LEARNING FROM EXAMPLES
AIMA CHAPTER 18.9-11

Instructor: Sael Lee

Slides are mostly made from AIMA resources and slides from U of Texas Austin ML Group Ray Mooney
SUPPORT VECTOR MACHINES (18.9)
Linear Regression

\[l h_w(x) = (w^T x) \]

Logistic Regression

\[h_w(x) = \text{Logistic}(w^T x) = \frac{1}{1 + e^{-(w^T x)}} \]

Estimated prob. that y=1 on input x

Perceptron

\[h_{w1}(x) = \text{Logistic}(w^T x) = \frac{1}{1 + e^{-(w^T x)}} \]

\[h_{w2}(x) = \text{Logistic}(w^T x) = \frac{1}{1 + e^{-(w^T x)}} \]

\[h_{w3}(x) = \text{Logistic}(w^T x) = \frac{1}{1 + e^{-(w^T x)}} \]
Learning the Weights

- $w^* = \text{argmin}_{w} \text{Loss}(h_w)$

Linear Regression:

$$\text{Loss}(h_w) = \sum_{j=1}^{N} (y_i - (w^T x))^2$$

Logistic Regression:

$$\text{Loss}(h_w) = \sum_{j=1}^{N} -y_i \log(h_w(x)) - (y_i - 1) \log(1 - h_w(x))$$

- y is classification label in logistics regression (0 or 1)
- y is scalar values in linear regression
The original feature space can always be mapped to some higher-dimensional feature space (even infinite) where the training set is separable.
KERNEL TRICK

Figure 18.31 FILES: (a) A two-dimensional training set with positive examples as black circles and negative examples as white circles. The true decision boundary, $x_1^2 + x_2^2 \leq 1$, is also shown. (b) The same data after mapping into a three-dimensional input space $(x_1^2, x_2^2, \sqrt{2}x_1x_2)$. The circular decision boundary in (a) becomes a linear decision boundary in three dimensions. Figure 18.29(b) gives a closeup of the separator in (b).
The linear classifier relies on an inner product between vectors
\[K(x_i, x_j) = x_i^T x_j \]

If every data point is mapped into high-dimensional space via some transformation \(\Phi: x \rightarrow \varphi(x) \), the inner product becomes:
\[K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j) \]

A kernel function is some function that corresponds to an inner product in some expanded feature space.

Kernel function should measure some similarity between data
kernel must be positive semi-definite

You should scale the features to have same scale!!

Most widely used is linear kernels and Gaussian kernels
GAUSSIAN KERNELS

\[k(x_i, x_j) = \exp \left(-\frac{|x_i - x_j|^2}{2\sigma^2}\right) = \exp \left(-\frac{\sum_{k=1}^{n}(x_{ik} - x_{jk})^2}{2\sigma^2}\right) \]

If \(x_i \) and \(x_j \) is similar:
\[k(x_i, x_j) \approx \exp \left(-\frac{0^2}{2\sigma^2}\right) \approx 1 \]

If \(x_i \) and \(x_j \) is different:
\[k(x_i, x_j) \approx \exp \left(-\frac{(\text{large number})^2}{2\sigma^2}\right) \approx 0 \]

If you use Gaussian kernel, You will need to pick \(\sigma \)
SUPPORT VECTOR MACHINES

- SVMs constructs a **maximum margin separator**
- SVMs create a linear separating hyperplane
 - But have ability to embed that in to higher-dimensional space (via **Kernel trick**)
- SVM are a nonparametric method
 - Retain training examples an potentially need to store all or part of the data
 - Some example are more important then others (**support vectors**)
SVM TERMS

• Distance from example x_i to the separator is

$$r = \frac{(w^T x + b)}{||w||}$$

• Examples closest to the hyperplane are support vectors.

