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SEARCH AND PLANNING	


Ò  Planning: generate seq. of actions to achieve one’s goals 
Ò  We have seen two examples of planning agents so far: 

É   search-based problem-solving agent of Ch.3   
Ð  can find sequences of actions that result in a goal state.  
Ð  but deals with atomic states (needs good domain-specific heuristics)  

É  hybrid logical agent of Chapter 7.  
Ð  can find plans without domain-specific heuristics  
     (uses domain-independent heuristics based on the logical structure of the 
problem) 
Ð  but relies on ground (variable-free) propositional inference 
     (it may be over worked when there are many actions and states.) 

Ò  We want representation for planning problems  
É  that scales up to problems unable to be handled by earlier approach

es. 
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CLASSICAL PLANNING ENVIRONMENT	


The assumptions for classical planning problems 
Ò  Fully observable  

É  we see everything that matters 
Ò  Deterministic  

É  the effects of actions are known exactly 
Ò  Static  

É  no changes to environment other than those caused by 
agent actions 

Ò  Discrete 
É  changes in time and space occur in quantum amounts 

Ò  Single agent 
É  no competition or cooperation to account for 
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FACTORED REPRESENTATION IN PLANNING LANGUAGE 	


Ò  What is a good representation? 
É  Expressive enough to describe a wide variety of problems 
É  Restrictive enough for efficient algorithms to operate on it 
É  Planning algorithm should be able to take advantage 

Ð  of the logical structure of the problem 

Ò  Historical AI planning languages 
É  STRIPS was used in classical planners 

Ð  Stanford Research Institute Problem Solver 
É  ADL addresses expressive limitations of STRIPS 

Ð  Action Description Language 
Ð  Adds features not in STRIPS 

×  negative literals, quantified variables, conditional effects, equality 
É  We'll look at a simpler version of de facto standard language 

called PDDL 
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PDDL	


Ò  PDDL and most of the planning language use factored
 representation for states 
É  Each state is represented as a collection of variables 

Ò  Planning Domain Definition Language 
É  To see its expressive power, recall propositional agent in the 

Wumpus World, which requires 4Tn2 actions to describe a m
ovement of 1 square 

É  PDDL captures this with a single Action Schema 
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PDDL: STATE	


Ò  Each state is represented as a conjunction of fluents: groun
d, functionless atoms.  
É  Ex> Poor ∧ Unknown might represent the state of a hapless agent, 
É  Ex> a state in a package delivery problem might be At(Truck1,Melb

ourne) ∧ At(Truck2,Sydney)  
Ò  Database semantics is used 

É  the closed-world assumption: any fluents that are not mentioned ar
e false,  

É  the unique names assumption: ex>Truck1 and Truck2 are distinct 
É  fluents not allowed: At(x, y) (because it is non-ground), ¬Poor (beca

use it is a negation), and At (Father (Fred), Sydney ) (because it use
s a function symbol).  

Ò  This state representation allows alternative algorithms 
É  it can be manipulated either by logical inference techniques or by  
É  set operations (sets may be easier to deal with) 
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PDDL: ACTION SCHEMAS	


Ò  Actions are defined by a set of action schemas 
É  These implicitly define the ACTIONS(s) & RESULT(s, a) functi

ons required to apply search techniques 

Ò  Classical planning concentrates on problems where m
ost actions leave most things unchanged.  
É  PDDL specify the result of an action in terms of what change

s;  
    everything that stays the same is left unmentioned.  
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PDDL: ACTION SCHEMAS	


Ò  Ground (variable-free) action are represented by single
 action schema - a lifted representation 
É  lifts from propositional logic to a restricted subset of First-or

der logic 
Ò  Consists of  

É  the schema name,  
É  list of variables used,  

Ð  Consider variables as universally quantified, choose any values we w
ant to instantiate them 

É  a precondition  
Ð   PRECOND: defines states in which an action can be executed 

É  an effect 
Ð  EFFECT: defines the result of executing the action 
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EXAMPLE ACTION SCHEMA 	


