@ Korea ‘\\\‘ Stony Brook
e University

CSES37
AIMA CHAPTER 10.3: PLANNING GRAPHS

Resource: based on material & slide
by Rob St. Amant (NCSU) and
by Berthe Y. Choueiry (U of Nebraska)

SEARCH AND PLANNING

Planning: generate seq. of actions to achieve one’s goals

We have seen two examples of planning agents so far:

search-based problem-solving agent of Ch.3
can find sequences of actions that result in a goal state.
but deals with atomic states (needs good domain-specific heuristics)

hybrid logical agent of Chapter 7.

can find plans without domain-specific heuristics

(uses domain-independent heuristics based on the logical structure of the
problem)

but relies on ground (variable-free) propositional inference
(it may be over worked when there are many actions and states.)

We want representation for planning problems

that scales up to problems unable to be handled by earlier approach
es.

CLASSICAL PLANNING ENVIRONMENT

The assumptions for classical planning problems

Fully observable
we see everything that matters

Deterministic
the effects of actions are known exactly

Static

no changes to environment other than those caused by
agent actions

Discrete
changes in time and space occur in quantum amounts

Single agent
no competition or cooperation to account for

FACTORED REPRESENTATION IN PLANNING LANGUAGE

What is a good representation?
Expressive enough to describe a wide variety of problems
Restrictive enough for efficient algorithms to operate on it

Planning algorithm should be able to take advantage
of the logical structure of the problem

Historical Al planning languages

STRIPS was used in classical planners
Stanford Research Institute Problem Solver

ADL addresses expressive limitations of STRIPS
Action Description Language
Adds features not in STRIPS
negative literals, quantified variables, conditional effects, equality

We'll look at a simpler version of de facto standard language
called PDDL

PDDL

PDDL and most of the planning language use factored
representation for states

Each state is represented as a collection of variables

Planning Domain Definition Language

To see its expressive power, recall propositional agent in the
Wumpus World, which requires 4Tn? actions to describe a m
ovement of 1 square

PDDL captures this with a single Action Schema

PDDL: STATE

Each state is represented as a conjunction of fluents: groun

d, functionless atoms.
Ex> Poor A Unknown might represent the state of a hapless agent,
Ex> a state in a package delivery problem might be At(Truck1,Melb
ourne) A At(Truck2,Sydney)

Database semantics is used

the closed-world assumption: any fluents that are not mentioned ar
e false,

the unique names assumption: ex>Truckl and Truck2 are distinct

fluents not allowed: At(x, y) (because it is non-ground), -Poor (beca
use it is a negation), and At (Father (Fred), Sydney) (because it use
s a function symbol).

This state representation allows alternative algorithms
it can be manipulated either by logical inference techniques or by
set operations (sets may be easier to deal with)

PDDL: ACTION SCHEMAS

Actions are defined by a set of action schemas
These implicitly define the ACTIONS(s) & RESULT(s, a) functi
ons required to apply search techniques
Classical planning concentrates on problems where m
ost actions leave most things unchanged.
PDDL specify the result of an action in terms of what change
S;
everything that stays the same is left unmentioned.

PDDL: ACTION SCHEMAS

Ground (variable-free) action are represented by single
action schema - a lifted representation

liftts from propositional logic to a restricted subset of First-or
der logic

Consists of

the schema name,

list of variables used,

Consider variables as universally quantified, choose any values we w
ant to instantiate them

a precondition
PRECOND: defines states in which an action can be executed

an effect
EFFECT: defines the result of executing the action

EXAMPLE ACTION SCHEMA

Each represents a set of variable-free actions
Form: Action Schema = predicate + preconditions + effects
Example action schema for flying a plane from one location t
0 another :
Action(Fly(p, from, to),
PRECOND: At(p, from) A Plane(p) a Airport(from) A Airport(to)
EFFECT: -AT(p, from) A At(p, to))

Action that results from substituting values for all the variabl
es:

Action(Fly(P1,SFO,JFK),
PRECOND:At(P1,SFO) a Plane(P1) a Airport(SFO) A Airport(JFK)

EFFECT:-At(P1,SFO) A At(P1,JFK))

APPLYING ACTION SCHEMA

Action a Is applicable In state s

S entails the precondition of a

If a’s preconditions are satisfied in s (“a is applicable in s”)
a EACTIONS(s)) < s |= PRECOND(a)

