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to any element is O(log 11). The total cost is obtained by summing the costs 
charged to the elements. Thus the total cost is 0(11 log 11). D 

It follows from Theorem 4.3 that if 111 FIND and up to /1 - I UNION in
structions are executed, then the total time spent is O(MAX(m. /1 log 11)). If 
111 is on the order of n log /1 or greater. then this algorithm is actually optimal 
to within a constant factor. However, in many situations we shall find that /11 

is O(n), and in this case, we can do better than OCMAX(m, Ii log 11)). as we 
shall see in the next section. 

4.7 TREE STRUCTURES FOR THE UNION-FIND PROBLEM 

In the last section we presented a data structure for the UNION-FIND 
problem that would allow the processing of /1 - 1 UNION instructions and 
O(n log n) FIND instructions in time O(n log n). In this section we shall 
present a data structure consisting of a forest of trees to represent the collec
tion of sets. This data structure will allow the processing of O(n) UNION 
and FIND instructions in almost linear time. 

Suppose we represent each s~t A by a rooted undir-ected tree TA, where 
the elements of A correspond to the vertices of TA. The name of the set is at
tached to the root of the tree. An instruction of the form UNION(A, B, C) 
can be executed by making the root of T.~ a son of the root of TH and changing 
the name at the root of T8 to C. An instruction of the form FIND{i) can be 
executed by locating the vertex representing element i in some tree T in the 
forest, and traversing the path from this vertex to the root of T, where we find 
the name of the set containing i. 

With such a scheme, the cost of merging two trees is a constant. How
ever, the cost of a FIND(i) instruction is on the order of the length of the 
path from vertex i to its root. This path could have length n - I. Thus the 
cost of executing n - 1 UNION instructions followed by /1 FIND instruc
tions could be as high as 0(n 2 ). For example, consider the cost of the follow
ing sequence: 

UN ION( I. 2. '.!) 

UNION(2. 3. 3) 

UN·IONC11 - I. 11. 11) 

FIND( I) 
FINDC2> 

FIND(11) 
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Fig. 4.16 Tree after UN ION instructions. 

Then - 1 UNION instructions result in the tree shown in Fig. 4.16. 1he 
cost of the n FIND instructions is proportional to 

11 - 1 • n(n-1) 
~>= ? . 
i=O -

However, the cost can be reduced if the trees can be kept balanced. One 
way to accomplish this is to keep count of the number of vertices in each tree 
and, when merging two sets, always to attach the smaller tree to the root of 
the larger. This technique is analogous to the technique of merging smaller 
sets into larger, which we used in the last section. 

Lemma 4.1. If in executing each UNION instruction the root of the tree 
with fewer vertices (ties are broken arbitrarily) is made a son of the root 
of the larger, then no tree in the forest will have height greater than or 
equal to Ji unless it has at least 2h vertices. 

Proof. The proof is by induction on lz. For lz-= 0, the hypothesis is true 
since every tree has at least one vertex. Assume the induction hypothesis 
true for all values less than /1 ;:::: l. Let T be a tree of height /z with fewest 
vertices. Then T must have been obtained by merging two trees 7 1 and T2 , 

where Ti has height lz - l and Ti has no more vertices than T 2 • By the in
duction hypothesis T 1 has at least 2h-i vertices and hence T2 has at least 2h-• 
vertices, implying that T has at least :?.h vertices. 0 

Consider the worst-case execution time for a sequence of n UNION and 
FIND instructions using the forest data structure, with the modification that 
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(a) (b) 

Fig. 4.17 Eff~ct of path compression. 

in a UNION the root of the smaller tree becomes a son of the root of the 
larger tree. No tree can have height greater than log n. Hence the execu
tion of O(n) UNION and FIND instructions costs at most O(n log n) units 
of time. This bound is tight, in that there are sequences of n instructions that 
will take time proportional to n log n. 

We now introduce another modification to this algorithm, called path 
compression. Since the cost of the FIND's appears to dominate the total 
cost, we shall try to reduce the cost of the FIN D's. Each time a FIND(i) in
struction is executed we traverse the path from vertex i to its root r. Let· i, 
vi. v2 , ••• , vn, r be the vertices on this path. We then make each of i, v1 , 1·2 , 

/ 

•.. , vn-i a son of the root. Figure 4.17(b) illustrates the effect of the instruc-
tion FIND(i) on the tree of Fig. 4. l 7(a). 