Ò  Each represents a set of variable-free actions 
É  Form: Action Schema = predicate + preconditions + effects 
É  Example action schema for flying a plane from one location t

o another :  
Action(Fly(p, from, to), 

 PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to) 
 EFFECT: ¬AT(p, from) ∧ At(p, to)) 

É  Action that results from substituting values for all the variabl
es:  
 Action(Fly(P1,SFO,JFK), 
    PRECOND:At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK)  
    EFFECT:¬At(P1,SFO) ∧ At(P1,JFK))  
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APPLYING ACTION SCHEMA 	


Ò  Action a is applicable in state s 
É  s entails the precondition of a 

Ð  If a’s preconditions are satisfied in s (“a is applicable in s”) 
    a ∈ ACTIONS(s)) ⇔ s |= PRECOND(a) 

É  Given variables in a, there can be multiple applicable instant
iations 

Ð  For v variables in a domain with k unique object names, worst case ti
me to find applicable ground actions is O(vk) 

É  Leads to one approach for solving PDDL planning problems 
Ð  Propositionalize by replacing action schemas with sets of ground acti

ons  
     then applying a propositional solver like SATPlan 
Ð  Impractical for large v & k 
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PDDL: RESULT	


Ò  Result of executing action a in state s is state s’ 
                RESULT(s, a) = (s - DEL(a)) ∪ ADD(a) 

É  Start with s  
É  Remove negative literal in the action’s effect  
     (the delete list, DEL(a)) 
É  Add positive literals in action’s EFFECTs  
     (the add list, ADD(a)) 
É  For example, with the action Fly(P1,SFO,JFK),  

Ð  we would remove At(P1,SFO) and  
Ð  add At(P1,JFK).  

Ò  Any variable in the effect must also appear in the precondi
tion.  
É  When the precondition is matched against the state s, all the vari

ables will be bound, and RESULT(s,a) will therefore have only grou
nd atoms.  
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PDDL: ACTION SCHEMAS	


1. Variables & ground terms 
É  Variables in effects must also be in precondition 

Ð  so matching to state s yields results with all variables bound  
   i.e. that contain only ground terms 
Ð  Ground states are closed under the RESULT operation.  

2. Handling of time 
É  No explicit time terms 
É  Instead time is implicitly represented in PDDL schemas 

Ð  Preconditions always refer to time: t 
Ð  Effects always refer to time: t + 1 

3. A set of schemas defines a planning domain 
É  A specific problem within the domain is defined with the addition 

of an initial state and a goal.  
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PDDL: INITIAL STATES, GOALS, SOLUTIONS	


Ò  Initial state 
É  Conjunction of ground terms 

Ò  Goal 
É  Conjunction of positive and negative literals that contain variable. 

Ð   Both ground terms & those containing variables 
Ð  EX> At (p, SFO ) ∧ Plane (p).  

É  Variables are treated as existentially quantified 
Ð  EX> so this goal is to have any plane at SFO  

Ò  Solution 
É  A sequence of actions ending in s that entails the goal 
É  EX> state Rich ∧ Famous ∧ Miserable entails the goal Rich ∧ Famous,  
É  EX> state Plane(P1) ∧ At (P1, SFO) entails At(p, SFO) ∧ Plane (p) 

Ò  We have defined planning as a search problem:  
É  have an initial state, an ACTIONS function, a RESULT function, and a goal

 test  
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WHY PLANNING GRAPHS 

Ò  All of the heuristics we have suggested can suffer from
 inaccuracies.  

Ò  A special data structure called a planning graph can b
e used to give better heuristic estimates.  

Ò  We can search for a solution over the space formed by
 the planning graph, using an algorithm called GRAPH
PLAN.  
É  These heuristics can be applied to any of the search techniq

ues we have seen so far. 
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PLANNING GRAPHS  

Ò  Graphplan was developed in 1995 by Avrim Blum an
d Merrick Furst, at CMU. 

Ò  Constructs compact constraint encoding of state spa
ce from operators and initial state, which prunes ma
ny invalid plans.  

