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The Rules of Probability 
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Bayes’ Theorem 

posterior ∝ likelihood × prior 

posterior  
likelihood  Prior: degree of belief when  

Ton other information is provided 

Bayesian terms:  
Y: cause | not observed  
X: effect  | observed 



Probability Densities 



Expectations 

Conditional Expectation 
(discrete) 

Approximate Expectation 
(discrete and continuous) 



Variances and Covariances 



The Gaussian Distribution 



Gaussian Mean and Variance 



The Multivariate Gaussian 



Gaussian Parameter Estimation 

Likelihood function 



Maximum (Log) Likelihood 



Properties of          and  



Maximum Likelihood 

Determine            by minimizing sum-of-squares error,             . 



Decision Theory 

Inference step 
 Determine either            or           . 
 
Decision step 
 For given x , determine optimal t. 

Decision theory = probability theory + utility theory 



Minimum Misclassification Rate 



Minimum Expected Loss 

Example: classify medical images as ‘cancer’ or ‘normal’ 
 

Decision 
Tr

ut
h 



Minimum Expected Loss 

Regions       are chosen to minimize 



Reject Option 



Why Separate Inference and Decision? 

• Minimizing risk (loss matrix may change over time) 
• Reject option 
• Unbalanced class priors 
• Combining models 



Uncertainty

Example: Let action At = leave for airport t minutes before flight
Will At get me there on time? 13

Possible source of uncertainty:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
* Immense complexity of modelling and predicting traffic

Hence a purely logical approach either
1) risks falsehood: “A25 will get me there on time”

or 2) leads to conclusions that are too weak for decision making:
“A25 will get me there on time if there’s no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”

The rational decision depends on both the relative importance of various
goals and the likelihood that, and degree to which, they will be achieved.
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Example of uncertain reasoning

Problem: diagnosing a dental paient’s toohache.

Propositional logic:
Toothache ⇒ Cavity is wrong.
Toothache ⇒ Cavity ∨GumProblem ∨ Abscess . . . is still wrong.

Failure points:
Laziness: too much work and too hard to use.
Theoretical ignorange: Medical science has no complete therory
Pratical ignorance: even if we have the complete rule,
we may not know complete information about the patient.

Solutions to the qualification problem:
Use probability theory to specify degree of belief of
relavent sentences.
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Making decisions under uncertainty

Suppose I believe the following:

P (A25 gets me there on time| . . .) = 0.04

P (A90 gets me there on time| . . .) = 0.70

P (A120 gets me there on time| . . .) = 0.95

P (A1440 gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences of agents about the
possible outcomes of the various plans.

Decision theory = utility theory + probability theory
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Probability basics: In logical perspective

Begin with a set Ω–the sample space
set of all possible states that are mutually exclusive and exhaustive
ω ∈ Ω is a sample point/possible world/atomic event
e.g., 6 possible rolls of a die.

A probability model is a sample space
with an assignment P (ω) (probability value) for every ω ∈ Ω s.t.

0 ≤ P (ω) ≤ 1 and ΣωP (ω) = 1
e.g., P (1) =P (2) =P (3)=P (4) =P (5) =P (6)= 1/6.

An event A is any subset of Ω

P (A) = Σ{ω∈A}P (ω)

(The Sum Rule) E.g., P (die roll < 4) = P (1)+P (2)+P (3) = 1/6+1/6+
1/6 = 1/2
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Random variables

A random variable (r.v.) is variables in probability theory and their names
begin with uppercase letter.

A domain of r.v. is the set pf possible values it can take.

P induces a probability distribution for any r.v. X :

P (X =xi) = Σ{ω:X(ω) =xi}P (ω)

e.g., P (Odd= true) = P (1) + P (3) + P (5) = 1/6 + 1/6 + 1/6 = 1/2
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Propositions

Propositions are set of events (set of sample points) in the sample space
where the proposition is true

Given Boolean random variables A and B:
event a = set of sample points where A(ω) = true
event ¬a = set of sample points where A(ω) = false
event a ∧ b = points where A(ω) = true and B(ω) = true

With Boolean variables, sample point = propositional logic model
e.g., A= true, B = false, or a ∧ ¬b.