The complete tree-merging algorithm for the UNION-FIND problem, 
including path compression, is expressed by the following algorithm. 

Algorithm 4.3. :fast disjoint-set union algorithm. 

Input. A sequence u of UNION and FIND instructions on a collection of 
sets whose elements consist of integers from I through n. The set names are 
also assumed to be integers from I to 11, and initially, element i is by itself in a 
set named i. 

Output. The sequence of responses· to the FIND instructions in u. The 
response to each FIND instruction is to be produced before looking at the 
next instruction in u. 
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Afrtlwd. We describe the algoritbm in three parts- the initialization. the 
response to a FIND. and t~e response to a UNION. 

I. lnitiali::.atio11. For each element i. I :s i :s 11. we create a vertex\';. We 
set COUNT[,·;]= I. NAME[r;] = i. and FATHER[\';]= 0. Ini
tially. each vertex\'; is a tree by itself. In order to locate the root of set i, 
we create an array ROOT with ROOT[i] pointing to 1·;. To locate the 
vertex for· element i. we create an array ELEMENT. initially with 
ELEMENT[i] = \'; . 

.., Executing FIND(i). The program is shown in Fig. 4.18. Starting at 
vertex ELEMENT[i] we follow the path to the root of the tree. making 

begin 
make LIST empty; 
v +- ELEMENT[i]; . · ·4• 
while FATHER[v] 'I:- 0 do 

begin 
add v to LIST; 
v +- FATHER[v] 

end; 
comment v is now the root; 
print NAME[v]; 
for each won LIST do FATHER[w] +- v 

end 

Fig. 4.18. Executing instruction FIND(i). 

begin . 
wig assume COUNT[ROOT[i]] :s COUNT[ROOT(j]] 

otherwise interchange i and j in 
begin 

LARGE+- ROOT[j]: 
SMALL+- ROOT[i]: 
FATHERLSMALLJ +-LARGE: 
COUNT[LARGE] +- COUNT[LARGE] + COUNT[SMALL]; 
NAME[LARGE] +- k: . 
ROOT[k] +-LARGE 

end 
end 

Fig. 4.19. Executing instruction UN ION(i. j, k). 
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a list of vertices encountered. At the root. the name of the set is printed. 
and each vertex on the path traversed is made a son of the root. 

3. £.xecurinR UNION(i, j, k). Via the array ROOT. we find the roots of 
the trees representing sets i and j. We then make the· root of the smaller 
tree a son of the root of the larger. See Fig. 4.19. D 

We shall show that path compression speeds up the algorithm consider
.hly. To calculate the improvement we introduce two functions F and G. 

~et 

F(O)=I, 

for i > 0. 

fhe function F grows extremely fast, as the table in Fig. 4.20 shows. The 
·unction G(n) is defined to be smallest integer k such that F(k) ~ n. The 
unction G grows extremely slowly. In fact, G(n) ::;; 5 for all "practical" val-
1es of 11, i.e., for all /1 ::;; 265536. 

We shall now prove that Algorithm 4.3 will execute a sequence CT of en 
JNION and FIND instructions in -~t most c'nG(n) time, where c and c' 
tre constants, c' depending on c. For simplicity, we assume the execution of a 
JNION instruction takes one "time unit" and the execution of the instruc
.ion FIND(i) takes a number of time units proportional to the number of ver
·ices on the path from the vertex labeled i to the root of the tree containing 
.his vertex. t 

n F(11) 

0 I 

I 2 

2 4 

3 16 

4 65536 

5 '"165536 

Fig. 4.20. Some values of F. 

· Thus one "time unit" in the sense used here requires some constant number of steps 
>n a RAM. Since we neglect constant factors. order-of-magnitude results can as well 
>e expressed in terms of "time units." 
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Definition. It is convenient to define the rank of a vertex with respect to 
the sequence er of UNION and FIND instructions as follows: 

I. Delete the FIND instructions from er. 
2. Execute the resulting sequence rr' of UN ION instructions. 
3. The rank of a vertex ,. is the height of ,. in the resulting forest. 

We shall now derive some important properties of the rank of a vertex. 

Lemma 4.2. There are at most 11/2r vertices of rank r. 