Ò  A planning graph compactly encodes the space of co
nsistent plans, while pruning . . . 
É  Partial states and actions at each time i  

that are not reachable from the initial state. 
É  Pairs of actions and propositions  

that are mutually inconsistent at time i.  
É  Plans that cannot reach the goals. 
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PLANNING GRAPHS PROPERTIES 

Ò  A polynomial-size approximation to tree-based state space 
searching that can be constructed quickly 

Ò  The plan graph does not eliminate all infeasible plans. 
Ò  Planning graph cannot answer definitely whether goal G is 

reachable form initial state S0, but it can estimate how ma
ny steps it takes to reach the goal.  
É  Always correct when it reports the goal is not reachable 
É  Never overestimate the number of steps (admissible heuristic)  

Ò  Planning graphs 
É  Provide a possible basis for better search heuristics 
É  Can be use directly, for extracting a solution to a planning proble

m, by applying the GRAPHPLAN algorithm 
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Problem “Have cake and eat cake too”  

Init(Have(Cake)) 
Goal(Have(Cake) ∧ Eaten(Cake)) 
Action(Eat(Cake) 

 PRECOND: Have(Cake) 
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

Action(Bake(Cake) 
 PRECOND: ¬ Have(Cake) 
 EFFECT: Have(Cake))  

PDDL Problem Description 
 

corresponding planning graph 
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PLANNING GRAPH DESCRIPTION 

Ò  Planning graph 
É  Is a directed graph organize

d in time steps levels 
É Consist of alternating 

Ð Si level: contains all the literal
s that could result from any p
ossible choice of action in Ai-1 

Ð Ai level: contains all the action
s that are applicable in Si. 

Ð Precondition link  
Ð Effects link 
Ð Mutual exclusion (mutex) link

s: links joining nodes that can
not persist simultaneously   

Proposition 
Init State 

Action 
Time 1 

Proposition 
Time 1 

Action 
Time 2 
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PLANNING GRAPH CAKE EXAMPLE 

Ø  Start at level S0, determine action level A0 & next level S1 
Ø  A0: all actions whose preconditions are satisfied in the previous level (i

nitial state) 
Ø  Lines connect PRECONDs at S0 to EFFECTs at S1 

Ø  Also, for each literal in Si, there's a persistence action (square box) & li
ne to it in the next level Si+1 

Ø  Level A0 contains the actions that could occur 
Ø  Conflicts between actions are represented by arcs: mutual exclusion or

 mutex links 
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PRECOND EFFECT action  

Init(Have(Cake)) 
Goal(Have(Cake) ∧ Eaten(Cake)) 
Action(Eat(Cake) 

 PRECOND: Have(Cake) 
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

Action(Bake(Cake) 
 PRECOND: ¬ Have(Cake) 
 EFFECT: Have(Cake))  



PLANNING GRAPH CAKE EXAMPLE 

Ø  Level S1 contains all the literals that could result 
Ø  From picking any subset of actions in A0 

Ø  So S1 is a belief state consisting of the set of all possible states 
Ø  Each is a subset of literals with no mutex links between members 

Ø  Conflicts between literals that cannot occur together are represented by the mu
tex links. 

Ø  The level generation process is repeated 
Ø  Termination condition (leveling off): 

Ø  When consecutive levels are identical 
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MUTEX LINKS – ACTION  

Ø  Mutex relation holds between 2 actions at a level when 
Ø  1. Inconsistent effects 

Ø  One action negates the effect of another 
Ø  Eat(Cake) and Have(Cake) have inconsistent effects because they disagree on the effect Have(Ca

ke).  
Ø  2. Interference 

Ø  An effect of one action negates a precondition of the other; 
Ø  Ex> Eat(Cake) interferes with the persistence of Have(Cake) by negating its precondition.  

