
INFERENCE IN BAYESIAN NETWORKS  
- BELIEF PROPAGATION 

Combination of slides: 
“Pearl’s algorithm” by Tomas Singliar & Daniel Lowd’s slide for UW CSE 573 & “B
elief Propagation” by Jakob Metzler & “ Generalized BP” by Jonathan Yedidia 

Instructor: Sael Lee 



OUTLINE 

Ò  Motivation 
Ò  Pearl’s BP Algorithm 
Ò  Generalized Belief Propagation 



PROBABILISTIC INFERENCE 

Computing the a posteriori belief of a variable in a  
general Bayesian Network is NP-hard 
Ò  Approximate inference 

É  MCMC sampling 
É  Belief Propagation 



BELIEF PROPAGATION 

Ò  BP is a message passing algorithm that solves approxi
mate inference problems in graphical model, including
 Bayesian networks and Markov random fields.  

Ò  Calculates marginal distribution for each of the unobs
erved variable, conditional on any observed variables.  

Ò  It was first proposed by Judea Pearl in 1982 for trees (
exact) and later extended to polytrees and general gra
phs (approximate).   



BAYESIAN BELIEF NETWORKS 

Ò  (G, P) directed acyclic graph with the joint p.d. P 
Ò  each node is a variable of a multivariate distribution 
Ò  links represent causal dependencies 

É  CPT in each node 
Ò  Polytree 

É  What is a polytree? 
Ð  A Bayesian network graph is a polytree if (an only if) there is at most 

one path between any two nodes, Vi and Vk 

Ð  implies each node separates the graph into two disjoint compone
nts  

É  Why do we care about polytrees? 
Ð  Exact BN inference is NP-hard… 
Ð  …but on polytrees, takes linear time.  



EXAMPLES: POLYTREE OR NOT? 
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OUR INFERENCE TASK 

Ò  We know the values of some evidence variables E: 

Ò  We wish to compute the posterior probability P(Xi |E) 
for all non-evidence variables Xi. 
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PEARL’S BELIEF PROPAGATION 

Ò  We have the evidence E 
Ò  Local computation for one node V desired 
Ò  Information flows through the paths of G 

É  flows as messages of two types – λ and π 

Ò  V splits network into two disjoint parts 
É  Strong independence assumptions induced – crucial! 

Ò  Denote EV
+ the part of evidence accessible  

through the parents of V (causal) 
É  passed downward in π messages 

Ò  Analogously, let EV
- be the diagnostic evidence 

É  passed upwards in λ messages 



PEARL’S BELIEF PROPAGATION 
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THE Π MESSAGES 

Ò  What are the messages? 
Ò  For simplicity, let the nodes be binary 

V1 

V2 

V1=T 0.8 
V1=F 0.2 

P V1=T V1=F 
V2=T 0.4 0.9 

V2=F 0.6 0.1 

The message passes on information. 

What information? Observe:  

P(V2) = P(V2| V1=T)P(V1=T) 

 + P(V2| V1=F)P(V1=F) 

  The information needed is the 
CPT of V1 = πV(V1) 

π Messages capture information 
passed from parent to child 



THE EVIDENCE 

Ò  Evidence – values of observed nodes 
É  V3 = T, V6 = 3 

Ò  Our belief in what the value of Vi 
‘should’ be changes. 

Ò  This belief is propagated 
Ò   As if the CPTs became 

V1 
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V3=T 1.0 
V3=F 0.0 

P V2=T V2=F 
V6=1 0.0 0.0 

V6=2 0.0 0.0 

V6=3 1.0 1.0 



THE Λ MESSAGES 

Ò  We know what the π messages are 
Ò  What about λ? 

Ò  The messages are π(V)=P(V|E+) and λ(V)=P(E-|V) 
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Assume E = { V2 } and compute by Bayes rule: 

 

 

 

The information not available at V1 is the P(V2|V1). To 
be passed upwards by a λ-message. Again, this is not in 
general exactly the CPT, but the belief based on evidence 
down the tree. 



