Problem solving and search

Chapter 3; 1– 4
Outline

♦ Problem-solving agents
♦ Problem types
♦ Problem formulation
♦ Example problems
♦ Basic search algorithms
Problem-solving agents

Restricted form of general agent:

function $\text{SIMPLE-PROBLEM-SOLVING-AGENT}(\text{percept})$ returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

$\text{state} \leftarrow \text{UPDATE-STATE}(\text{state}, \text{percept})$

if seq is empty then

$\text{goal} \leftarrow \text{FORMULATE-GOAL}(\text{state})$

$\text{problem} \leftarrow \text{FORMULATE-PROBLEM}(\text{state}, \text{goal})$

$\text{seq} \leftarrow \text{SEARCH}(\text{problem})$

$\text{action} \leftarrow \text{RECOMMENDATION}(\text{seq}, \text{state})$

$\text{seq} \leftarrow \text{REMAINDER}(\text{seq}, \text{state})$

return action

Note: this is offline problem solving; solution executed “eyes closed.”

Online problem solving involves acting without complete knowledge.
Example: Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

Formulate goal:
 be in Bucharest

Formulate problem:
 states: various cities
 actions: drive between cities

Find solution:
 sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
A **problem** is defined by four items:

- **initial state**
 e.g., “at Arad”

- **successor function** \(S(x) = \) set of action–state pairs
 e.g., \(S(\text{Arad}) = \{\langle \text{Arad} \rightarrow \text{Zerind}, \text{Zerind} \rangle, \ldots \} \)

- **goal test**, can be
 - explicit, e.g., \(x = \) “at Bucharest”
 - implicit, e.g., \(\text{NoDirt}(x) \)

- **path cost** (additive)
 e.g., sum of distances, number of actions executed, etc.
 \(c(x, a, y) \) is the **step cost**, assumed to be \(\geq 0 \)

A **solution** is a sequence of actions
leading from the initial state to a goal state
Selective a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
 e.g., “Arad → Zerind” represents a complex set
 of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
 must get to some real state “in Zerind”

(Abstract) solution =
 set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
Example: vacuum world state space graph

Links denote actions: L = Left, R = Right, S = Suck

states??
actions??
goal test??
path cost??
Example: vacuum world state space graph

- **states**: integer dirt and robot locations (ignore dirt amounts etc.)
- **actions**: Left, Right, Suck, NoOp
- **goal test**: no dirt
- **path cost**: 1 per action (0 for NoOp)
Example: The 8-puzzle

Start State

7 2 4
5 6
8 3 1

Goal State

1 2 3
4 5 6
7 8

states??
actions??
goal test??
path cost??
Example: The 8-puzzle

states: integer locations of tiles (ignore intermediate positions)

actions: move blank left, right, up, down (ignore unjamming etc.)

goal test: = goal state (given)

path cost: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end
Tree search example

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu
A **state** is a (representation of) a physical configuration
A **node** is a data structure constituting part of a search tree
 includes **parent**, **children**, **depth**, **path cost** $g(x)$
States do not have parents, children, depth, or path cost!

The **Expand** function creates new nodes, filling in the various fields and using the **SuccessorFn** of the problem to create the corresponding states.
Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!
function TREE-SEARCH(problem) returns a solution, or failure
 initialize the frontier using the initial state of problem
 loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 expand the chosen node, adding the resulting nodes to the frontier
 end loop

function GRAPH-SEARCH(problem) returns a solution, or failure
 initialize the frontier using the initial state of problem
 initialize the explored set to be empty
 loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 add the node to the explored set
 expand the chosen node, adding the resulting nodes to the frontier
 only if not in the frontier or explored set
 end loop

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The parts of GRAPH-SEARCH marked in bold italic are the additions needed to handle repeated states.
Graph search example
Search strategies

A strategy is defined by picking the order of node expansion.