Ø  3. Competing needs 
Ø  A precondition of one action is mutex with a precondition of the other 
Ø  Ex> Bake(cake) & Eat(cate)  <- compete on the value of Have(cake)  
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inconsistent effects 

interference 
competing needs 



MUTEX LINKS - LITERALS 

Ø  Mutex relation holds between 2 literals at a level when 
Ø  1. One is the negation of the other 
Ø  2. Inconsistent support 

Ø  If each possible action pair that could achieve the literals is mutex  
Ø  Ex> Have(Cake) & Eaten(Cake) at S1  
Ø  (the only way of achieving Have(Cake), the persistence action, is mutex with the only way of 

achieving Eaten (Cake ), ) 
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negation  

inconsistent support 



PLANNING GRAPHS COMPLEXITY 

Ò  Construction has complexity polynomial in the size of t
he planning problem:  

    O(n(a + l)2) 
Ð  Given l literals and a actions,  
Ð  each Si has no more than  

×  l nodes and  
×  l2 mutex links, and  

Ð  each Ai has no more than  
×  a + l nodes (including the no-ops),  
×  (a + l)2 mutex links, and  
×  2(al + l) precondition and effect links.  

Ð  entire graph with n levels has a size of O(n(a + l)2)  
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PROPERTIES OF COMPLETED PLANNING GRAPH  

Ò  Provides information about the problem & candidate heuri
stics 

Ò  A goal literal g that does not appear in the final level canno
t be achieved by any plan 

Ò  The level cost, the level at which a goal literal first appears
, is useful as a cost estimate of achieving that goal literal 

Ò  Note that level cost is admissible, though possibly inaccur
ate since it counts levels, not actions 
É  Planning graphs allow several actions at each level, whereas the 

heuristic counts just the level and not the number of actions.  
É  We could find a better alternative level cost by using a serial plan

ning graph variation, restricted to one action per level 
Ð  Add mutex links between every pair of nonpersistence actions  
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PLANNING GRAPHS & HEURISTICS 

Ò  Planning Graph provides 
É  Possible heuristics for the cost of a conjunction of goals 
É  1. Max-level heuristic : highest level of any conjunct in the goal 

Ð  Admissible, possibly not accurate 
É  2. Level sum heuristic: the sum of level costs of conjuncts in the g

oal 
Ð  Incorporates the subgoal independence assumption 

×  So may be inadmissible to degree the assumption does not hold 
×  Works well in practice for problems that are largely decomposable  

É  3. Set-level heuristic: level where all goal conjuncts are present wi
thout mutex links   

Ð  Admissible,  
Ð  Dominates the max-level heuristic  
Ð  Works well on tasks with good deal of interaction among subplans.  
Ð  However, ignores interactions among three or more literals.  
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PLANNING GRAPHS & HEURISTICS 

Ò  A Planning Graph is a relaxed version of the problem 
É  If a goal literal g does not appear, no plan can achieve it,  
É  If it does appear, is not guaranteed to be achievable 
É  Why? 

Ð  The PG only captures pairwise conflicts & there could be higher orde
r conflicts likely not worth the computational expense of checking for
 them 

×  Similar to Constraint Satisfaction Problems where arc consistency was 
a valuable pruning tool 

Ð  3-consistency or even higher order consistency would have made fin
ding solutions easier but was not worth the additional work 

É  Example where PG fails to detect unsolvable problem 
Ð  Blocks world problem with goal of A on B, B on C, C on A 

×  Any pair of subgoals are achievable, so no mutexes 
×  Problem only fails at stage of searching the PG 
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THE GRAPHPLAN ALGORITHM 

Ò  GRAPHPLAN algorithm 
É  Generates the Planning Graph & extracts a solution directly 
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function GRAPHPLAN(problem) return solution or failure 
     graph ← INITIAL-PLANNING-GRAPH(problem) 
     goals ← CONJUNCTS(problem. GOAL) 
     nogoods ← an empty hash table 
     for tl = 0 to ∞ do 
          if goals all non-mutex in St of graph then 
               solution ← EXTRACT-SOLUTION(graph, goals,  NUMLEVELS(graph), nogoods) 
               if solution ≠ failure then return solution 
          if graph and nogoods have both leveled off then return failure 
          graph ← EXPAND-GRAPH(graph, problem) 

EXTRACT-SOLUTION: search for a plan that solves the problem. 
EXPAND-GRAPH: adds a new level  



