
AIMA CHAPTER 10.3: PLANNING GRAPHS

CSE537

Resource: based on material & slide
by Rob St. Amant (NCSU) and
by Berthe Y. Choueiry (U of Nebraska)

1

SEARCH AND PLANNING	

Ò  Planning: generate seq. of actions to achieve one’s goals
Ò  We have seen two examples of planning agents so far:

É  search-based problem-solving agent of Ch.3
Ð  can find sequences of actions that result in a goal state.
Ð  but deals with atomic states (needs good domain-specific heuristics)

É  hybrid logical agent of Chapter 7.
Ð  can find plans without domain-specific heuristics
 (uses domain-independent heuristics based on the logical structure of the
problem)
Ð  but relies on ground (variable-free) propositional inference
 (it may be over worked when there are many actions and states.)

Ò  We want representation for planning problems
É  that scales up to problems unable to be handled by earlier approach

es.

2

CLASSICAL PLANNING ENVIRONMENT	

The assumptions for classical planning problems
Ò  Fully observable

É  we see everything that matters
Ò  Deterministic

É  the effects of actions are known exactly
Ò  Static

É  no changes to environment other than those caused by
agent actions

Ò  Discrete
É  changes in time and space occur in quantum amounts

Ò  Single agent
É  no competition or cooperation to account for

3

FACTORED REPRESENTATION IN PLANNING LANGUAGE 	

Ò  What is a good representation?
É  Expressive enough to describe a wide variety of problems
É  Restrictive enough for efficient algorithms to operate on it
É  Planning algorithm should be able to take advantage

Ð  of the logical structure of the problem

Ò  Historical AI planning languages
É  STRIPS was used in classical planners

Ð  Stanford Research Institute Problem Solver
É  ADL addresses expressive limitations of STRIPS

Ð  Action Description Language
Ð  Adds features not in STRIPS

×  negative literals, quantified variables, conditional effects, equality
É  We'll look at a simpler version of de facto standard language

called PDDL

4

PDDL	

Ò  PDDL and most of the planning language use factored
 representation for states
É  Each state is represented as a collection of variables

Ò  Planning Domain Definition Language
É  To see its expressive power, recall propositional agent in the

Wumpus World, which requires 4Tn2 actions to describe a m
ovement of 1 square

É  PDDL captures this with a single Action Schema

5

PDDL: STATE	

Ò  Each state is represented as a conjunction of fluents: groun
d, functionless atoms.
É  Ex> Poor ∧ Unknown might represent the state of a hapless agent,
É  Ex> a state in a package delivery problem might be At(Truck1,Melb

ourne) ∧ At(Truck2,Sydney)
Ò  Database semantics is used

É  the closed-world assumption: any fluents that are not mentioned ar
e false,

É  the unique names assumption: ex>Truck1 and Truck2 are distinct
É  fluents not allowed: At(x, y) (because it is non-ground), ¬Poor (beca

use it is a negation), and At (Father (Fred), Sydney) (because it use
s a function symbol).

Ò  This state representation allows alternative algorithms
É  it can be manipulated either by logical inference techniques or by
É  set operations (sets may be easier to deal with)

6

PDDL: ACTION SCHEMAS	

Ò  Actions are defined by a set of action schemas
É  These implicitly define the ACTIONS(s) & RESULT(s, a) functi

ons required to apply search techniques

Ò  Classical planning concentrates on problems where m
ost actions leave most things unchanged.
É  PDDL specify the result of an action in terms of what change

s;
 everything that stays the same is left unmentioned.

7

PDDL: ACTION SCHEMAS	

Ò  Ground (variable-free) action are represented by single
 action schema - a lifted representation
É  lifts from propositional logic to a restricted subset of First-or

der logic
Ò  Consists of

É  the schema name,
É  list of variables used,

Ð  Consider variables as universally quantified, choose any values we w
ant to instantiate them

É  a precondition
Ð  PRECOND: defines states in which an action can be executed

É  an effect
Ð  EFFECT: defines the result of executing the action

8

EXAMPLE ACTION SCHEMA 	

Ò  Each represents a set of variable-free actions
É  Form: Action Schema = predicate + preconditions + effects
É  Example action schema for flying a plane from one location t

o another :
Action(Fly(p, from, to),

 PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
 EFFECT: ¬AT(p, from) ∧ At(p, to))

É  Action that results from substituting values for all the variabl
es:
 Action(Fly(P1,SFO,JFK),
 PRECOND:At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK)
 EFFECT:¬At(P1,SFO) ∧ At(P1,JFK))