Strategies are evaluated along the following dimensions:
- **completeness**—does it always find a solution if one exists?
- **time complexity**—number of nodes generated/expanded
- **space complexity**—maximum number of nodes in memory
- **optimality**—does it always find a least-cost solution?

Time and space complexity are measured in terms of:
- \(b \)—maximum branching factor of the search tree
- \(d \)—depth of the least-cost solution
- \(m \)—maximum depth of the state space (may be \(\infty \))
Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

```
  ▶A
   B  ▶C
   D  E  F  G
```

```
  ▶B  ▶C
  D  E  F  G
```

```
  ▶B
  ▶D
  D  E  F  G
```

```
  ▶C
  ▶D
  D  E  F  G
```

```
  ▶C  ▶D
  D  E  F  G
```

```
  ▶A
  ▶B
  A  ▶C
  ▶D
  ▶E  ▶F  ▶G
```

Chapter 3 20
Properties of breadth-first search

Complete Yes (if \(b \) is finite)

Time \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1}) \), i.e., exp. in \(d \)

Space \(O(b^{d+1}) \) (keeps every node in memory)

Optimal Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs = 8640GB.
Uniform-cost search

Expand least-cost unexpanded node

Implementation:

\[
\text{fringe} = \text{queue ordered by path cost, lowest first}
\]

Equivalent to breadth-first if step costs all equal
Uniform-cost search

Complete? Yes, if step cost $\geq \epsilon$

Time? # of nodes with $g \leq$ cost of optimal solution, $O(b^{\lceil C^*/\epsilon \rceil})$
where C^* is the cost of the optimal solution

Space? # of nodes with $g \leq$ cost of optimal solution, $O(b^{\lceil C^*/\epsilon \rceil})$

Optimal? Yes—nodes expanded in increasing order of $g(n)$
Depth-first search

Expand deepest unexpanded node

Implementation: = LIFO queue, i.e., put successors at front
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 ⇒ complete in finite spaces

Time?? $O(b^m)$: terrible if m is much larger than d
 but if solutions are dense, may be much faster than breadth-first

Space?? $O(bm)$, i.e., linear space!

Optimal?? No
Depth-limited search

= depth-first search with depth limit \(l \),
i.e., nodes at depth \(l \) have no successors

Recursive implementation:

```plaintext
function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
  Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
  cutoff-occurred? ← false
  if Goal-Test(problem, State[node]) then return node
  else if Depth[node] = limit then return cutoff
  else for each successor in Expand(node, problem) do
    result ← Recursive-DLS(successor, problem, limit)
    if result = cutoff then cutoff-occurred? ← true
    else if result ≠ failure then return result
  if cutoff-occurred? then return cutoff else return failure
```
Iterative deepening search

function Iterative-Deepening-Search(problem) returns a solution
 inputs: problem, a problem
 for depth ← 0 to ∞ do
 result ← Depth-Limited-Search(problem, depth)
 if result ≠ cutoff then return result
 end
Iterative deepening search $l = 0$

Limit = 0

Diagram showing a search tree with a depth limit of 0.
Iterative deepening search $l = 1$
Iterative deepening search $l = 2$

Limit = 2

Chapter 3 32
Iterative deepening search $l = 3$

Limit = 3

Diagram showing iterative deepening search with a limit of 3 levels. The search progresses through levels A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, with nodes marked to show the search order.
Properties of iterative deepening search

Complete? Yes

Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space? \(O(bd)\)

Optimal? Yes, if step cost = 1
- Can be modified to explore uniform-cost tree

IDS does better because other nodes at depth \(d\) are not expanded

BFS can be modified to apply goal test when a node is generated
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>b^{d+1}</td>
<td>$b[C^*/\epsilon]$</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
</tr>
<tr>
<td>Space</td>
<td>b^{d+1}</td>
<td>$b[C^*/\epsilon]$</td>
<td>bm</td>
<td>bl</td>
<td>bd</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
</tr>
</tbody>
</table>
Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search