Given variables in a, there can be multiple applicable instant
lations
For v variables in a domain with k unique object names, worst case ti
me to find applicable ground actions is O(v¥)

Leads to one approach for solving PDDL planning problems

Propositionalize by replacing action schemas with sets of ground acti
ons

then applying a propositional solver like SATPlan
Impractical for large v & k

PDDL: RESULT

Result of executing action a in state s is state s’
RESULT(s, a) = (s- DEL(a)) UADD(a)
Start with s
Remove negative literal in the action’s effect
(the delete list, DEL(a))
Add positive literals in action’s EFFECTs
(the add list, ADD(a))

For example, with the action Fly(P1,SFO,JFK),
we would remove At(P1,SFO) and
add At(P1,JFK).

Any variable in the effect must also appear in the precondi
tion.

When the precondition is matched against the state s, all the vari

ables will be bound, and RESULT(s,a) will therefore have only grou
nd atoms.

PDDL: ACTION SCHEMAS

1. Variables & ground terms

Variables in effects must also be in precondition
so matching to state s yields results with all variables bound
l.e. that contain only ground terms
Ground states are closed under the RESULT operation.

2. Handling of time
No explicit time terms
Instead time is implicitly represented in PDDL schemas
Preconditions always refer to time: t
Effects always refer to time: t+ 1
3. A set of schemas defines a planning domain

A specific problem within the domain is defined with the addition
of an initial state and a goal.

PDDL: INITIAL STATES, GOALS, SOLUTIONS

Initial state
Conjunction of ground terms

Goal

Conjunction of positive and negative literals that contain variable.
Both ground terms & those containing variables
EX> At (p, SFO) A Plane (p).

Variables are treated as existentially quantified
EX> so this goal is to have any plane at SFO

Solution
A sequence of actions ending in s that entails the goal
EX> state Rich A Famous A Miserable entails the goal Rich A Famous,
EX> state Plane(P1) A At (P1, SFO) entails At(p, SFO) A Plane (p)

We have defined planning as a search problem:
have an initial state, an ACTIONS function, a RESULT function, and a goal
test

14

WHY PLANNING GRAPHS

All of the heuristics we have suggested can suffer from
Inaccuracies.

A special data structure called a planning graph can b
e used to give better heuristic estimates.

We can search for a solution over the space formed by
the planning graph, using an algorithm called GRAPH
PLAN.

These heuristics can be applied to any of the search techniq
ues we have seen so far.

PLANNING GRAPHS

Graphplan was developed in 1995 by Avrim Blum an
d Merrick Furst, at CMU.

Constructs compact constraint encoding of state spa
ce from operators and initial state, which prunes ma
ny invalid plans.

A planning graph compactly encodes the space of co
nsistent plans, while pruning . ..

Partial states and actions at each time |
that are not reachable from the initial state.

Pairs of actions and propositions
that are mutually inconsistent at time 1.

Plans that cannot reach the goals.

PLANNING GRAPHS PROPERTIES

A polynomial-size approximation to tree-based state space
searching that can be constructed quickly

The plan graph does not eliminate all infeasible plans.

Planning graph cannot answer definitely whether goal G is
reachable form initial state SO, but it can estimate how ma
ny steps it takes to reach the goal.

Always correct when it reports the goal is not reachable

Never overestimate the number of steps (admissible heuristic)

Planning graphs
Provide a possible basis for better search heuristics

Can be use directly, for extracting a solution to a planning proble
m, by applying the GRAPHPLAN algorithm

Problem “Have cake and eat cake t00”

PDDL Problem Description

Init(Have(Cake))

Goal(Have(Cake) A Eaten(Cake))
Action(Eat(Cake)

PRECOND: Have(Cake)

EFFECT: -Have(Cake) A Eaten(Cake))
Action(Bake(Cake)

PRECOND: - Have(Cake)
EFFECT: Have(Cake))

corresponding planning graph

S, A, S, A, S,

Bake(Cake)
Have(Cake) 3 Have(Cake) / }\ Have(Cake)
— Have(Cake) — Have(Cake)
Eat(Cake) < \I Eat Cake) <

Eaten(Cake) Eaten({Cake)

— Eaten(Cake) — Eaten(Cake)

— Eaten(Cake)

[_m

PLANNING GRAPH DESCRIPTION
Planning graph

Is a directed graph organize :
d in time steps levels \ \“
Consist of alternating °

S, level: contains all the literal
s that could result from any p

ossible choice of action in A, ; >< >= 7

A, level: contains all the action
s that are applicable in S..