Proposition = disjunction of atomic events in which it is true
e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
⇒ P (a ∨ b) = P (¬a ∧ b) + P (a ∧ ¬b) + P (a ∧ b)
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Why use probability?

The definitions imply that certain logically related events must have related
probabilities

E.g., P (a ∨ b) = P (a) + P (b)− P (a ∧ b)

>A     B

True

A B
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Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)
Cavity= true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉
Weather= rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp=21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
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Syntax for probability distributions

Prepresent a discrete probability distribution as a vector of probabilit values:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)

P(Weather, Cavity) = a 4× 2 matrix of values:

Weather= sunny rain cloudy snow
Cavity= true 0.144 0.02 0.016 0.02
Cavity= false 0.576 0.08 0.064 0.08

Sum Rule: For any proposition φ,

P (φ) = Σω∈φP (ω)

A possible world is defined to be an assignment of values to all of the r.v.
under consideration. This means that probability model is completely de-
termined by the joint distribution for all of the r.v. – full joint probability
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distribution
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Probability for continuous variables

Express distribution as a parameterized function of value:
P (X = x) = U [18, 26](x) = uniform density between 18 and 26

0.125

dx18 26
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Gaussian density

P (x) = 1√
2πσ

e−(x−µ)2/2σ2

0
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Conditional probability

Conditional or posterior probabilities
e.g., P (cavity|toothache) = 0.8
i.e., given that toothache is true and we have no further informa-

tion conclude that cavity is true with prob. 0.8.
NOT “if toothache then prob. that cavity is true is 0.8”

If we know more, e.g., cavity is also given, then we have
P (cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,
but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity|toothache, 49ersWin) = P (cavity|toothache) = 0.8
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Conditional probability

Definition of conditional probability:

P (a|b) = P (a ∧ b)

P (b)
if P (b) 6= 0

Product rule gives an alternative formulation:
P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4× 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:
P(X1, . . . , Xn) = P(X1, . . . , Xn−1) P(Xn|X1, . . . , Xn−1)

= P(X1, . . . , Xn−2) P(Xn−1|X1, . . . , Xn−2) P(Xn|X1, . . . , Xn−1)
= . . .
= Πn

i=1P(Xi|X1, . . . , Xi−1)
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Inference by enumeration

probabilisic inference: the computation of posterior probabilities for query
propositions given obsrved evidence.

For simple cases, we can use the full joint distribution as he ”knowledge
base”.

Start with the full joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL
.108 .012

.016 .064

.072

.144

.008

.576

* the table sums to one
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Inference by enumeration

Start with the full joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Marginalization (or summing out):
For any proposition φ, sum the atomic events where it is true:

P (φ) = Σω:ω|=φP (ω)

EX¿ Compute the marginal probability of toothache:
P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P (¬cavity|toothache) =
P (¬cavity ∧ toothache)

P (toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Normalization

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) +P(Cavity, toothache,¬catch)]
= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables

Chapter 13 21



Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X−Y− E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H=h)

i.e., sum over every possible combination of values h =< h1, . . . , hn > of
the hidden variabes H =< H1, . . . , Hn >

Obvious problems with the enumeration method:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Independence

A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or P(A,B) =P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

P(Toothache, Catch, Cavity,Weather)
= P(Toothache, Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

P(Toothache, Cavity, Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend
on whether I have a toothache:

(1) P (catch|toothache, cavity) = P (catch|cavity)

The same independence holds if I haven’t got a cavity:
(2) P (catch|toothache,¬cavity) = P (catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch,Cavity)P(Catch, Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust

form of knowledge about uncertain environments.
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Bayes’ Rule

Product rule P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

⇒ Bayes’ rule P (a|b) = P (b|a)P (a)

P (b)

or in distribution form

P(Y |X) =
P(X|Y )P(Y )

P(X)
= αP(X|Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P (Cause|Effect) =
P (Effect|Cause)P (Cause)

P (Effect)

E.g., let M be meningitis, S be stiff neck:

P (m|s) = P (s|m)P (m)

P (s)
=

0.8× 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence

P(Cavity|toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . , Effectn) = P(Cause)ΠiP(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n

Chapter 13 27



Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools
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