@ Korea Q\\\\ Stony Brook
University

CSE 537 Fall 2015

LEARNING FROM EXAMPLES
AIMA CHAPTER 18.7

Instructor: Sael Lee

Slides are mostly made from AIMA resources and Andrew W. Moore’s
tutorials: http://www.cs.cmu.edu/~awm/tutorials

ARTIFICIAL NEURAL NETWORKS

Brains

Neural networks

Perceptrons

Multilayer perceptrons
Applications of neural networks

WHAT IS AN ARTIFICIAL NEURAL NETWORK?

Brian composes of 101! neurons of > 20 types, 10 synapses, 1ms-10ms cycle
time
Signals are noisy “spike trains” of electrical potential

It is a formalism for representing functions inspired from biological systems and
composed of parallel computing units which each compute a simple function.

ANNSs provide a general, practical method for learning real-valued, discrete-values, and
vector-valued function from examples.

Algorithms such a Backpropagation use gradient descent to tune network parameters to
best fit a training set of input-output pairs.

EXAMPLE APPLICATIONS & CHARACTERISTICS

ANN is robust to error in the training data and has been
successfully applied to various real problems

Speech/voice recognition
Face recognition

Handwriting recognitions

| can also be used where symbolic representations are used as cases
for Decision tree learning

Characteristics of ANN problems

Instances are represented by many attribute-value pair (supervised)
The target function output may be discrete, real, or vector.

Training data may contain error

Long training times are acceptable

Fast evaluation of the learning target function may be required

The ability of humans to understand the learned target function is not
important.

PRIMITIVE UNITS THAT MAKE UP ANN

Artificial Neural Networks

The Perceptron

Activation
function

Fundamental unit of a Neural Network

1 if iwl.xi >0
i=0

E"t/

1

output =
w, L -1 otherwise

Z wW. X,

weights =05

=w-X

Inputs Learning a perceptron involves choosing values for the weights wi

Perceptrons
Linear units

Sigmoid units

ANN STRUCTURE: DECIDING THE MATHEMATICAL MODEL

Output is a “squashed” linear function of the inputs:

o O s Each unit is a linear
a; < g(in;) = g (2;W;ia;) regression

| Bias Weight

ag = = il
units(nodes) | Wo, %= gwh)
Activation a gt) / links(edges)
ij
a; —=|
(node values) ;’_/ f \ Edge weights w
ks Funttion Function OUPUt bty

Figure 15.12 FILES: figures/neuron-unit.eps {Wed Nov 4 11 23:13 2009). A simple mathemat-
ical model for a neuron. The unit’s output activation is a; = g(>_"_ , wy ;ja;). where a; is the output
activation of vnit ¢ and w; ; is the weight on the link from vait ¢ to this vait.

A gross oversimplification of real neurons, but its purpose is to develop
understanding of what networks of simple units can do.

ACTIVATION FUNCTIONS G

a; g(in;) = r;l._;;H J
‘ g(mi) A g(mf) Sigmoid function allows
the model to be
differentiable
+1 +1
- -
n; m;
(a) (b)
perceptron Sigmoid perceptron

(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 + exp(-W'A))
Changing the bias weight W, ; moves the threshold location

Two types of ANN structure:

Feed-forward networks: connections only in one direction
(directed acyclic graph)
Feed-forward network implement functions, have no internal state
Examples:
single-layer perceptrons (output is O or 1)
multi-layer perceptrons
Recurrent networks:
Interesting models of the brain but more difficult to understand.

Have directed cycles with delays = have internal state (like flip-
flops), can oscillate etc.

TASKS TO BE SOLVED BY ANN

o Controlling the movements of a robot based on self-
perception and other information (e.g., visual
Information);

« Deciding the category of potential food items (e.g.,
edible or non-edible) in an artificial world,;

* Recognizing a visual object (e.g., a familiar face);

* Predicting where a moving object goes, when a robot
wants to catch it.

FEED-FORWARD EXAMPLE

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss5- a3+ Hvl 5 y)
— i'jl’l:II U[II —I—[TZJ'H} —II III L'”]"‘Ii? ff_':l]]

Adjusting weights changes the function: do learning this way!

SINGLE LAYER FEED-FORWARD NEURAL NETWORKS:
PERCEPTRON NETWORK

Every unit connects directly form the network’s inputs to it’s output

Perceptron output
1

08 e
06 i

- (A

)

,
Hih

02 i

Input W Output X, 2 4
Units LU Units

Output units all operate separately — no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff.

EXPRESSIVENESS OF SINGLE LAYER
PERCEPTRONS

e Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

e Can represent AND, OR, NOT, majority, etc., but not XOR
 Represents a linear separator in input space:

EX> Two bit adder Wil ® -
Two separate component ’ carry: AND

1. Carry 2. sum

= w@ Sum: XOR

E:L,I'IT?,.‘J'L} >0 or Y‘_ x>0

B, O O O

0 0 0
1 ®
0 1 1
1 0 1
1 1 1 0
0 I X2
(a) x; and x, (b) x; or x,

Perceptron learning rule converges to a consistent function
for any linearly separable data set

(¢) xy xor x5

PERCEPTRON LEARNING

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true outputy is

Ui en 5
E = 5E-r-rz = ~(y — hw(x))’

Fe

Perform optimization search by gradient descent
(just like logistic regression)

f_)E C)E & f_) ; n : 3

a— = BT X ——= Frr X m—(y — EJ'(E;=:JH"_E*’-'J')) * Chain rule:

W oW oW : (())
= —Frr x ¢'(in) X z; RCAYASZY) gxx

Simple weight update rule:

W, + W;+ ax Err x g'(in) x x;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs

MULTILAYER PERCEPTRONS

Layers are usually fully connected,;
numbers of hidden units typically chosen by hand

Output units a;
W

Hidden units a;
Wr;

Input units €y

EXPRESSIVENESS OF MLPS

All continuous functions w/2 layers, all functions w/3 layers

(a) (b)

Figure 18.23 FILES:. (a) The result of combining two opposite-facing soft threshold functions to
produce a ridge. (b) The result of combining two ridges to produce a bump.