Proof By Lemma 4.1 each vertex of rank r has at least 2r descendants in the 
forest which results from executing er'. Since the sets of descendants of any 
two distinct vertices of the same height in a forest are disjoint and since there 
are at most n/2r disjoint sets of 2r or more vertices, there can be at most n/2r 
vertices of rank r. 0 

Corollary. No vertex has rank greater than log n~ 

Lemma 4.3. If at some time during·the·~·~ecution of er, IV is a proper 
descendant of v. then the rank of w is less than the rank of v. 

Proof If at some time during the execution of er, IV is made a descendant of 
v, then w will be a descendant of v in the forest resulting from the execution of 
the sequence er'. Thus the height of 1v must be less than the height of v, so 
the rank of w is less than the rank of\'. 0 

We now partition the ranks into groups. We put rank r in group G(r). 
For example, rcmks 0 and I are in group 0, rank 2 is in group 1, ranks 3 and 4 
are in group 2, ranks 5 through 16 are in group 3. For n > I, the largest pos
sible rank, L log /1 J. is in rank group G (L log n J) :s; G (n) - l. 

Consider the cost of executing a sequence er of en UNION and FIND 
instructions. Since each UNION instruction can be executed at the cost of 
one time unit, all UN ION instructions in er can be executed in O(n) time. In 
order to bound the cost of executing all FIND instructions we use an impor
tant "bookkeeping" trick. The cost of executing a single FIND is appor
tioned between the FIND instruction itself and certain vertices on the path in 
the forest data structure which are actually moved. The total cost is com
puted by summing over all FIND instructions the cost apportioned to them, 
and then summing the cost assigned to the vertices, over all vertices in the 
forest. 

We charge for the instruction FIND(i) as follows. Let,. be a vertex on 
the path from the vertex representing i to tht> root of tree containing i. 

I. If,. is the root. or if FATHER[,·] is in a different rank group from 1·. 

then charge one time unit to the FIND instruction itself. 
"' If both ,. and its father are in the same rank group. then charge orie time 

unit to \'. 
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By Lemma 4.3 the vertices going up a path are monotonically increasing 
in rank. and since there are at most G(11) different rank groups. no FIND in
struction is charged more than G (11) time units under rule I. If rule 2 applies. 
vertex ,. will be moved and made the son of a vertex of higher rank than its 
previous father. If vertex 1• is in rank group R > 0. then ,. can be moved and 
charged at most F(g) - F(g - I) times before it acquires a father in a higher 
rank group. In rank group 0, a vertex can be moved at most once before ob
taining a father in a higher group. From then on. the cost of moving ,. will be 
charged to the FIND instructions by rule I. 

To obtain an upper bound on the charges made to the vertices them
selves. we multiply the maximum possible charge to any vertex in a rank 
group by the number of vertices in that rank group, and sum over all rank 
groups. Let N(g) be the number of vertices in rank group g > 0. Then by 
Lemma 4.2: 

N(g) :S r=F%)1J+1 11/2r 

:s (n/2F<u11>+1 )[I + i + t + · · · ] 
:S n/2F(g-l) . 

:s n/F(g). 

The maximum charge to any vertex in rank group g > 0 is less than or equal 
to F(g) - F(g - 1). Thus the maximum charge to all vertices in rank group g 
is bounded by 11. The same statement clearly applies for g = 0 as well. 
Since there are at most G(n) rank groups, the maximum charge to all vertices 
is 11G(n). Therefore, the total amount of time required to process en FIND 
instructions is at most enG(n) charged to the FIND's and at most 11G(11) 
charged to the vertices. Thus we have the following theorem. 

Theorem 4.4. Let e be any constant. Then there exists another constant 
e' depending on e such that Algorithm 4.3 will execute a sequence a- of 
en UNION and FIND instructions on n elements in at most c'11G(11) 
time units. 

Proof By the above discussion. 0 

It is left as an exercise to show that if the primitive operations INSERT 
and DELETE, as well as UNION and FIND, are permitted in the sequence 
u, then a- can still be executed in 0(11G(11)) time. 

It is not known.whether Theorem 4.4 provides a tight bound on the run
ning time of Algorithm 4.3. However. as a matter of theoretical interest. in 
the remainder of this section we shall prove that the running time of 
Algorithm 4.3 is not linear in 11. To do this. we shall construct a particular 
sequence of UNION and FIND instructions. which Algorithm 4.3 takes 
more than linear time to process. 
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(a) ..... (b) 

Fig .. 4.21 Effect of partial FIND operation. 