9

APPLYING ACTION SCHEMA 	

Ò  Action a is applicable in state s
É  s entails the precondition of a

Ð  If a’s preconditions are satisfied in s (“a is applicable in s”)
 a ∈ ACTIONS(s)) ⇔ s |= PRECOND(a)

É  Given variables in a, there can be multiple applicable instant
iations

Ð  For v variables in a domain with k unique object names, worst case ti
me to find applicable ground actions is O(vk)

É  Leads to one approach for solving PDDL planning problems
Ð  Propositionalize by replacing action schemas with sets of ground acti

ons
 then applying a propositional solver like SATPlan
Ð  Impractical for large v & k

10

PDDL: RESULT	

Ò  Result of executing action a in state s is state s’
 RESULT(s, a) = (s - DEL(a)) ∪ ADD(a)

É  Start with s
É  Remove negative literal in the action’s effect
 (the delete list, DEL(a))
É  Add positive literals in action’s EFFECTs
 (the add list, ADD(a))
É  For example, with the action Fly(P1,SFO,JFK),

Ð  we would remove At(P1,SFO) and
Ð  add At(P1,JFK).

Ò  Any variable in the effect must also appear in the precondi
tion.
É  When the precondition is matched against the state s, all the vari

ables will be bound, and RESULT(s,a) will therefore have only grou
nd atoms.

 11

PDDL: ACTION SCHEMAS	

1. Variables & ground terms
É  Variables in effects must also be in precondition

Ð  so matching to state s yields results with all variables bound
 i.e. that contain only ground terms
Ð  Ground states are closed under the RESULT operation.

2. Handling of time
É  No explicit time terms
É  Instead time is implicitly represented in PDDL schemas

Ð  Preconditions always refer to time: t
Ð  Effects always refer to time: t + 1

3. A set of schemas defines a planning domain
É  A specific problem within the domain is defined with the addition

of an initial state and a goal.

12

PDDL: INITIAL STATES, GOALS, SOLUTIONS	

Ò  Initial state
É  Conjunction of ground terms

Ò  Goal
É  Conjunction of positive and negative literals that contain variable.

Ð  Both ground terms & those containing variables
Ð  EX> At (p, SFO) ∧ Plane (p).

É  Variables are treated as existentially quantified
Ð  EX> so this goal is to have any plane at SFO

Ò  Solution
É  A sequence of actions ending in s that entails the goal
É  EX> state Rich ∧ Famous ∧ Miserable entails the goal Rich ∧ Famous,
É  EX> state Plane(P1) ∧ At (P1, SFO) entails At(p, SFO) ∧ Plane (p)

Ò  We have defined planning as a search problem:
É  have an initial state, an ACTIONS function, a RESULT function, and a goal

 test

13

14

WHY PLANNING GRAPHS

Ò  All of the heuristics we have suggested can suffer from
 inaccuracies.

Ò  A special data structure called a planning graph can b
e used to give better heuristic estimates.

Ò  We can search for a solution over the space formed by
 the planning graph, using an algorithm called GRAPH
PLAN.
É  These heuristics can be applied to any of the search techniq

ues we have seen so far.

15

PLANNING GRAPHS

Ò  Graphplan was developed in 1995 by Avrim Blum an
d Merrick Furst, at CMU.

Ò  Constructs compact constraint encoding of state spa
ce from operators and initial state, which prunes ma
ny invalid plans.

Ò  A planning graph compactly encodes the space of co
nsistent plans, while pruning . . .
É  Partial states and actions at each time i

that are not reachable from the initial state.
É  Pairs of actions and propositions

that are mutually inconsistent at time i.
É  Plans that cannot reach the goals.

16

PLANNING GRAPHS PROPERTIES

Ò  A polynomial-size approximation to tree-based state space
searching that can be constructed quickly

Ò  The plan graph does not eliminate all infeasible plans.
Ò  Planning graph cannot answer definitely whether goal G is

reachable form initial state S0, but it can estimate how ma
ny steps it takes to reach the goal.
É  Always correct when it reports the goal is not reachable
É  Never overestimate the number of steps (admissible heuristic)

Ò  Planning graphs
É  Provide a possible basis for better search heuristics
É  Can be use directly, for extracting a solution to a planning proble

m, by applying the GRAPHPLAN algorithm

17

Problem “Have cake and eat cake too”

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake)

 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake)
 PRECOND: ¬ Have(Cake)
 EFFECT: Have(Cake))

PDDL Problem Description

corresponding planning graph

18

PLANNING GRAPH DESCRIPTION

Ò  Planning graph
É  Is a directed graph organize

d in time steps levels
É Consist of alternating

Ð Si level: contains all the literal
s that could result from any p
ossible choice of action in Ai-1

Ð Ai level: contains all the action
s that are applicable in Si.

