1. Master theorem exercises

**Theorem 4.1 (Master theorem)**
Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret $n/b$ to mean either $[n/b]$ or $\lceil n/b \rceil$. Then $T(n)$ has the following asymptotic bounds:

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large $n$, then $T(n) = \Theta(f(n))$.

1. $T(n) = 3T(n/2) + n^2$

2. $T(n) = 4T(n/2) + n^2$

3. $T(n) = 16T(n/4) + n$

4. $T(n) = 2^nT(n/2) + n^n$

5. $T(n) = 2T(n/2) + n/\log n$

6. $T(n) = 64T(n/8) - n^2 \log n$