Fig. 4.22 The tree T(2). 

It is convenient to introduce a new operation on trees which we shall call 
partial FIND, or PF for short. Let T be a tree in which v, v1 , v2 , ••• , vm, w 
is a path from a vertex v to an ancestor w. (w is not necessarily the root.) 
The operation PF(v, w) makes each of v, vi. v2 , ••• , Vm-i sons of vertex w. 
We say this partial FIND is of length m + I (if v = w, the length is 0). Fig
ure 4.21(b) illustrates the effect of PF(v, w) on the tree of Fig. 4.2l(a). 

Suppose we are given a sequence <T of UNION and FIND instructions. 
When we execute a given FIND instruction in <T we locate a vertex v in some 
tree T and follow the path from ~· to the root w of T. Now suppose we ex
ecute only the UNION instructions in <T, ignoring the FIND's. This will 
result in a forest F of trees. We can still capture the effect of a given FIND 
instruction in <T by locating in F the vertices v and w used by the original 
FIND instruction and then executing PF(v, w). Note that the vertex w may 
no longer be a root in F. 
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In deriving a lower bound on the running time of Algorithm 4.3. we con
sider the behavior of the algorithm on a sequence of UN ION~s followed by 
pf's which can be replaced by a sequence of UN ION's and FIND"s whose 
execution time is the same. From the following special trees we shall derive 
particular sequences of UNION's and PF's on which Algorithm 4.3 takes 
more than linear time. 

Definition. For k ~ 0, let T(k) be the tree such that 

I. each leaf of T(k) has depth k. 
2. each vertex of height h has 2h sons, h ~ I. 

Thus the root of T(k) has 2 k sons, each of which is a root of a copy 
of T(k - I). Figure 4.22 shows T(2). · 

Lemma 4.4. With a sequence of UNION instructions we can create, for 
any k ~ 0, a tree T'(k) that contains as a subgraph the tree T(k). Fur
thermore, at least one-quarter of the vertices in T' (k) are leaves of T(k). 

Proof The proof proceeds by induction on k. The lemma is trivial for k = 0, 
since T(O) consists of a single vertex. l"o construct T' (k) for .k > 0, first con
struct 2k + 1 copies of T '(k - I). Form the tree T' (k) by selecting one copy 
of T'(k - I) and then merging into it, one by one, each of the remaining 
:opies. The root of the resulting tree has (among others) 2k sons, each of 
which is a root of T'(k - 1). 

Let N'(k) be the total number of vertices in T'(k) a~d I~t L(k) be ~he 
1umber of leaves in T(k). Then 

md 

N' (0) = 1 

N' (k) = (2k + l)N' (k- 1), 

L(O) = 1 

fork~ 1, 

L(k) = 2kL(k- 1), fork~ 1; 
;o 

k II 2i 
L(k) i=1 2 Ilk 

N' (k) - k = 3. _1_+_2_-i' 
II ( 2 i + I ) r=2 

fork~ I. 

i=l 

Ne note that for i ~ 2, log!' (1 + 2-i) < 2-i, so 

Jsing (4.3) and (4.4) together we have 

L(k) ~ _11., i _........____ > *£' - > 
N'(k) - :• - ~. 

hus proving the lemma. D 

(4.3) 

(4.4) 
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We shall construct a sequence of UN ION and PF instructions that will 
first build the tree T' (k) and then perform PF's on the leaves of the subgraph 
T(k). We shall now show that for every I> 0, there exists a k such that we 
can perform a PF of length I in succession on every leaf of T(k). 

Definition. Let D(c, I, /z) be the smallest value of k such that if we 
replace every subtree in T(k) whose root has height /z by any tree having I 
leaves and height at least I, then we may perform a PF of length c on 
each leaf in the resulting tree. 

Lemma 4.5. D(c, I. h) is defined (i.e., finite) for all c, /,and h greater than 
zero. 

Proof The proof involves a double induction. We wish to prove the result 
by induction on c. But in order to prove the result for c given the result for 
c - I. we must also do an induction on I. 