Ð Precondition link
Ð Effects link
Ð Mutual exclusion (mutex) link

s: links joining nodes that can
not persist simultaneously

Proposition
Init State

Action
Time 1

Proposition
Time 1

Action
Time 2

19

PLANNING GRAPH CAKE EXAMPLE

Ø  Start at level S0, determine action level A0 & next level S1
Ø  A0: all actions whose preconditions are satisfied in the previous level (i

nitial state)
Ø  Lines connect PRECONDs at S0 to EFFECTs at S1

Ø  Also, for each literal in Si, there's a persistence action (square box) & li
ne to it in the next level Si+1

Ø  Level A0 contains the actions that could occur
Ø  Conflicts between actions are represented by arcs: mutual exclusion or

 mutex links

20

PRECOND EFFECT action

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake)

 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake)
 PRECOND: ¬ Have(Cake)
 EFFECT: Have(Cake))

PLANNING GRAPH CAKE EXAMPLE

Ø  Level S1 contains all the literals that could result
Ø  From picking any subset of actions in A0

Ø  So S1 is a belief state consisting of the set of all possible states
Ø  Each is a subset of literals with no mutex links between members

Ø  Conflicts between literals that cannot occur together are represented by the mu
tex links.

Ø  The level generation process is repeated
Ø  Termination condition (leveling off):

Ø  When consecutive levels are identical

21

MUTEX LINKS – ACTION

Ø  Mutex relation holds between 2 actions at a level when
Ø  1. Inconsistent effects

Ø  One action negates the effect of another
Ø  Eat(Cake) and Have(Cake) have inconsistent effects because they disagree on the effect Have(Ca

ke).
Ø  2. Interference

Ø  An effect of one action negates a precondition of the other;
Ø  Ex> Eat(Cake) interferes with the persistence of Have(Cake) by negating its precondition.

Ø  3. Competing needs
Ø  A precondition of one action is mutex with a precondition of the other
Ø  Ex> Bake(cake) & Eat(cate) <- compete on the value of Have(cake)

22

inconsistent effects

interference
competing needs

MUTEX LINKS - LITERALS

Ø  Mutex relation holds between 2 literals at a level when
Ø  1. One is the negation of the other
Ø  2. Inconsistent support

Ø  If each possible action pair that could achieve the literals is mutex
Ø  Ex> Have(Cake) & Eaten(Cake) at S1
Ø  (the only way of achieving Have(Cake), the persistence action, is mutex with the only way of

achieving Eaten (Cake),)

23

negation

inconsistent support

PLANNING GRAPHS COMPLEXITY

Ò  Construction has complexity polynomial in the size of t
he planning problem:

 O(n(a + l)2)
Ð  Given l literals and a actions,
Ð  each Si has no more than

×  l nodes and
×  l2 mutex links, and

Ð  each Ai has no more than
×  a + l nodes (including the no-ops),
×  (a + l)2 mutex links, and
×  2(al + l) precondition and effect links.

Ð  entire graph with n levels has a size of O(n(a + l)2)

24

PROPERTIES OF COMPLETED PLANNING GRAPH

Ò  Provides information about the problem & candidate heuri
stics

Ò  A goal literal g that does not appear in the final level canno
t be achieved by any plan

Ò  The level cost, the level at which a goal literal first appears
, is useful as a cost estimate of achieving that goal literal

Ò  Note that level cost is admissible, though possibly inaccur
ate since it counts levels, not actions
É  Planning graphs allow several actions at each level, whereas the

heuristic counts just the level and not the number of actions.
É  We could find a better alternative level cost by using a serial plan

ning graph variation, restricted to one action per level
Ð  Add mutex links between every pair of nonpersistence actions

25

PLANNING GRAPHS & HEURISTICS

Ò  Planning Graph provides
É  Possible heuristics for the cost of a conjunction of goals
É  1. Max-level heuristic : highest level of any conjunct in the goal

Ð  Admissible, possibly not accurate
É  2. Level sum heuristic: the sum of level costs of conjuncts in the g

oal
Ð  Incorporates the subgoal independence assumption

×  So may be inadmissible to degree the assumption does not hold
×  Works well in practice for problems that are largely decomposable

É  3. Set-level heuristic: level where all goal conjuncts are present wi
thout mutex links

Ð  Admissible,
Ð  Dominates the max-level heuristic
Ð  Works well on tasks with good deal of interaction among subplans.
Ð  However, ignores interactions among three or more literals.

