual information in p(x)) 
Let (X, Y ) ~ p(x, y) = p(x)p(y|x). Then, I(X; Y ) is a concave function of p(x) for fixed 
p(y|x). 

Theorem (Convexity of the mutual information in p(y|x))) 
Let (X, Y ) ~ p(x, y) = p(x)p(y|x). Then, I(X; Y ) is a convex function of p(y|x) for fixed 
p(x) 



MARKOV CHAINS 
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Definition:  
X, Y,Z form a Markov chain in that order (X → Y → Z) iff 

p(x, y, z) = p(x)p(y|x)p(z|y) ≡ p(z|y, x) = p(z|y) 
With equality if and only if X and Y are independent given Z.  

X → Y → Z iff X and Z are conditionally independent given Y 

X → Y → Z ⇒ Z → Y → X. Thus, we can write X ↔ Y ↔ Z. 



DATA-PROCESSING INEQUALITY 
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Theorem (Data-processing inequality)  
If X → Y → Z, then  

𝐼 𝑋;𝑌 ≥ 𝐼 𝑋;𝑍   
with equality iff I(X;Y|Z) = 0. 

Corollary 
If Z = f(Y), then 𝐼 𝑋;𝑌 ≥ 𝐼 𝑋;𝑓(𝑌)  .  

Corollary 
If X → Y → Z, then 

 𝐼 𝑋;𝑌 ≥ 𝐼 𝑋;𝑌|𝑍   

proof 



SUFFICIENT STATISTIC 
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Definition:  
A function T(X) is said to be a sufficient statistic relative to the family {𝑓𝜃(𝑥)}if the 
conditional distribution of X, given T(X) = t, is independent of 𝜃 for any distribution 
on 𝜃 (Fisher-Neyman): 
 

𝑓𝜃 𝑥 = 𝑓 𝑥 𝑡 𝑓𝜃 𝑡 ⇒ 𝜃 → 𝑇 𝑋 ⇒ 𝐼 𝜃;𝑇 𝑋 ≥ 𝐼 𝜃;𝑋  
 
Hence, 𝐼 𝜃;𝑋 = 𝐼 𝜃;𝑇 𝑋  for a sufficient statistics (suf stat. preserves mutual 
info.) 



FANO’S INEQUALITY 
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Theorem (Fano’s inequality) 
For any estimator 𝑋� such that X → 𝑌 → 𝑋�, with probability of error 
𝑃𝑒 = Pr 𝑋 ≠ 𝑋� ,  we have  
 

𝐻(𝑃𝑒) + 𝑃𝑒 log 𝜒 ≥ 𝐻 𝑋 𝑋� ≥ 𝐻(𝑋|𝑌) 
 
This inequality can be weekend to  

1 + 𝑃𝑒 log 𝜒 ≥ 𝐻(𝑋|𝑌) 
or 

𝑃𝑒 ≥
𝐻 𝑋 𝑌 − 1

log 𝜒  

Problem: using the observation of r.v. Y. we want to guess the value of X that is 
correlated to r.v. Y.  
-> Fano’s inequality relates the probability of error in guessing the r.v. X to its 
conditional entropy H(X|Y).  
* We can estimate X for Y with 0 prob. Of error if and only if H(X|Y) = 0;   

proof 

𝑔 𝑌 = 𝑋� 
 

NOTE: Fano’s bound is a loose bound, but sufficient for many cases of interest.   



FANO’S INEQUALITY CONSEQUENCES 
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Corollary 
Let 𝑝 = 𝑃𝑃 𝑋 ≠ 𝑌 . Then 

𝐻 𝑝 + 𝑝 log 𝜒 ≥ 𝐻 𝑋|𝑌  .  

Corollary 
Let Pe = 𝑃𝑃 𝑋 ≠ 𝑋� , and 𝑋�:𝜓 → 𝜒; Then 

𝐻 𝑃𝑒 + 𝑃𝑒 log( 𝜒 − 1) ≥ 𝐻 𝑋|𝑌  . 
 

* Range of possible outcome changed to  𝜒 − 1.  

Remark:  
Suppose that ther is no knowledge of Y. Thus, X must be guessed. Without any 
information. Let 𝑋 ∈ {1,2, … ,𝑚} and 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑚. Then the best guess of X is 
𝑋� = 1 and the resulting probability of error is 𝑃𝑒 = 1 − 𝑝1. Fano’s inequality becomes 
 

𝐻 𝑃𝑒 + 𝑃𝑒 log 𝑚 − 1 ≥ 𝐻 𝑋   
The pmf 

  (𝑝1, 𝑝2, … , 𝑝𝑚) = (1 − 𝑃𝑒 , 𝑃𝑒
𝑚−1

, … , 𝑃𝑒
𝑚−1

)  
achieves this bound with equality.  



FANO’S INEQUALITY CONSEQUENCES 
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Lemma 
If X and X’ are i.i.d. with entropy H(X), assume the probability at X=X’ is given by  

𝑃 𝑋 = 𝑋′ = ∑ 𝑝2(𝑥)𝑥 .  
Then  

𝑃𝑃 𝑋 = 𝑋′ ≥ 2−𝐻 𝑋  
 

with equality if and only if X has a uniform distribution.  

Corollary 
Let X, X’ be independent with X ~ p(x), X’~r(x), x, x’ ∈ 𝜒 , then  
 

𝑃𝑃 𝑋 = 𝑋′ ≥ 2−𝐻 𝑝 −𝐷(𝑝||𝑟) 
𝑃𝑃 𝑋 = 𝑋′ ≥ 2−𝐻 𝑟 −𝐷(𝑟||𝑝) 

 
 

with equality if and only if X has a uniform distribution.  
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ENTROPY RATES OF A STOCHASTIC PROCESS 



STOCHASTIC PROCESSES 

 What about the notion of entropy of a general random 
process?  

CS 549 - Computational Biology 

29 

MOTIVATION: Should probably normalize by n somehow.  



ENTROPY RATE 
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STATIONARY PROCESSES 
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