' The basis, c = I, is easy. D(l, /, h) = h for all I and h, since a PF of 
length I does not move any vertices. ·~• 

Now for the induction on C,suppose that for all/ and It, D(c - 1, I, h) is 
defined. We must show that D(c, I, h) is defined for all/ and h. This is done 
by induction on I. 

For the basis of this induction, we show 

D(c, I, It) s D(c- I, 2h+1, h +I). 

Note that when I= 1, we have substituted trees with a single leaf for subtrees 
with roots at the vertices of height h in T(k) for some k. Let H be the set of 
vertices of height h in this T(k). Clearly, in the modified tree each leaf is the 
proper descendant of a unique member of H. Therefore, if we could do PF's 
of length c - I on all the members of H, we could certainly do PF's of length 
c on all the leaves. 

Let k = D(c- I, 2h+•, It+ I). By the hypothesis for the induction on c, 
we know that k exists. If we consider the vertices of height h + I in T(k), we 
see that each has 2h+• sons, all of which are members of H. If we delete all 
proper descendants of the vertices in H from T(k), we have in effect substi
tuted trees of height I with 2h+i leaves for each subtree having roots at height 
/z + I. By the definition of D, k = D(c - I, Zh+i, It+ l) is sufficiently large so 
that PF's of length c - I can be done on all its leaves, i.e., the members of H. 

Now, to complete the induction on c, we must do the inductive step for I. 
In particular, we shall show: 

D(c, /,Jr) s D(c- I, 201c.1-t.h)(1+01c.1-1.11»12, D(c, l- I. !z)) for I> I. 
(4.5) 

To prove (4.5), let k = D(c, I - I, h) and let k' be the right side of (4.5). We 
must find a way to substitute a tree of / leaves for each vertex of height Jr in 
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Tlk' ). then perform a PF of length c on each leaf. We begin by performing 
the PF"s on I - I of the leaves of each substituted tree. By the inductive 
hypothesis for the induction on /. we can perform_ the PF's on I - I of the 
leaves of each substituted tree in these subtrees. 

Having done PF's on I - 1 of the leaves, we find that the /th leaf of each 
substituted tree now has a father distinct from that of the /th leaf of any other 
substituted tree. Call the set of such fathers F. If we can do PF's of length 
c - I on the fathers. then we can do PF's of length c on the leaves. Let S be 
a su!Jtree whose root had height k in T(k'). It is easy to check that S has 
::!1:1Ho12 leaves in T(k'). Thus, after we have done the PF's. the number of 
vertices in S which are also in F is at most 2k<Ho12• ~What remains of S c~n 
thus be regarded as an arbitrary tree with 2k<k+o12 leaves, the vertices in F. 
By the inductive hypotheses for c and /, (4.5) holds. D 

Theorem 4.5. Algorithm 4.3 has a time complexity which is greater than 
en for any constant c. 

Proof Assume there is a constant c such that Algorithm 4.3 will execute any 
sequence of n - l MERGE and /1 :qIND instructions in no more than en time' 
units. Select d > 4c, and calculate k = D(d, 1. 1). Construct T'(k) by a 
sequence of UNION instructions. Since we can perform a PF of length don 
each leaf of the embedded tree T(k). and since the leaves of T(k) make up 
more than one-quarter of the vertices of T'(k), this sequence of UNION and 
PF instructions will require more than en time units, a contradiction. D 

4.8 APPLICATIONS AND EXTENSIONS OF 
THE UNION-FIND ALGORITHM 

We have seen how. a sequence of the primitive instructions UNION and 
FIND naturally arose in the spanning tree problem of Example 4. I. In this 
section we present several other problems which give rise to sequences of 
UNION and FIND instructions. In our first problem, the computation can 
be performed off-line, that is, the entire sequence of instructions can be read 
before any answers need to be produced. 

Application 1. Off-line MIN problem 

We are given two types of instructions. INSERT(i) and EXTRACT_MIN. 
We start with a set S which is initially empty. Each time an instruction 
INSERT(i) is encoumered we place the integer i in S. Each time an instruc
tion EXTRACT _MIN is executed. we find the minimum element in S and 
delete it. · 

Let <:T be a sequence of INSERT and EXTRACT_MIN instructions 
such that for each i. l :s i :s 11. the instruction IN SERT(i) appears at most 
once. Given the sequence <:T. we are to find the sequence of integers deleted 