26

PLANNING GRAPHS & HEURISTICS

Ò  A Planning Graph is a relaxed version of the problem
É  If a goal literal g does not appear, no plan can achieve it,
É  If it does appear, is not guaranteed to be achievable
É  Why?

Ð  The PG only captures pairwise conflicts & there could be higher orde
r conflicts likely not worth the computational expense of checking for
 them

×  Similar to Constraint Satisfaction Problems where arc consistency was
a valuable pruning tool

Ð  3-consistency or even higher order consistency would have made fin
ding solutions easier but was not worth the additional work

É  Example where PG fails to detect unsolvable problem
Ð  Blocks world problem with goal of A on B, B on C, C on A

×  Any pair of subgoals are achievable, so no mutexes
×  Problem only fails at stage of searching the PG

27

THE GRAPHPLAN ALGORITHM

Ò  GRAPHPLAN algorithm
É  Generates the Planning Graph & extracts a solution directly

28

function GRAPHPLAN(problem) return solution or failure
 graph ← INITIAL-PLANNING-GRAPH(problem)
 goals ← CONJUNCTS(problem. GOAL)
 nogoods ← an empty hash table
 for tl = 0 to ∞ do
 if goals all non-mutex in St of graph then
 solution ← EXTRACT-SOLUTION(graph, goals, NUMLEVELS(graph), nogoods)
 if solution ≠ failure then return solution
 if graph and nogoods have both leveled off then return failure
 graph ← EXPAND-GRAPH(graph, problem)

EXTRACT-SOLUTION: search for a plan that solves the problem.
EXPAND-GRAPH: adds a new level

EXAMPLE: SPARE TIRE PROBLEM

Ò  PDDL of spare tire problem (problem of changing a flat tire)

29

Init(At(Flat, Axle) ∧ At(Spare, Trunk))

Goal(At(Spare, Axle))

Action(Remove(Spare, Trunk)
 PRECOND: At(Spare, Trunk)
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))

Action(Remove(Flat, Axle)
 PRECOND: At(Flat, Axle)
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))

Action(PutOn(Spare, Axle)
 PRECOND: At(Spare, Ground) ∧¬At(Flat, Axle)
 EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground))

Action(LeaveOvernight
 PRECOND:
 EFFECT: ¬ At(Spare, Ground) ∧ ¬ At(Spare, Axle)
 ∧ ¬ At(Spare, Trunk) ∧ ¬ At(Flat, Ground) ∧ ¬ At(Flat, Axle))

Goal is to have a good spare tire
properly mounted onto the car’s axle,

Initial state has a flat tire on the axle
and a good spare tire in the trunk.

GRAPHPLAN SPARE TIRE EXAMPLE

Ø  Notes:
Ø  This figure shows the complete Planning Graph for the problem

Ø  Arcs show mutex relations (arcs between literals are omitted to avoid clutter)
Ø  Omits unchanging positive literals (for example, Tire(Spare))
Ø  Omits irrelevant negative literals
Ø  Bold boxes & links indicate the solution plan

30

GRAPHPLAN SPARE TIRE EXAMPLE

Ø  S0 is initialized to 5 literals
Ø  from the problem initial state and the relevant

negative literals
Ø  no goal literal in S0 so EXPAND-GRAPH add

actions
Ø  those with preconditions satisfied in S0
Ø  also adds persistence actions for literals in S0
Ø  adds the effects at level S1, analyzes & adds m

utex relations
Ø  repeat until the goal is in level Si or failure

31

Init(At(Flat, Axle) ∧ At(Spare, Trunk))

Goal(At(Spare, Axle))

Action(Remove(Spare, Trunk)

 PRECOND: At(Spare, Trunk)
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))

Action(Remove(Flat, Axle)
 PRECOND: At(Flat, Axle)
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))

Action(PutOn(Spare, Axle)
 PRECOND: At(Spare, Ground) ∧¬At(Flat, Axle)
 EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground))

Action(LeaveOvernight
 PRECOND:
 EFFECT: ¬ At(Spare, Ground) ∧ ¬ At(Spare, Axle)
 ∧ ¬ At(Spare, Trunk) ∧ ¬ At(Flat, Ground)
 ∧ ¬ At(Flat, Axle))

GRAPHPLAN SPARE TIRE EXAMPLE

Ø  EXPAND-GRAPH adds constraints: mutex relations
Ø  inconsistent effects (action x vs action y)

Ø  Remove(Spare, Trunk) & LeaveOvernight:
Ø  At(Spare, Ground) & ¬At(Spare, Ground)

Ø  interference (effect negates a precondition)
Ø  Remove(Flat, Axle) & LeaveOvernight:
Ø  At(Flat, Axle) as PRECOND & ¬At(Flat, Axle) as EFFECT

Ø  competing needs (mutex preconditions)
Ø  PutOn(Spare, Axle) & Remove(Flat, Axle):
Ø  At(Flat, Axle) & ¬At(Flat, Axle)

Ø  inconsistent support (actions to produce literals are mutex)
Ø  in S2, At(Spare, Axle) & At(Flat, Axle): only way to achieve At(Spar

e, Axle) is by PutOn(Spare,Axle) and that is mutex with the only a
ction for obtaining At(Flat,Axle) .

