
Inference in Bayesian networks

Chapter 14.4–5

Chapter 14.4–5 1

Outline

♦ Exact inference by enumeration

♦ Exact inference by variable elimination

♦ Approximate inference by stochastic simulation

♦ Approximate inference by Markov chain Monte Carlo

Chapter 14.4–5 2

Inference tasks

Simple queries: compute posterior marginal P(Xi|E= e)
e.g., P (NoGas|Gauge= empty, Lights= on, Starts= false)

Conjunctive queries: P(Xi, Xj|E= e) = P(Xi|E= e)P(Xj|Xi,E= e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Chapter 14.4–5 3

Inference by enumeration

Conditional probability (CP) query is when we ask for the probability of a
variable or set of variables given set of events.

Chapter 13 shows that CP can be computed by summing terms from full
joint distribution. i.e. A query can be answered using a Bayesian network by
computing sums of products of conditional probabilities from network.

P(X|e) = αP(X, e) = αΣyP(X, e,y)

The complexity of this approach is O(n2n)
Chapter 13 shows that CP can be computed by summing terms from full
joint distribution.

Inference by enumeration is slightly intelligent way to sum out variables from
the joint without actually constructing its explicit representation

Chapter 14.4–5 4

Inference by enumeration

Simple query on the burglary network:
.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

T
T
F
F

E

T
F
T
F

.95

.29

.001

.94

P(A|B,E)

A

T
F

.90

.05

P(J|A) A

T
F

.70

.01

P(M|A)

P(B|j,m)
= P(B, j,m)/P (j,m)
= αP(B, j,m)
= α Σe Σa P(B, e, a, j,m)

Rewrite full joint entries using product of CPT entries:
P(B|j,m)
= α Σe Σa P(B)P (e)P(a|B, e)P (j|a)P (m|a)
= αP(B) Σe P (e) Σa P(a|B, e)P (j|a)P (m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time

Chapter 14.4–5 5

Enumeration algorithm

function Enumeration-Ask(X,e, bn) returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X)← a distribution over X, initially empty

for each value xi of X do

extend e with value xi for X

Q(xi)←Enumerate-All(Vars[bn],e)

return Normalize(Q(X))

function Enumerate-All(vars,e) returns a real number

if Empty?(vars) then return 1.0

Y←First(vars)

if Y has value y in e

then return P (y | Pa(Y)) × Enumerate-All(Rest(vars),e)

else return
∑

y P (y | Pa(Y)) × Enumerate-All(Rest(vars),ey)

where ey is e extended with Y = y

Chapter 14.4–5 6

Evaluation tree

P(j|a)
.90

P(m|a)
.70 .01

P(m| a)

.05
P(j| a) P(j|a)

.90

P(m|a)
.70 .01

P(m| a)

.05
P(j| a)

P(b)
.001

P(e)
.002

P(e)
.998

P(a|b,e)
.95 .06

P(a|b, e)
.05
P(a|b,e)

.94
P(a|b, e)

Enumeration is inefficient: repeated computation
e.g., computes P (j|a)P (m|a) for each value of e

.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

T
T
F
F

E

T
F
T
F

.95

.29

.001

.94

P(A|B,E)

A

T
F

.90

.05

P(J|A) A

T
F

.70

.01

P(M|A)

Chapter 14.4–5 7

Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
= αP(B)

︸ ︷︷ ︸

B

Σe P (e)
︸ ︷︷ ︸

E

ΣaP(a|B, e)
︸ ︷︷ ︸

A

P (j|a)
︸ ︷︷ ︸

J

P (m|a)
︸ ︷︷ ︸

M

= αP(B)ΣeP (e)ΣaP(a|B, e)P (j|a)fM(a)
= αP(B)ΣeP (e)ΣaP(a|B, e)fJ(a)fM(a)
= αP(B)ΣeP (e)ΣafA(a, b, e)fJ(a)fM(a)
(make factor) = αP(B)ΣeP (e)fĀJM(b, e) (sum out A; make factor)
= αP(B)fĒĀJM(b) (sum out E; make factor)
= αfB(b)× fĒĀJM(b)

Chapter 14.4–5 8

Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

Σxf1× · · · × fk = f1× · · · × fiΣx fi+1× · · · × fk = f1× · · · × fi× fX̄

assuming f1, . . . , fi do not depend on X

Pointwise product of factors f1 and f2:
f1(x1, . . . , xj, y1, . . . , yk)× f2(y1, . . . , yk, z1, . . . , zl)

= f(x1, . . . , xj, y1, . . . , yk, z1, . . . , zl)
E.g., f1(a, b)× f2(b, c) = f(a, b, c)