Precondition link 7

Effects link
: _ Proposition Action Proposition Action
Mutual exclusion (mutex) link pitstate Time1 Time1 Time2

s: links joining nodes that can
not persist simultaneously

Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))
Action(Eat(Cake)
PLANNING GRAPH CAKE EXAMPLE PRECOND: Hate(Cake)
EFFECT: -Have(Cake) A Eaten(Cake))
Action(Bake(Cake)
PRECOND EFFECT PRECOND: - Have(Cake)
EFFECT: Have(Cake))
S, A, S, A, S
Bake(Cake)
Have(Cake) 3 Have(Cake) >< -+ Have(Cake)
— Have(Cake) &= — Have(Cake)
Eat(Cake) Eat(Cake)
Eaten(Cake) - Eaten(Cake)
— Eaten{Cake) = — Eaten(Cake) = — Eaten(Cake)

Start at level S,, determine action level Ay & next level S,
A,: all actions whose preconditions are satisfied in the previous level (i

nitial state)
Lines connect PRECONDs at S, to EFFECTs at S,

Also, for each literal in S;, there's a persistence action (square box) & li
ne to itin the next level S, ;
Level A, contains the actions that could occur
Conflicts between actions are represented by arcs: mutual exclusion or
mutex links

PLANNING GRAPH CAKE EXAMPLE

S, A, S, A, S
Bake(Cake)
Have(Cake) i Have(Cake) = Have(Cake)
— Have(Cake) >< = — Have(Cake)
Eat(Cake) Eat(Cake)
Eaten(Cake) - Eaten({Cake)
— Eaten{Cake) = — Eaten(Cake) = — Eaten(Cake)

Level S, contains all the literals that could result
From picking any subset of actions in A,

So S, is a belief state consisting of the set of all possible states
Each is a subset of literals with no mutex links between members

Conflicts between literals that cannot occur together are represented by the mu
tex links.

The level generation process is repeated

Termination condition (leveling off):
When consecutive levels are identical

MUTEX LINKS - ACTION

S, A, S, A, S
Bake(Cake)
Have(Cake = Have(Cake = - Have(Cake
(ae) = i —/ competing necaye(cake)
— Have(Cake) f — Have(Cake)
Eat(Cake) Eat(Cake)
inconsistent effects Eaian|Gake) = EslenCake)
— Eaten(Cake) = — Eaten(Cake) & — Eaten(Cake)

Mutex relation holds between 2 actions at a level when
1. Inconsistent effects
One action negates the effect of another

Eat(Cake) and Have(Cake) have inconsistent effects because they disagree on the effect Have(Ca
ke).

2. Interference
An effect of one action negates a precondition of the other;

Ex> Eat(Cake) interferes with the persistence of Have(Cake) by negating its precondition.
3. Competing needs

A precondition of one action is mutex with a precondition of the other
Ex> Bake(cake) & Eat(cate) <- compete on the value of Have(cake)

MUTEX LINKS - LITERALS

S, A, S, A, S
Bake(Cake)
Have(Cake 3 Have(Cake) . . - Have(Cake
— Have(Cake) = — Have(Cake)
Eat(Cake) Inconsistent support Eat(Cake)
Eaten(Cake) o Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake) & — Eaten(Cake)

Mutex relation holds between 2 literals at a level when
1. One is the negation of the other

2. Inconsistent support
If each possible action pair that could achieve the literals is mutex
Ex> Have(Cake) & Eaten(Cake) at S,

(the only way of achieving Have(Cake), the persistence action, is mutex with the only way of

achieving Eaten (Cake),)

PLANNING GRAPHS COMPLEXITY

Construction has complexity polynomial in the size of t
he planning problem:

O(n(a + 1)?)

Given | literals and a actions,
each S;has no more than
I nodes and
12 mutex links, and
each A, has no more than
a + I nodes (including the no-ops),
(a +)2 mutex links, and
2(al + 1) precondition and effect links.
entire graph with n levels has a size of O(n(a + 1)?)

PROPERTIES OF COMPLETED PLANNING GRAPH

Provides information about the problem & candidate heuri
stics

A goal literal g that does not appear in the final level canno
t be achieved by any plan

The level cost, the level at which a goal literal first appears
, IS useful as a cost estimate of achieving that goal literal

Note that level cost is admissible, though possibly inaccur
ate since it counts levels, not actions

Planning graphs allow several actions at each level, whereas the
heuristic counts just the level and not the number of actions.