32

Init(At(Flat, Axle) ∧ At(Spare, Trunk))

Goal(At(Spare, Axle))

Action(Remove(Spare, Trunk)

 PRECOND: At(Spare, Trunk)
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))

Action(Remove(Flat, Axle)
 PRECOND: At(Flat, Axle)
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))

Action(PutOn(Spare, Axle)
 PRECOND: At(Spare, Ground) ∧¬At(Flat, Axle)
 EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground))

Action(LeaveOvernight
 PRECOND:
 EFFECT: ¬ At(Spare, Ground) ∧ ¬ At(Spare, Axle)
 ∧ ¬ At(Spare, Trunk) ∧ ¬ At(Flat, Ground)
 ∧ ¬ At(Flat, Axle))

GRAPHPLAN SPARE TIRE EXAMPLE

Ø  In S2, the goal literals exist, and they are not mutex with any other
Ø  Just 1 goal literal so obviously not mutex with any other goal
Ø  Since a solution may exist, EXTRACT-SOLUTION tries to find it

Ø  EXTRACT-SOLUTION as backward search problem (other methods possible)
Ø  Initial state: last level of the PG, Sn, along with the goals from the planning problem
Ø  Actions from Si

Ø  Select any conflict-free actions in Ai-1 with effects covering the goals
Ø  Conflict free = no 2 actions are mutex & no pair of their preconditions are mutex

Ø  Goal: Reach a state at level S0 such that all goals are satisfied
Ø  Cost: 1 for each action

33

GRAPHPLAN SOLUTIONS

Ò  If EXTRACT-SOLUTION fails
É  At that point it records (level, goals) as a "no-good"
É  Subsequent calls can fail immediately if they require the same g

oals at that level

Ò  Complexity
É  We already know planning problems are computationally hard (P

SPACE-complete)
Ð  Require good heuristics

É  Heuristic for choosing an action at each level in backward search
 - Greedy search with level cost of literals

Ð  1. Pick literal with highest level cost
Ð  2. To achieve it, pick actions with easier preconditions

×  Choose action with smallest sum (or max) of level costs for its preconds

34

GRAPHPLAN SOLUTIONS

Ò  Alternative to backward search for a solution
É  EXTRACT-SOLUTION could formulate a Boolean CSP

Ð  variables are actions at each level
Ð  values are Boolean: an action is either in or out of the plan
Ð  constraints are mutex relations & the need to satisfy each goal & pre

condition

35

GRAPHPLAN TERMINATION

GRAPHPLAN will in fact terminate and return failure when there is n
o solution.
Ò  Recall that level off means consecutive PG levels are identical
Ò  Now note that a graph may level off before a solution can be fou

nd, on a problem for which there is a solution
É  Ex. Air Cargo: 1 plane and n pieces of cargo at airport A, all of which have

 airport B as their destination. Where only one piece of cargo can fit in the
 plane at a time.

Ð  Graph levels off at level 4, from which full solution can’t be extracted (that would r
equire 4n – 1 steps)

Ò  We need to take account of the no-goods (goals that were not ac
hievable) as well
É  If it is possible that there might be fewer no-goods in the next level, then

we should continue
Ò  Graph itself and the no-goods have both leveled off, with no solu

tion found, we can terminate with failure

36

GRAPHPLAN TERMINATION

Ò  Does GRAPHPLAN terminate?
Ò  Evidences that both graph and no-goods will level off

É  Literals increase monotonically (and there are finite # of them)
Ð  Once a literal appears, its persistence action causes it to stay

É  Actions increase monotonically (and there are finite # of them)
Ð  Once preconditions (literals) of an action appear at one level, they will a

ppear at subsequent levels, and thus so will the action.
É  Mutexes decrease monotonically

Ð  Of 2 actions are mutex at Ai, they are also mutex at all previous levels wh
ere they appear

×  The graph simplifying conventions may not show it

Ð  Same holds for 2 literals

É  No-goods decrease monotonically
Ð  If a set of goals is not achievable at level i, they are not achievable at an

y previous level

37