COMBINATION OF EVIDENCE 

Ò  Let EV = EV
+ ∪ EV

- and let us compute 

Ò  α is the normalization constant 
Ò  normalization is not necessary (can do it at the end) 
Ò  but may prevent numerical underflow problems 
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MESSAGES 

Ò  Assume X received λ-messages from neighbors 
Ò  How to compute λ(X) = p(E-|X)? 
Ò  Let Y1, … , Yc be the children of X 
Ò  λXY(x) denotes the λ-message sent between X and Y 

λ(X) = λYjX (X)
j=1

c

∏



MESSAGES 

Ò  Assume X received π -messages from neighbors 
Ò  How to compute π(X) = p(X|E+) ? 
Ò  Let U1, … , Up be the parents of X 
Ò  πXY(x) denotes the π-message sent between X and Y 
Ò  summation over the CPT 

 π (X) = P(X |U1,...,Up ) πUjX
(Uj )

j=1

p

∏
u1,...,up
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MESSAGES TO PASS 

Ò  We need to compute πXY(x) 

Ò  Similarly,  λXY(x), X is parent, Y child 
Ò  Symbolically, group other parents of Y into V = V1, … , Vq 
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PEARL’S BP ALGORITHM 

Ò  Initialization 
É  For nodes with evidence e 

Ð  λ(xi) = 1 wherever xi = ei ;  0 otherwise 
Ð  π(xi) = 1 wherever xi = ei ;  0 otherwise 

É  For nodes without parents 
Ð  π(xi) = p(xi)  -  prior probabilities 

É  For nodes without children 
Ð  λ(xi) = 1 uniformly (normalize at end) 



THE PEARL BELIEF PROPAGATION ALGORITHM 

Ò  Iterate until no change occurs 
É  (For each node X) if X has received all the π messages from its 

parents, calculate π(x) 
É  (For each node X) if X has received all the λ messages from its 

children, calculate λ(x) 
É  (For each node X) if π(x) has been calculated and X received all

 the λ-messages from all its children (except Y), calculate πXY(x)
 and send it to Y. 

É  (For each node X) if λ(x) has been calculated and X received all 
the π-messages from all parents (except U), calculate λXU(x) an
d send it to U. 

Ò  Compute Belief BEL(X) = λ(x)π(x)  
Ò  and normalize 



PROPERTIES OF BP 

Ò  Exact for polytrees 
É  Each node separates Graph into 2 disjoint components 

Ò  On a polytree, the BP algorithm converges in time proportio
nal to diameter of network – at most linear 

Ò  Work done in a node is proportional to the size of CPT 
É  Hence BP is linear in number of network parameters 

Ò  For general BBNs 
É  Exact inference is NP-hard 
É  Approximate inference is NP-hard 



LOOPY BELIEF PROPAGATION 

Ò  Most graphs are not polytrees 
É  Cutset conditioning 
É  Clustering 

Ð  Join Tree Method 

É  Approximate Inference 
Ð  Loopy BP 



LOOPY BELIEF PROPAGATION 

Ò  If BP is used on graphs with loops, messages may 
circulate indefinitely 

Ò  Empirically, a good approximation is still achievable 
É  Stop after fixed # of iterations 
É  Stop when no significant change in beliefs 
É  If solution is not oscillatory but converges, it usually is a  
    good approximation 



LOOPY BELIEF PROPAGATION 

Ò  Just apply BP rules in spite of loops 
Ò  In each iteration, each node sends all messages in  
    parallel 
Ò  Seems to work for some applications 



TROUBLE WITH LBP 

Ò  May not converge 
É  A variety of tricks can help 

Ò  Cycling Error – old information is mistaken as new 
Ò  Convergence Error – unlike in a tree, neighbors need not be

 independent. However, LBP treats them as if they were. 

Bolt & Gaag “On the convergence error in loopy propagation” (2004). 



GENERALIZED BP 

Ò  We can try to improve inference by taking into accoun
t higher-order interactions among the variables 

Ò  An intuitive way to do this is to define messages that 
propagate between groups of nodes rather than just s
ingle nodes 

Ò  This is the intuition in Generalized Belief Propagation 
(GPB) 



GBP ALGORITHM 

1) Split the graph into basic clusters 
 
[1245],[2356], 
[4578],[5689] 



GBP ALGORITHM 

2) Find all intersection regions of the basic clusters, and
 all their intersections 

[25], [45], [56], [58], 
[5] 



GBP ALGORITHM 

3) Create a hierarchy of regions and their direct sub-reg
ions 



GBP ALGORITHM 

4) Associate a message with each line in the graph 
e.g. message from 
[1245]->[25]: 
m14->25(x2,x5) 
 



GBP ALGORITHM 

5) Setup equations for beliefs of regions 
 - remember from earlier: 

 
 - So the belief for the region containing [5] is: 

 
 - for the region [45]: 

 
 - etc. 
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GBP ALGORITHM 

6) Setup equations for updating messages by enforcing 
marginalization conditions and combining them with 
the belief equations: 
  
 e.g. condition             yields, with the
 previous two belief formulas, the message update r
ule 
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