EXAMPLE: SPARE TIRE PROBLEM 

Ò  PDDL of spare tire problem (problem of changing a flat tire) 
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Init(At(Flat, Axle) ∧ At(Spare, Trunk)) 
 
Goal(At(Spare, Axle)) 
 

Action(Remove(Spare, Trunk) 
 PRECOND: At(Spare, Trunk)   
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))  

Action(Remove(Flat, Axle) 
 PRECOND: At(Flat, Axle)   
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))  

Action(PutOn(Spare, Axle) 
 PRECOND: At(Spare, Ground) ∧¬At(Flat, Axle) 
 EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground)) 

Action(LeaveOvernight 
 PRECOND: 
 EFFECT: ¬ At(Spare, Ground) ∧ ¬ At(Spare, Axle)  
   ∧ ¬ At(Spare, Trunk) ∧ ¬ At(Flat, Ground) ∧ ¬ At(Flat, Axle) ) 

Goal is to have a good spare tire 
properly mounted onto the car’s axle,  
 
Initial state has a flat tire on the axle 
and a good spare tire in the trunk. 



GRAPHPLAN SPARE TIRE EXAMPLE 

Ø  Notes: 
Ø  This figure shows the complete Planning Graph for the problem 

Ø  Arcs show mutex relations (arcs between literals are omitted to avoid clutter) 
Ø  Omits unchanging positive literals (for example, Tire(Spare)) 
Ø  Omits irrelevant negative literals  
Ø  Bold boxes & links indicate the solution plan 
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GRAPHPLAN SPARE TIRE EXAMPLE 

Ø  S0 is initialized to 5 literals 
Ø  from the problem initial state and the relevant 

negative literals 
Ø  no goal literal in S0 so EXPAND-GRAPH add 

actions 
Ø  those with preconditions satisfied in S0 
Ø  also adds persistence actions for literals in S0 
Ø  adds the effects at level S1, analyzes & adds m

utex relations 
Ø  repeat until the goal is in level Si or failure 
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Init(At(Flat, Axle) ∧ At(Spare, Trunk)) 
 
Goal(At(Spare, Axle)) 
 
Action(Remove(Spare, Trunk) 

 PRECOND: At(Spare, Trunk)   
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))  

Action(Remove(Flat, Axle) 
 PRECOND: At(Flat, Axle)   
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))  

Action(PutOn(Spare, Axle) 
 PRECOND: At(Spare, Ground) ∧¬At(Flat, Axle) 
 EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground)) 

Action(LeaveOvernight 
 PRECOND: 
 EFFECT: ¬ At(Spare, Ground) ∧ ¬ At(Spare, Axle)  
  ∧ ¬ At(Spare, Trunk) ∧ ¬ At(Flat, Ground)  
  ∧ ¬ At(Flat, Axle) ) 



GRAPHPLAN SPARE TIRE EXAMPLE 

Ø  EXPAND-GRAPH adds constraints: mutex relations 
Ø  inconsistent effects (action x vs action y) 

Ø  Remove(Spare, Trunk) & LeaveOvernight:  
Ø  At(Spare, Ground) & ¬At(Spare, Ground) 

Ø  interference (effect negates a precondition) 
Ø  Remove(Flat, Axle) & LeaveOvernight: 
Ø   At(Flat, Axle) as PRECOND & ¬At(Flat, Axle) as EFFECT 

Ø  competing needs (mutex preconditions) 
Ø  PutOn(Spare, Axle) & Remove(Flat, Axle):  
Ø  At(Flat, Axle) & ¬At(Flat, Axle) 

Ø  inconsistent support (actions to produce literals are mutex) 
Ø  in S2, At(Spare, Axle) & At(Flat, Axle): only way to achieve At(Spar

e, Axle) is by PutOn(Spare,Axle) and that is mutex with the only a
ction for obtaining At(Flat,Axle) .   
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Init(At(Flat, Axle) ∧ At(Spare, Trunk)) 
 
Goal(At(Spare, Axle)) 
 
Action(Remove(Spare, Trunk) 