• Margin ρ of the separator is the distance between support vectors.
Instead of minimizing expected empirical loss in the training data, SVM attempts to minimize expected generalization loss.

\[
y(x) = w^T x + b \text{ where } w \text{ is weight vector and } b \text{ is bias}
\]

\[
x = x \perp + r \frac{w}{||w||}
\]

\[
w^T x + b = w^T (x \perp + r \frac{w}{||w||}) + b \quad (y(x) = w^T x + b)
\]

\[
y(x) = w^T x \perp + r \frac{w^T w}{||w||} + b \quad (y(x \perp) = w^T x \perp + b = \theta)
\]

\[
y(x) = r \frac{w^T w}{||w||} = 1
\]

or \[r = \frac{(w^T x + b)}{||w||} \]
MAXIMUM MARGINS

Solving this is non-trivial and will not be discussed in class.

\[r = \frac{(w^T x + b)}{|w|} \]

\[\text{argmax}_{w,b} \left\{ \frac{1}{|w|} \min_n \left[t_n (w^T x_n + b) \right] \right\} \]

\[\text{argmin}_{w,b} \frac{1}{2} ||w||^2 \]

\[w = \sum_{n=1}^{N} a_n t_n \phi(x_n) \]

\[\sum_{n=1}^{N} a_n t_n = 0 \]
SOFT MARGINS

Idea: Allow data point to be in the wrong side of the margin boundary, but with a penalty that increases with the distance from that boundary.

Penalty for each data point: slack variable ξ
- $\xi_n = 0$ if point is on the right side
- $\xi_n = |t_n - y(x_n)|$ if point is on the wrong side

Such that
- $t_n y(x_n) \geq 1 - \xi_n$ for $n = 1, \ldots, N$ and $\xi_n \geq 0$

- $0 < \xi_n \leq 1$ for points inside the margin
- $\xi_n = 1$ for points on the margin
- $\xi_n > 1$ for points that are on the wrong side

Goal now is to maximize the margin while softly penalizing points that lie on the wrong side of the margin boundary

$$\argmin_{w,b} C \sum_{n=1}^{N} \xi_n + \frac{1}{2} ||w||^2$$
OPTIMIZATION ON SOFT MARGINS

$$\arg\min_{w,b} C \sum_{n}^{N} \xi_n + \frac{1}{2} ||w||^2$$

subjected to $$t_n y(x_n) \geq 1 - \xi_n$$ for $$n = 1, \ldots, N$$ and $$\xi_n \geq 0$$

$$\xi_n$$: slack variable for training data $$x_n$$

Complex calculations
Lagrangian
Etc.

$$w = \sum_{n=1}^{N} a_n t_n \phi(x_n)$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

$$a_n = C - \mu_n$$

$$\mu_n$$ is Lagrangian multiplier related to $$\xi_n$$

$$b = \frac{1}{N_M} \sum_{n \in M} (t_n - \sum_{n \in S} (a_m t_m k(x_n x_m)))$$

$$a_n$$ is Lagrangian multiplier related to $$w_n$$
PREDICTION USING KERNELS

\[y(x) = w^T \phi(x_n) + b \]

\[w = \sum_{n=1}^{N} a_n t_n \phi(x_n) \quad \text{\(a_n \) is a Lagrangian multiplier} \]

\[y(x) = \sum_{n=1}^{N} a_n t_n k(x, x_n) + b \]

- New Data
- Training data
- Training data target \((-1,1)\)
Use SVM packages: ex> libSVM
• there are numerical optimization steps you don’t want to code

Need to come up with
• Choice of Kernel
 • Choosing Kernels are critical
 • however you could choose not to use the kernels esp when the training set is small (linear kernel)
• Choice of parameter related to the kernel
 • Ex> Gaussian: σ
• Choice parameter C

When is SVM good
• Have medium size feature (1~1000) and have medium size training set (10~10,000)
• If you have many feature and little training set use logistic regression of linear kernels
• Little features and many training set use logistic regression of linear kernels because SVM is still slow.
ENSEMBLE LEARNING (18.10)

Adapted from CS4700 slides by Prof. Carla P. Gomes
gomes@cs.cornell.edu
ENSEMBLE LEARNING

- Idea: select a collection, or ensemble, of hypotheses from the hypothesis space and combine their predictions
 - Ex> During cross-validation we might generate twenty different decision trees, and have them vote on the best classification for a new example.

- Key motivation: reduce the error rate. Hope is that it will become much more unlikely that the ensemble of will misclassify an example.
Learning Ensembles

- Learn multiple alternative definitions of a concept **using different training data or different learning algorithms.**
- Combine decisions of multiple definitions, e.g. using weighted voting.