Chapter 14.4–5 9

Variable elimination: Basic operations

Chapter 14.4–5 10

Variable elimination algorithm

function Elimination-Ask(X,e, bn) returns a distribution over X

inputs: X, the query variable

e, evidence specified as an event

bn, a belief network specifying joint distribution P(X1, . . . , Xn)

factors← []

for each var in Order(bn, vars) do

factors← [Make-Factor(var ,e)|factors]

if var is a hidden variable then factors←Sum-Out(var, factors)

return Normalize(Pointwise-Product(factors))

Chapter 14.4–5 11

Irrelevant variables

Consider the query P (JohnCalls|Burglary= true)
B E

J

A

M

P (J |b) = αP (b)
∑

e
P (e)

∑

a
P (a|b, e)P (J |a)

∑

m
P (m|a)

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = JohnCalls, E= {Burglary}, and
Ancestors({X}∪E) = {Alarm,Earthquake}
so MaryCalls is irrelevant

Chapter 14.4–5 12

Complexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost of variable elimination are O(dkn)

Multiply connected networks:
– can reduce 3SAT to exact inference ⇒ NP-hard
– equivalent to counting 3SAT models ⇒ #P-complete

A B C D

1 2 3

AND

0.5 0.50.50.5

LL

L
L

1. A v B v C

2. C v D v A

3. B v C v D

Chapter 14.4–5 13

Inference by stochastic simulation

Basic idea:
1) DrawN samples from a sampling distribution S

Coin

0.52) Compute an approximate posterior probability P̂
3) Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process

whose stationary distribution is the true posterior

Chapter 14.4–5 14

Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements

for i = 1 to n do

xi← a random sample from P(Xi | parents(Xi))

given the values of Parents(Xi) in x

return x

Chapter 14.4–5 15

Example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

Chapter 14.4–5 16

Example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

Chapter 14.4–5 17

Example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

Chapter 14.4–5 18

Example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

Chapter 14.4–5 19

Example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

Chapter 14.4–5 20

Example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

Chapter 14.4–5 21

Example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

Chapter 14.4–5 22

Sampling from an empty network contd.

Probability that PriorSample generates a particular event
SPS(x1 . . . xn) = Πn

i=1P (xi|parents(Xi)) = P (x1 . . . xn)
i.e., the true prior probability

E.g., SPS(t, f, t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P (t, f, t, t)

Let NPS(x1 . . . xn) be the number of samples generated for event x1, . . . , xn

Then we have

lim
N→∞

P̂ (x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

= P (x1 . . . xn)

That is, estimates derived from PriorSample are consistent

Shorthand: P̂ (x1, . . . , xn) ≈ P (x1 . . . xn)

Chapter 14.4–5 23

Rejection sampling

P̂(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X,e, bn,N) returns an estimate of P (X |e)

local variables: N, a vector of counts over X, initially zero

for j = 1 to N do

x←Prior-Sample(bn)

if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x

return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler= true) using 100 samples
27 samples have Sprinkler= true

Of these, 8 have Rain= true and 19 have Rain= false.

P̂(Rain|Sprinkler= true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉

Similar to a basic real-world empirical estimation procedure

Chapter 14.4–5 24

Analysis of rejection sampling

P̂(X|e) = αNPS(X, e) (algorithm defn.)
= NPS(X, e)/NPS(e) (normalized by NPS(e))
≈ P(X, e)/P (e) (property of PriorSample)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P (e) is small

P (e) drops off exponentially with number of evidence variables!

Chapter 14.4–5 25

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X,e, bn,N) returns an estimate of P (X |e)

local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do

x,w←Weighted-Sample(bn)

W[x]←W[x] + w where x is the value of X in x

return Normalize(W[X])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1

for i = 1 to n do

if Xi has a value xi in e

then w←w × P (Xi = xi | parents(Xi))

else xi← a random sample from P(Xi | parents(Xi))

return x, w

Chapter 14.4–5 26

Likelihood weighting example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0

Chapter 14.4–5 27

Likelihood weighting example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0

Chapter 14.4–5 28

Likelihood weighting example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0

Chapter 14.4–5 29

Likelihood weighting example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0× 0.1

Chapter 14.4–5 30

Likelihood weighting example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0× 0.1

Chapter 14.4–5 31

Likelihood weighting example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0× 0.1

Chapter 14.4–5 32

Likelihood weighting example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0× 0.1× 0.99 = 0.099

Chapter 14.4–5 33

Likelihood weighting analysis

Sampling probability for WeightedSample is

SWS(z, e) = Πl
i=1P (zi|parents(Zi))

Note: pays attention to evidence in ancestors only
Cloudy

RainSprinkler

 Wet
Grass

⇒ somewhere “in between” prior and
posterior distribution

Weight for a given sample z, e is
w(z, e) = Πm

i=1P (ei|parents(Ei))

Weighted sampling probability is
SWS(z, e)w(z, e)

= Πl
i=1P (zi|parents(Zi)) Πm

i=1P (ei|parents(Ei))
= P (z, e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight

Chapter 14.4–5 34