We could find a better alternative level cost by using a serial plan
ning graph variation, restricted to one action per level
Add mutex links between every pair of nonpersistence actions

PLANNING GRAPHS & HEURISTICS

Planning Graph provides
Possible heuristics for the cost of a conjunction of goals

1. Max-level heuristic : highest level of any conjunct in the goal
Admissible, possibly not accurate

2. Level sum heuristic: the sum of level costs of conjuncts in the g
oal
Incorporates the subgoal independence assumption
So may be inadmissible to degree the assumption does not hold
Works well in practice for problems that are largely decomposable
3. Set-level heuristic: level where all goal conjuncts are present wi
thout mutex links
Admissible,
Dominates the max-level heuristic
Works well on tasks with good deal of interaction among subplans.

However, ignores interactions among three or more literals.

PLANNING GRAPHS & HEURISTICS

A Planning Graph is a relaxed version of the problem
If a goal literal g does not appear, no plan can achieve it,
If it does appear, is hot guaranteed to be achievable
Why?

The PG only captures pairwise conflicts & there could be higher orde
r conflicts likely not worth the computational expense of checking for
them

Similar to Constraint Satisfaction Problems where arc consistency was
a valuable pruning tool

3-consistency or even higher order consistency would have made fin
ding solutions easier but was not worth the additional work
Example where PG fails to detect unsolvable problem

Blocks world problem with goal of Aon B, Bon C, Con A

Any pair of subgoals are achievable, so no mutexes
Problem only fails at stage of searching the PG

THE GRAPHPLAN ALGORITHM

GRAPHPLAN algorithm

Generates the Planning Graph & extracts a solution directly

function GRAPHPLAN(problem) return solution or failure
graph <— INITIAL-PLANNING-GRAPH(problem)
goals <= CONJUNCTS(problem. GOAL)
nogoods <— an empty hash table
fort/ = O to o do
if goals all non-mutex in S, of graph then
solution <— EXTRACT-SOLUTION(graph, goals, NUMLEVELS(graph), nogoods)
if solution = failure then return solution
if graph and nogoods have both leveled off then return failure
graph <— EXPAND-GRAPH(graph, problem)

EXTRACT-SOLUTION: search for a plan that solves the problem.
EXPAND-GRAPH: adds a new level

EXAMPLE: SPARE TIRE PROBLEM

PDDL of spare tire problem (problem of changing a flat tire)

|n|t(At(F|at, AXle) A At(Spa re, Trunk)) Goal is to have a good spare tire
properly mounted onto the car’s axle,

Goal(At(Spare, Axle
((p)) Initial state has a flat tire on the axle

Action(Remove(Spare, Trunk) and a good spare tire in the trunk.
PRECOND: At(Spare, Trunk)
EFFECT: -At(Spare, Trunk) A At(Spare, Ground))

Action(Remove(Flat, Axle)

PRECOND: At(Flat, Axle)
EFFECT: -At(Flat, Axle) A At(Flat, Ground))

Action(PutOn(Spare, Axle)

PRECOND: At(Spare, Ground) A-At(Flat, Axle)
EFFECT: At(Spare, Axle) A -At(Spare, Ground))

Action(LeaveOvernight

PRECOND:
EFFECT: - At(Spare, Ground) A - At(Spare, Axle)
A = At(Spare, Trunk) A = At(Flat, Ground) A = At(Flat, Axle))

GRAPHPLAN SPARE TIRE EXAMPLE

At(Spare, Trunk) {} At{Spare, Trunk) 1 At(Spare, Trunk)
\ (—v \@S‘;},m, Trunk) i\
Remove(Spare, Trunk) —At(Spare, Trunk) -}) —/ At(Spare, Trunk)
/% Remove(Flat Axle) /P Remove(Flat, Axle)
At(Flat,Axle) At{Flat Axle) \ / {1 \ At(Flat,Axie)

\ <Tx _ (
[LeaveOvernight —At(Flat Axle) Y \ —At(Flat,Axle)
\ | LeaveOvernight

—At(Spare,Axle) {1 — At{Spare,Axle) (—At(Spare,Axie)

\ >'-F'ut0n(8pare,Axle) At(Spare,Axle)

— At(Flat, Ground) {} —At(Flat.Ground) i, — At{Flat, Ground)