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface

LEARNING IN MULTILAYER NETWORKS

Complications in the error estimation:

Interactions among the learning problems when the
network has multiple output!

Need to think of network as implementing a vector
hypothesis h, rater than scalar function h,.

In terms of loss function dependency is additive
across the components of the error vector

y - hw(x)

dLoss(w) 0 , O - 5, 5
% —aW|Y — hy, (%) —ﬁZ(YR_ak) —Z%(YR_CIR)

However, if the there are multi-layers, the intermediate error are
not trivial.

BACK-PROPAGATION LEARNING

1. Output layer: weight update rules are same as for single-layer perceptron,

where A;=Err; x ¢'(in;)
Wi & Wy & X dy X A

W; < W; + a x Err x g'(in) x x;

2. Hidden layer: Error back-propagation rule
back-propagate the error from the output layer:

g_f — ';'.f;'l_ 17 1 H'I_I_\f_ Hidden layer is responsible for
| ~i /\; portion of error according to
strength of the connection.

3. Update rule for weights in hidden layer:

Wi 4= Wit o ag XAy

(]

THE BACK-PROPAGATION ALGORITHM FOR LEARNING
IN MULTILAYER NETWORKS

function BACK-PROP-LEARNING(cxarnples. networh) returns a neural network
inputs: examples. a set of examples. each with mput vector x and output vector v
nelwork ., amultilayer network with L layers. weights w; ;. actrvation function g
local variables: /. a vector of errors. indexed by network node

repeat
for each weight w; ; 1 nefwork do
w;_; +— a small random number
for each example (X.¥) in cramples do
/ * Propagate the inputs forward to compute the outputs + /
for each node i in the mput layer do
i — X
for { =2to L do
for each node j in layer { do
=y Wi

a; — glin;) Compute the A values for the
/ * Propagate deltas backward from outpur IgyerTo input Iqver output units using the observed
for each node j in the output layer d error

Aljl—g'(in;) x {y; — aj)
for (=L~ 1toldo Propagate the A values back to

for each node i in layer ¢ do N _
|) - revi laver.
Ali] — g'(ini) 3, wij Al the previous laye

i S U T
/ + Update every weight in nerwork using deltas « / Aj = g (i) X Wi,
for each weight w; ; n network do Update the We|ghts between the

wij—wij + a x a; x Alj two lavers
until some stopping criterion 1s satisfied i ' i A
k.j — kjTaXap X Ay

return rnelwork

BACK-PROPAGATION DERIVATION

The squared error on a single example is defined as

E =->(y — a;)?

[u|n—l

where the sum is over the nodes in the output layer.

OF o) da; B _.E'}{I': i1)
oW, = W~ @)gp =~ — e
. din,

= —(yi — a;)g'(imy) = —(y; — a;)g'(iny)

= —(yi — a:)g'(imi)a; = —a;A;

(> W..a.
U‘H "u_;' “ﬂ"a)

OFE

oWy,

da; dg(in;)
2~ e gy == — Tl — a) g
_ g(yi —a;)g (m?)dl-"[f’}”j) ‘ﬁ*am j (? W;ia;
da. dg(in;)
AW L = T AW, — 1
Ez: | ‘j"d”’rﬁg__ j ? ! oWy ;
R in]"
—>X AiWjig {T’HJ}W
:.J
o gl d .
= % A.ﬂfp;}'ig (?}n‘?)(_‘)[{frj (% W .Icfjﬂk)

— £ AWg'(ing)ar = —ard,
1

BACK-PROPAGATION LEARNING CONT,

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

| 8

Total error on training set

o MR o0 o O

0O 50 100 150 200 250 300 350 400
Number of epochs

Typical problems: slow convergence, local minima

LEARNING NEURAL NETWORK STRUCTURE

Cross-validation

If we stay with fully connected networks, structural
parameters to choose from are:

Number of hidden layers and their sizes.
Optimal brain damage

Start with fully connected network and start
removing links and units iteratively.

Tiling
Starting from single unit and start adding units to

take care of the examples that current units got
wrong.

SUMMARY

 Most brains have lots of neurons; each neuron = linear-
threshold unit (?)

* Perceptrons (one-layer networks) insufficiently expressive

* Multi-layer networks are sufficiently expressive; can be
trained by gradient descent, i.e., error back-propagation

 Many applications: speech, driving, handwriting, fraud
detection, etc.

* Engineering, cognitive modeling, and neural system modeling

subfields have largely diverged

	Learning from Examples�AIMA Chapter 18.7
	Artificial neural networks
	What is an Artificial Neural Network?
	Example Applications & Characteristics
	Primitive units that make up ANN
	ANN structure: Deciding the mathematical model
	Activation functions g
	ANN structure: Connecting units
	Tasks to be solved by ANN
	Feed-forward example
	Single layer feed-forward neural networks: Perceptron network
	Expressiveness of Single layer perceptrons
	Perceptron learning
	Multilayer perceptrons
	Expressiveness of MLPs
	Learning in multilayer networks
	Back-propagation learning
	The back-propagation algorithm for learning in multilayer networks
	Back-propagation derivation
	Back-propagation derivation cont.
	Back-propagation learning cont.
	Learning neural network structure
	Summary

