
LEARNING PROBABILISTIC MODELS 
AIMA CHAPTER 20 

CSE 537 Fall 2015 

Instructor: Sael Lee 

Materials form AIMA resources, “Learning with Maximum Likelihood” by Andrew W. Moore  and “The EM 
Algorithm: short tutorial” by S. Borman 



Agents can handle uncertainty by using the methods 
of probability and decision theory, but first they 
must learn their probabilistic theories of the world 
from experience by formulating the learning task 
itself as a process of probabilistic inference. 

 
 Statistical learning 

 Bayesian learning 
 Learning with Complete data 

 Maximum-likelihood parameter learning 
 Learning with Hidden Variables: EM 

 General Form of EM 
 Unsupervised clustering: mixture of Gaussians 
 Learning Bayesian net with hidden variables 
 Learning HMM 

 

OUTLINE 



 Bayesian view of learning:  
 Provides general solutions to the problems of 

noise, over-fitting and optimal prediction. 
   

 The data are evidence: instantiation of some 
or all of the random variables describing 
the domain.  
 

 The hypotheses are probabilistic theories of 
how the domain works, including logical 
theories as a special case.   

STATISTICAL LEARNING 



SURPRISE CANDY EXAMPLE  

Suppose there are five kinds of bags of candies: 
• 10% are h1: 100% cherry candies 
• 20% are h2: 75% cherry candies + 25% lime candies 
• 40% are h3: 50% cherry candies + 50% lime candies 
• 20% are h4: 25% cherry candies + 75% lime candies 
• 10% are h5: 100% lime candies 

Given a new bag of candy,  and we observe candies drawn from the bag: 

TASK1: What kind of bag is it?   
TASK2: What flavor will the next candy be? 



10% are h1: 100% cherry 
20% are h2: 75% cherry + 25% lime 
40% are h3: 50% cherry + 50% lime 
20% are h4: 25% cherry + 75% lime 
10% are h5: 100% lime 

Probability of bag type given 
observations 

POSTERIOR PROBABILITY OF HYPOTHESES 

Let D represent all the data with observed value d. Calculate the probability 
of each hypothesis given the data and predict on that basis.  
 

Probabilities of each hypothesis are obtained by Bayes’ rule.  

TASK1: What kind of bag is it? Let hypothesis H={h1,..,h5} denote the type of the bag.   

likelihood 

Hypothesis  
prior 

posterior 

Likelihood of data under  
i.i.d. assumption 𝑃(ℎ𝑖)  

Bayesian learning 



Probability that next candy 
is lime given observations 

PREDICTION PROBABILITY 

TASK2: What flavor will the next candy be? 

Prediction about an unknown quantity X,  

posterior 

assuming that each 
hypothesis determines a 
probability distribution over 
X.  

Prediction 

Predictions are weighted avg. over the predictions of the individual hypothesis. 



 The Bayesian prediction  
eventually agrees with the  
true hypothesis 

 
 For any fixed prior that  

does not rule out the true  
hypothesis, the posterior probability of any fals
e hypothesis will, under certain technical condit
ions, eventually vanish. 
  

 Bayesian prediction is optimal whether the data se
t be small or large. Given the hypothesis prior, a
ny other prediction is expected to be correct less 
often.  

 

OPTIMALITY OF BAYESIAN PREDICTION 



 In real learning problems, the hypothesis 
space is usually very large or infinite 

REALITY 

Summing over the 
hypothesis space is often 
intractable 

Need approximation/simplified method for selecting 
the hypothesis 

(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 
attributes) 



MAXIMUM A POSTERIORI (MAP) APPROXIMATION 

Make predictions based on a single most probable hypothesis 

• MAP learning chooses the hypothesis that provides maximum compression 
of the data.  

• log2 P(hi): the number of bits required to specify the hypothesis hi.  
• log2 P(d | hi): the additional number of bits required to specify the data, 

given the hypothesis. 



