Union-Find Problems

- **Union-Find Problems**
 - Elements 1, ..., n.
 - Initially, each element i is in a set by itself.

- **Operations**:
 - \(\text{FIND}(i) \): return the name of set containing i.
 - \(\text{UNION}(A, B, C) \): union elements of set A and B and call the result C (delete A=B)
 - \(\text{MAKE}(x) \): make a set on element x

Example Application to Minimum Spanning Tree (MST)

MST: Let \(G(V, E) \) be a connected, undirected graph with a cost function mapped to each edge.

A **spanning tree** is a undirected tree that connects all vertices \(V \) in the graph. The cost of a spanning tree is just the sum of the cost of its edges. The goal is to find a spanning tree of min cost in \(G \).

Algorithm

1. **Initialize**
 - tree edge \(\emptyset \)
 - vertex set \(\emptyset \)

2. For each vertex \(v \) do
 - insert \(v \) into vertex set

3. While \(|\text{vertex set}| > 1 \) do
 - extract edge \((u, v) \) of lowest cost in \(E \) (edge set)
 - if \(\text{FIND}(u) \neq \text{FIND}(v) \) then
 - insert \((u, v) \) into tree edge
 - \(\text{UNION}(\text{FIND}(u), \text{FIND}(v)) \)

4. **While**
 - return
Disjoint-set forest

- Array of roots inorder to locate the root of set \(i \)

- UNION(A, B, C)
 - Make root of \(TA \) a child of root of \(T_B \) and change the root of \(T_A \) to \(C \)

- FIND(C)
 - Following the pointer to the root

- Heuristics
"Union By Rank"

\[
\text{TA} \rightarrow \text{TB} \rightarrow \text{TS}
\]

Make the root with smallest rank point to root of large rank.

\[
\text{LINK}(x, y)
\]

If \(\text{rank}[x] \geq \text{rank}[y] \)
\[
\text{parent}[y] \rightarrow x
\]

Else
\[
\text{parent}[x] \rightarrow y
\]

\[
\begin{align*}
\text{if } \text{rank}[x] &= \text{rank}[y] + 1 \\
\text{then } \text{rank}[y] &= \text{rank}[y] + 1 \\
\text{else } &\text{No tree in the forest height greater than } O(\log n)
\end{align*}
\]