 PRECOND: At(Spare, Trunk)   
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))  

Action(Remove(Flat, Axle) 
 PRECOND: At(Flat, Axle)   
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))  

Action(PutOn(Spare, Axle) 
 PRECOND: At(Spare, Ground) ∧¬At(Flat, Axle) 
 EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground)) 

Action(LeaveOvernight 
 PRECOND: 
 EFFECT: ¬ At(Spare, Ground) ∧ ¬ At(Spare, Axle)  
  ∧ ¬ At(Spare, Trunk) ∧ ¬ At(Flat, Ground)  
  ∧ ¬ At(Flat, Axle) ) 



GRAPHPLAN SPARE TIRE EXAMPLE 

Ø  In S2, the goal literals exist, and they are not mutex with any other   
Ø  Just 1 goal literal so obviously not mutex with any other goal 
Ø  Since a solution may exist, EXTRACT-SOLUTION tries to find it 

Ø  EXTRACT-SOLUTION as backward search problem (other methods possible) 
Ø  Initial state: last level of the PG, Sn,  along with the goals from the planning problem 
Ø  Actions from Si  

Ø  Select any conflict-free actions in Ai-1 with effects covering the goals 
Ø  Conflict free = no 2 actions are mutex & no pair of their preconditions are mutex 

Ø  Goal: Reach a state at level S0 such that all goals are satisfied 
Ø  Cost: 1 for each action 
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GRAPHPLAN SOLUTIONS 

Ò  If EXTRACT-SOLUTION fails 
É  At that point it records (level, goals) as a "no-good" 
É  Subsequent calls can fail immediately if they require the same g

oals at that level 

Ò  Complexity  
É  We already know planning problems are computationally hard (P

SPACE-complete) 
Ð  Require good heuristics 

É  Heuristic for choosing an action at each level in backward search 
    - Greedy search with level cost of literals 

Ð  1. Pick literal with highest level cost 
Ð  2. To achieve it, pick actions with easier preconditions 

×  Choose action with smallest sum (or max) of level costs for its preconds 
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GRAPHPLAN SOLUTIONS 

Ò  Alternative to backward search for a solution 
É  EXTRACT-SOLUTION could formulate a Boolean CSP 

Ð  variables are actions at each level 
Ð  values are Boolean: an action is either in or out of the plan 
Ð  constraints are mutex relations & the need to satisfy each goal & pre

condition 
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GRAPHPLAN TERMINATION 

GRAPHPLAN will in fact terminate and return failure when there is n
o solution.  
Ò  Recall that level off means consecutive PG levels are identical 
Ò  Now note that a graph may level off before a solution can be fou

nd, on a problem for which there is a solution 
É  Ex. Air Cargo:  1 plane and n pieces of cargo at airport A, all of which have

 airport B as their destination. Where only one piece of cargo can fit in the
 plane at a time.  

Ð  Graph levels off at level 4, from which full solution can’t be extracted (that would r
equire 4n – 1 steps) 

Ò  We need to take account of the no-goods (goals that were not ac
hievable) as well 
É  If it is possible that there might be fewer no-goods in the next level, then 

we should continue  
Ò  Graph itself and the no-goods have both leveled off, with no solu

tion found, we can terminate with failure 
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GRAPHPLAN TERMINATION 

Ò  Does GRAPHPLAN terminate? 
Ò  Evidences that both graph and no-goods will level off 

É  Literals increase monotonically (and there are finite # of them) 
Ð  Once a literal appears, its persistence action causes it to stay 

É  Actions increase monotonically (and there are finite # of them) 
Ð  Once preconditions  (literals) of an action appear at one level, they will a

ppear at subsequent levels, and thus so will the action.  
É  Mutexes decrease monotonically 

Ð  Of 2 actions are mutex at Ai, they are also mutex at all previous levels wh
ere they appear 

×  The graph simplifying conventions may not show it 

Ð  Same holds for 2 literals 

É  No-goods decrease monotonically 
Ð  If a set of goals is not achievable at level i, they are not achievable at an

y previous level 
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