Problem 1: number of all-pairs shortest paths
20175 118 132 229
2T 1:11

(V] _ o k
ﬁ_(\h,&)) - us)é(; Q&ﬂ
] 5 : 7 .‘ J_
. P e &
© / —
B y\\-)c | :

k-(KI JH
_ \J = M(N {& |k AKJJ & k>0

20171113 Page 1

I AT N L) \(\MXV\

20171113 Page 2

IS W~ K+ AR
Wi @ = N + Nig XNk,

et S B g
A K|
. K-(
N & NO* Ny

20171113 Page 3

Problem 2; Dynamic Tables
20173 112 132 2
22113

Scenario

* Have a table—maybe a hash table.
* Don’t know in advance how many objects will be stored 1in it.

* When it fills. must reallocate with a larger size. copying all objects mto the new,
larger table.

* When it gets sufficiently small. might want to reallocate with a smaller size.

Details of table organization not important.

Goals

1. O(1) amortized time per operation.

2. Unused space always < constant fraction of allocated space.

Load factor @ = num [size. where mun = # items stored. size = allocated size.
If size = 0, then mum = 0. Calla = 1.
Never allow a > 1.

Keep o > a constant fraction = goal (2).

20171113 Page 1

Table expansion

Consider only insertion.

* When the table becomes full, double its size and reinsert all existing items.
* Guarantees that ¢ = 1/2.

* Each time we actually nsert an item into the table. 1t’s an elementary insertion.

TABLE-INSERT(T, x)
if T.s5ize ==
allocate T.rable with 1 slot
T.size = 1
if T.num == T.size // expand?
allocate new-rable wi - 1. size slots
nsert all items in T. fable into new-rable J/ T.num elem insertions
tree T.table
T.table = new-rable
T.size = 2 - T.size
insert x into T.7able // 1 elem 1nsertion
Tonmum = T.num + 1

——

Initially. T.num = T.size = 0.
—_—

20171113 Page 2

Running time

Charge 1 per elementary insertion. Count only elementary insertions. since all
other costs together are constant per call.

¢; = actual cost of ith operation

—_—

* Ifnotfull.¢; = 1.

* If full. have i — 1 items in the table at the start of the /th operation. Have to
copy all i — 1 exasting items. then insert ith item = ¢; = i.

n operations = ¢; = O(n) = O(n?) time for n operations.

Of course. we don’t alwayvs expand:

%i ifi — 1 1s exact pmam:@
Cp = 2 P
=

otherwise .

Total cost = Z{'; - {

_— i=1 %}h

Therefore. aggregate analysis says amortized cost per operation =3

32 - OQ)

Accounting method

Charge $3 per insertion of x.

* $1 pays for x’s msertion.
* $1 pays for x to be moved in the future.

* $1 pays for some other item to be moved.

Suppose we've just expanded, size = m before next expansion. size = 2m after
" —_— el
next expansion. B

* Assume that the expansion used up all the credit. so tilﬁ% there’s no credit stored
after the expansion.

. TINT avrsvand amain afras amathae s deme setamee ~~=

20171113 Page 3

4 BFINALILN LLLLEL LA SR EOALLLRANAL LTl LERS LELL LAEW Cwd R lbdla %0 LELGAL BLENWAL W 7 LA el W hbLL sFLALSL wous

after the expansion.
Will expand again after another m insertions. >

Each insertion will put $1 on one of the m items that were in the table just after
expansion and will put $1 on the item inserted.

Have $2m of credit by next expansion. when there are 2m 1tems to move. Just
enough to pay for the expansion. with no credit left over!

20171113 Page 4

Potential method bl Ul

O(T) =2-T.num — T.size I [lg_/;f & p=23 é : 2
L i 0T

— 1
NS T -

» Initially. num = size = 0= & = 0.

» Just after expansion. size = 2 - num = ® = 0. (| !z. | |

» Just before expansion. size = num = ® = mun = have enough potential to

pay for moving all items. E
| —
 Need @ = 0, always. \ C?) - %‘WV\

Always have
size = num > size/2 = % > O
2-num = size = o
- d = 0.