\ At(Flat Ground) / 3 \\\\ At(Flat, Ground)
— At{Spare, Ground) {} —At(Spare, Ground) / 1 — At(Spare, Ground)
\ At(Spare, Ground) / 3 \ At(Spare,Ground)

Notes:
This figure shows the complete Planning Graph for the problem

Arcs show mutex relations (arcs between literals are omitted to avoid clutter)
Omits unchanging positive literals (for example, Tire(Spare))

Omits irrelevant negative literals

Bold boxes & links indicate the solution plan

GRAPHPLAN SPARE TIRE EXAMPLE

S 1
At(Spare, Trunk)

At(Spare Trunk)
\ Hemove(Spare . Trunk)

Remove(Flat Axle

— At(Spare, Trunk)

At(Flat,Axle) Y % At(Flat Axle)
[LeaveOvernight — At({Flat,Axle)
—At(Spare,Axle) {1 \ — At(Spare,Axle)
— At{Flat, Ground) {1 \ —At{Flat,Ground)
At(Flat, Ground)
— At{Spare, Ground) {} — At(Spare, Ground)

\ At{Spare, Ground)
S, is initialized to 5 literals

from the problem initial state and the relevant
negative literals

no goal literal in S; so EXPAND-GRAPH add
actions

those with preconditions satisfied in S,

also adds persistence actions for literals in S,

adds the effects at level S, analyzes & adds m
utex relations

repeat until the goal is in level S, or failure

Sz

At(Spare, Trunk)

Remove(Spare, Trunk) [\
A — At(Spare, Trunk)

Remove(Flat, Axle)

/ 1 \ At(Flat,Axie)
\\ (\ — At{Flat,Axle)
\ | LeaveOvernight

{1 —At({Spare,Axie)

PutOn(Spare Axle) At(Spare.Axle)
{1 — At{Flat, Ground)

/ é \\\\ At(Flat, Ground)

/ ', \ﬁ At(Spare, Ground)

/ :';} \ At{Spare,Ground)

Init(At(Flat, Axle) A At(Spare, Trunk))

Goal(At(Spare, Axle))

Action(Remove(Spare, Trunk)
PRECOND: At(Spare, Trunk)
EFFECT: -At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat, Axle)
PRECOND: At(Flat, Axle)
EFFECT: -At(Flat, Axle) A At(Flat, Ground))
Action(PutOn(Spare, Axle)
PRECOND: At(Spare, Ground) a-At(Flat, Axle)
EFFECT: At(Spare, Axle) A -=At(Spare, Ground))
Action(LeaveOvernight
PRECOND:
EFFECT: - At(Spare, Ground) A - At(Spare, Axle)
A = At(Spare, Trunk) A = At(Flat, Ground)
A - At(Flat, Axle))

GRAPHPLAN SPARE TIRE EXAMPLE

SO A 0 S 1
At{Spare, Trunk) {1 At(Spare, Trunk)
—At(Spare, Trunk)
At(Flat,Axie) N -< —A‘ At(Flat Axle)
i LeaveOvernight ‘ — At{Flat Axle)
—At(Spare,Axie) {F — At(Spare, Axle)

0

— At(Flat,Ground)

— At{Flat, Ground)

A\
\

At(Spare Ground

0l

— At(Spare, Ground)
At (Spare, Groung

Sz
At(Spare, Trunk)

Remove(Spare, Trunk) \
A — At(Spare,Trunk)

Remove(Flat, Axle)

(n\

—At(Flat,Axle)

N

| LeaveOvernight

1

At(SpareAxIe)

PutOn(Spare Axle)

/ :'E? \\\\ At(Flat, Grouncﬂ
/ 1 — At{Spare, Ground)
/ Q \ At{Spare,Ground)

EXPAND-GRAPH adds constraints: mutex relations

inconsistent effects (action x vs action y)
Remove(Spare, Trunk) & LeaveOvernight:
At(Spare, Ground) & -At(Spare, Ground)

interference (effect negates a precondition)

competing needs (mutex preconditions)
PutOn(Spare, Axle) & Remove(Flat, Axle):
At(Flat, Axle) & -At(Flat, Axle)
inconsistent support (actions to produce literals are mutex)

in S2, At(Spare, Axle) & At(Flat, Axle): only way to achieve At(Spar
e, Axle) is by PutOn(Spare,Axle) and that is mutex with the only a

ction for obtaining At(Flat,Axle) .