Source: Ray Mooney
VALUE OF ENSEMBLES

- “No Free Lunch” Theorem
 - No single algorithm wins all the time!

- When combining multiple independent and diverse decisions each of which is at least more accurate than random guessing, random errors cancel each other out, correct decisions are reinforced.

- Examples: Human ensembles are demonstrably better
 - How many jelly beans in the jar?: Individual estimates vs. group average.

Source: Ray Mooney
EXAMPLE: WEATHER FORECAST

<table>
<thead>
<tr>
<th>Reality</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Combine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Carla P. Gomes
Intuitions

- **Majority vote**
- Suppose we have 5 completely independent classifiers...
 - If accuracy is 70% for each
 - \((0.7^5) + 5(0.7^4)(0.3) + 10(0.7^3)(0.3^2)\)
 - **83.7% majority vote accuracy**
 - 101 such classifiers
 - **99.9% majority vote accuracy**

Note: Binomial Distribution: The probability of observing \(x\) heads in a sample of \(n\) independent coin tosses, where in each toss the probability of heads is \(p\), is

\[
P(X = x | p, n) = \frac{n!}{r!(n-r)!} p^x (1 - p)^{n-x}
\]

Source: Carla P. Gomes
Another way of thinking about ensemble learning:

\rightarrow way of enlarging the hypothesis space, i.e., the ensemble itself is a hypothesis and the new hypothesis space is the set of all possible ensembles constructible from hypotheses of the original space.

Increasing power of ensemble learning:

Three linear threshold hypothesis
(positive examples on the non-shaded side);
Ensemble classifies as positive any example classified positively be all three. The resulting triangular region hypothesis is not expressible in the original hypothesis space.

Source: Carla P. Gomes
Different Learners

- Different learning algorithms
- An algorithm with different choice for parameters
- Data set with different features
- Data set = different subsets

Source: Carla P. Gomes
HOMOGENOUS ENSEMBLES

- Use a single, arbitrary learning algorithm but manipulate training data to make it learn multiple models.
 - Data1 \neq Data2 \neq ... \neq Data m
 - Learner1 = Learner2 = ... = Learner m

- Different methods for changing training data:
 - Bagging: Resample training data
 - Boosting: Reweight training data

- In WEKA, these are called meta-learners, they take a learning algorithm as an argument (base learner) and create a new learning algorithm.

Source: Carla P. Gomes
Bagging

- Create ensembles by "bootstrap aggregation", i.e., repeatedly randomly resampling the training data (Brieman, 1996).

- Bootstrap: draw N items from X with replacement

- Bagging
 - Train M learners on M bootstrap samples
 - Combine outputs by voting (e.g., majority vote)

- Decreases error by decreasing the variance in the results due to unstable learners, algorithms (like decision trees and neural networks) whose output can change dramatically when the training data is slightly changed.

Source: Carla P. Gomes
Bagging - Aggregate Bootstrapping

- Given a standard training set D of size n

- For $i = 1 .. M$
 - Draw a sample of size $n^*<n$ from D uniformly and with replacement
 - Learn classifier C_i

- Final classifier is a vote of $C_1 .. C_M$

- Increases classifier stability/reduces variance

Source: Carla P. Gomes
Strong and Weak Learners

- **Strong Learner** (Objective of machine learning)
 - Take labeled data for training
 - Produce a classifier which can be *arbitrarily well-correlated with the true classification*

- **Weak Learner**
 - Take labeled data for training
 - Produce a classifier which is *more accurate than random guessing*

Source: Carla P. Gomes
“Boosting is a machine learning ensemble meta-algorithm for primarily reducing bias, and also variance[1] in supervised learning, and a family of machine learning algorithms which convert weak learners to strong ones.[2]”

(wikipedia)

- **Weak Learner:** only needs to generate a hypothesis with a training accuracy greater than 0.5, i.e., < 50% error over any distribution

- **Learners**
 + Strong learners are very difficult to construct
 + Constructing weaker Learners is relatively easy

- **Questions:** Can a set of weak learners create a single strong learner?
 - **YES 🤪**
 - Boost weak classifiers to a strong learner

Source: Carla P. Gomes
Originally developed by computational learning theorists to guarantee performance improvements on fitting training data for a weak learner that only needs to generate a hypothesis with a training accuracy greater than 0.5 (Schapire, 1990).