Amortized cost of i th operation

num; = mn after i th operation .
size; = size after ith operation .
®; = @ after ith operation .

* If no expansion:
size; = size;_; , Ci+t QTCTT) —§CTi -\) —

Qim; = 2mm;i_y + \ CQ’M%—):—ézymf—l I‘V{&U—)

ORI ¥
: Mgﬁﬁﬁ"i’:— i ').%-(@ S =) Sses
E:. = ¢ + (I): _ (I):_l —([= RE T A
_m
= 1+ (2 -num; — size;) — (2 - num;_, — size;_,) ham; =Nua £/
l 2‘ i .'E—2 :_1 _:: - - .
— ig Tm size;) — (2(mum) — size C: = §¢e,.(

—_—

3.

—

20171113 Page 5

If expansion:

size; = 2-size;_, .
size;_y = num;_y = num; — 1,
c; = numi_y+ 1 =num; .

Then we have

¢ = ¢i+d +P_,

num; + (2 - num; — size;) — (2 - num;_, — size;_y)

= num; + (2 -num; — 2(num; — 1)) — (2(num; — 1) — (num; — 1))
= num; + 2— (num; — 1)

= 3.

20171113 Page 6

Expansion and contraction

When « drops too low. contract the table.

* Allocate a new. smaller one.

* Copy all items.
Still want

* « bounded from below by a constant,

* amortized cost per operation = O(1).

Measure cost i terms of elementary insertions and deletions.

“Obvious strategy”

* Double size when mserting nfo a full table (when o = 1. so that after mnsertion
o would become > 1).

* Halve size when deletion would make table less than half full (when o = 1/2.
so that after deletion o would become < 1/2).

* Thenalways have 1/2 < « < 1.

* Suppose we fill table.

Then mnsert = double
2 deletes = halve
2 inserts => double
2 deletes = halve

Not performing enough operations after expansion or contraction to pay for the
next one.

20171113 Page 7

Simple solution

* Double as before: when inserting with @ = 1 = after doubling. & = 1/2.
* Halve size when deleting with « = 1/4 = after halving, & = 1/2.

» Thus. immediately after either expansion or contraction. have o = 1/2.

* Alwayshave /4 <a < 1.

Intuition

 Want to make sure that we perform enough operations between consecutive
expansions/contractions to pay for the change in table size.

* Need to delete half the items before contraction.

* Need to double number of items before expansion.

* Either way, number of operations between expansions/contractions is at least a
constant fraction of number of items copied.

2-T.num—T.size ifa=1/2,

T.size/2 —T.num 1ifa <1/2.

T empty = @ = 0.

a=1/2 = num = size/2 = 2 -num = size = ® = 0.

a < 1/2= num < size/2 = ® = 0.

O(T) =

20171113 Page 8

Problem 3
20073 112 132 €Y
2% 1:14

3. CLRS 21.3-4: Suppose that we wish to add the UNION-FIND operation PRINT-SET.x/, which 1s given a node x
and prnts all the members of x's set, m any order. Show how we can add just a single attribute to each node in a
disjont-set forest so that PRINT-SET.x/ takes time lmear i the number of members of x's set and the asymptotic
munning times of the other operations are unchanged. Assume that we can print each member of the set n O(1) time.

Maintain a circular, singly linked list of
the nodes of each set.

To print, just follow the list until you
get back to node x, printing each
member of the list.

The only other operations that change
are FIND, which sets x.next = x, and
LINK, which exchanges the pointers
Xx.next and y.next.

20171113 Page 1

Problem 4
179118 132 €Y
22115

Devy= frodeet o T
© DLU) @\(BM mofﬁ)
E G Wi \t{Yo oS £~ g“(wﬂ/ OF&

T(Me,/ \ouxc—s&L“AJ Druyr ~— X lDO@f—S“A

| 4

gg&o(/\- C numd)

V& b
le,\(\c, NS nat (6&? (\\/O

W , %\\

	Problem 1 number of all-pairs shortest paths
	Problem 2 Dynamic Tables
	Problem 3
	Problem 4