Init(At(Flat, Axle) A At(Spare, Trunk))

Goal(At(Spare, Axle))

Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: -At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat, Axle)

PRECOND Axle)

EFFECT: -At(Flat, Axle) A At(Flat, Ground))
Action(PutOn(Spare, Axle)

PRECOND: At(Spare, Ground) A-At(Flat, Axle)

EFFECT: At(Spare, Axle) A -At(Spare, Ground))
Action(LeaveOvernight

PRECOND:
EFFECT: - At(Spare, Ground) A - At(Spare, Axle)
A = At(Spare, Trunk) A = At(Flat, Ground)

))

GRAPHPLAN SPARE TIRE EXAMPLE

At(Spare Trunk) At(Spare, Trunk) At(Spare, Trunk)
\‘- Remove(Spare, Trunk) \
Remove(Spare, Trunk) —At(Spare, Trunk) 3) — At{Spare, Trunk)
/P Remove(Flat, Axle) \ /
At(Flat Axle) / {1 \ At(Flat, Axle)

| Remove(Flat.Axle) |

. T
At(Flat,Axle)
‘ —At(Flat.Axle) —= T Al(Flat Axle)
‘\ A\
—At(Spare,Axie) {3 — At(Spare,Axle) At(Spare Axle
\\ PutOn(Spare Axle)
— At(Flat, Ground) T —At(Flat,Ground) /

AHTFTar Ground)
‘\\\\ At(Flat, Grounzﬂ

\—1At(Spare . Ground)
At(Spare,Ground)

At(Flat, Ground) //
— At(Spare, Ground) /
At{Spare, Ground)

0

— At(Spare, Ground)

L0 [0

In S2, the goal literals exist, and they are not mutex with any other
Just 1 goal literal so obviously not mutex with any other goal
Since a solution may exist, EXTRACT-SOLUTION tries to find it

EXTRACT-SOLUTION as backward search problem (other methods possible)
Initial state: last level of the PG, S, along with the goals from the planning problem

Actions from S,
Select any conflict-free actions in A, with effects covering the goals
Conflict free = no 2 actions are mutex & no pair of their preconditions are mutex

Goal: Reach a state at level S, such that all goals are satisfied
Cost: 1 for each action

GRAPHPLAN SOLUTIONS

If EXTRACT-SOLUTION fails

At that point it records (level, goals) as a "no-good"
Subsequent calls can fail immediately if they require the same g
oals at that level

Complexity

We already know planning problems are computationally hard (P
SPACE-complete)

Require good heuristics
Heuristic for choosing an action at each level in backward search

- Greedy search with level cost of literals
1. Pick literal with highest level cost

2. To achieve it, pick actions with easier preconditions
Choose action with smallest sum (or max) of level costs for its preconds

GRAPHPLAN SOLUTIONS

Alternative to backward search for a solution
EXTRACT-SOLUTION could formulate a Boolean CSP

variables are actions at each level
values are Boolean: an action is either in or out of the plan

constraints are mutex relations & the need to satisfy each goal & pre
condition

GRAPHPLAN TERMINATION

GRAPHPLAN will in fact terminate and return failure when there is n
O solution.
Recall that level off means consecutive PG levels are identical

Now note that a graph may level off before a solution can be fou
nd, on a problem for which there is a solution

Ex. Air Cargo: 1 plane and n pieces of cargo at airport A, all of which have
airport B as their destination. Where only one piece of cargo can fit in the
plane at a time.

Graph levels off at level 4, from which full solution can’t be extracted (that would r
equire 4n - 1 steps)

We need to take account of the no-goods (goals that were not ac
hievable) as well

If it is possible that there might be fewer no-goods in the next level, then
we should continue

Graph itself and the no-goods have both leveled off, with no solu
tion found, we can terminate with failure

GRAPHPLAN TERMINATION

Does GRAPHPLAN terminate?

Evidences that both graph and no-goods will level off

Literals increase monotonically (and there are finite # of them)
Once a literal appears, its persistence action causes it to stay

Actions increase monotonically (and there are finite # of them)

Once preconditions (literals) of an action appear at one level, they will a
ppear at subsequent levels, and thus so will the action.

Mutexes decrease monotonically

Of 2 actions are mutex at A, they are also mutex at all previous levels wh
ere they appear

The graph simplifying conventions may not show it
Same holds for 2 literals
No-goods decrease monotonically

If a set of goals is not achievable at level i, they are not achievable at an
y previous level