MAP VS BAYESIAN 

MAP predict with probability 1 that next candy is lime  
 (pick h5) 
Bayes will predict with probability 0.8 that net is lime   

After three observations  

Probability that next candy 
is lime given observations 

EX>  



MAP & BAYESIAN – CONTROLLING COMPLEXITY  

** BOTH MAP and Bayes penalize complexity using prior probability 
𝑃(ℎ𝑖)  
• High 𝑃(ℎ𝑖) high penalty   

Typically, more complex hypothesis have a lower prior probability – in 
part because there are casually many more complex hypothesis that 
simple hypotheses. On the other hand, more complex hypothesis save 
a greater capacity to fit the data. 



MAXIMUM-LIKELIHOOD (ML) HYPOTHESIS APPROX.  

Assume uniform prior over the space of hypothesis 
MAP with uniform prior: Maximum-likelihood hypothesis  

Becomes irrelevant if 
uniform 

ML hypotheses is good for cases: 
• Cannot trust the subjective nature of hypothesis prior 
• No reason to prefer one hypothesis over another 

• When complexity of each hypothesis is all similar 
• Good approximation when you have large dataset (problem if not) 



LEARNING WITH COMPLETE DATA 

The general task of learning a probability model, given data that 
are assumed to be generated form that model is called density 
estimation.  
 
For simplicity, lets assume we have complete data, i.e., each data 
point contains values for every variable (feature) in the probability 
model being learned. – no missing data (fully observable) 
 
Parameter learning:  
Finding the numerical parameters for a probability model whose 
structure if fixed.  
 
Structure learning: 
Finding the structure of the probability model.   
 



ML PARAMETER LEARNING: DISCRETE VARIABLE 

Parameter ranging form [0 .. 1] 

Just one  
variable 

<- Likelihood of observed data 

Finding maximum log likelihood 



 ML parameter learning step:  
1. Write down an expression for the likelihood of the 

data as a function of parameters 
2. Write down the derivation of the log likelihood 

w.r.t. each parameters 
3. Find the parameter values such that the derivatives 

are zero 
 Non-trivial in practice 
 Use iterative methods and/or numerical optimization 

techniques 

 Problem with ML 
 When the data set is small enough that some events 

have not yet been observed, the ML hypothesis 
assigns zero probability to those events.  



ML: MULTIPLE PARAMETERS 

Take logarithm 

With complete data, the ML parameter 
learning problem for a Bayesian network 
decomposes into separate learning 
problems, one for each parameter 

N candies unwrapped, c 
are cherries and l are 
limes  



ML: MULTIPLE PARAMETERS CONT. 



ML FOR CONTINUOUS MODELS 

 Example: Linear Gaussian model 
 Learning the parameters of a Gaussian density function on 

a single variable. 
 Data are generated as follows: 
 Let the observed values be x1, . . . , xN. Then the log 

likelihood is: 
 
 

 Setting the derivatives to zero as usual, we obtain 



ML FOR CONTINUOUS MODELS 
EXAMPLE: LINEAR GAUSSIAN MODEL 

That is, minimizing the sum of squared errors gives the ML  solution for 
a linear fit assuming Gaussian noise of fixed variance 

EX> One continuous parent X an a continuous child Y. Y has Gaussian 
distribution whose mean depends linearly on the value of X and whose std is 
fixed.  

X 

Y 

linear Gaussian model described as  
      y =𝛩 1 x + 𝛩2 plus Gaussian noise with fixed variance. A set of 50 data points generated from this model 



BAYESIAN PARAMETER LEARNING 

 Maximum-likelihood learning gives rise to some very 
simple procedures, but it has some serious 
deficiencies with small data sets 

 The Bayesian approach to parameter learning: 
 Starts by defining a prior probability distribution (hypothesis 

prior) over the possible hypotheses.  
 Then, as data arrives, the posterior probability distribution is 

updated. 
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