Revised to be a practical algorithm, AdaBoost, for building ensembles that empirically improves generalization performance (Freund & Shapire, 1996).

Key Insights

- Instead of sampling (as in bagging) re-weigh examples!
- Examples are given weights. At each iteration, a new hypothesis is learned (weak learner) and the examples are reweighted to focus the system on examples that the most recently learned classifier got wrong.
- Final classification based on weighted vote of weak classifiers

Source: Carla P. Gomes
ADAPTIVE BOOSTING

- Each rectangle corresponds to an example,
- with weight proportional to its height.
- Crosses correspond to misclassified examples.
- Size of decision tree indicates the weight of that hypothesis in the final ensemble.

Source: Carla P. Gomes
Using Different Data Distribution

- Start with uniform weighting
- During each step of learning
 - Increase weights of the examples which are not correctly learned by the weak learner
 - Decrease weights of the examples which are correctly learned by the weak learner

Idea

- Focus on difficult examples which are not correctly classified in the previous steps

Source: Carla P. Gomes
COMBINE WEAK CLASSIFIERS

- Weighted Voting
 - Construct strong classifier by weighted voting of the weak classifiers

- Idea
 - Better weak classifier gets a larger weight
 - Iteratively add weak classifiers
 - Increase accuracy of the combined classifier through minimization of a cost function

Source: Carla P. Gomes
function ADABoost(examples, L, K) returns a weighted-majority hypothesis

inputs: examples, set of N labeled examples \((x_1, y_1), \ldots, (x_N, y_N)\)

\(L\), a learning algorithm

\(K\), the number of hypotheses in the ensemble

local variables: \(w\), a vector of \(N\) example weights, initially \(1/N\)

\(h\), a vector of \(K\) hypotheses

\(z\), a vector of \(K\) hypothesis weights

for \(k = 1\) to \(K\) do

\(h[k] \leftarrow L\)(examples, \(w\))

\(error \leftarrow 0\)

for \(j = 1\) to \(N\) do

if \(h[k](x_j) \neq y_j\) then \(error \leftarrow error + w[j]\)

for \(j = 1\) to \(N\) do

if \(h[k](x_j) = y_j\) then \(w[j] \leftarrow w[j] \cdot error/(1 - error)\)

\(w \leftarrow \text{Normalize}(w)\)

\(z[k] \leftarrow \log (1 - error)/error\)

return \text{Weighted-Majority}(h, z)\)

Figure 18.34 The ADABoost variant of the boosting method for ensemble learning. The algorithm generates hypotheses by successively reweighting the training examples. The function \text{Weighted-Majority} generates a hypothesis that returns the output value with the highest vote from the hypotheses in \(h\), with votes weighted by \(z\).
ADAPTIVE BOOSTING: HIGH LEVEL DESCRIPTION

- C = 0; /* counter*/
- M = m; /* number of hypotheses to generate*/

1. Set same weight for all the examples (typically each example has weight = 1);

2. While (C < M)
 2.1 Increase counter C by 1.
 2.2 Generate hypothesis \(h_C \).
 2.3 Increase the weight of the misclassified examples in hypothesis \(h_C \).

3. Weighted majority combination of all M hypotheses (weights according to how well it performed on the training set).

Many variants depending on how to set the weights and how to combine the hypotheses. ADABOOST → quite popular!!!!

Source: Carla P. Gomes
PERFORMANCE OF ADABOOST

- Learner = Hypothesis = Classifier
- Weak Learner: < 50% error over any distribution
- M number of hypothesis in the ensemble.
- If the input learning is a Weak Learner, then ADABOOST will return a hypothesis that classifies the training data perfectly for a large enough M, boosting the accuracy of the original learning algorithm on the training data.
- Strong Classifier: thresholded linear combination of weak learner outputs.

Source: Carla P. Gomes
Decision stump: decision trees with just one test at the root.

Source: Carla P. Gomes