
LEARNING FROM EXAMPLES 
AIMA CHAPTER 18 (4-5) 

CSE 537 Fall 2015 

Instructor: Sael Lee 

Slides are mostly made from AIMA resources,   
Andrew W. Moore’s tutorials: http://www.cs.cmu.edu/~awm/tutorials and  
Bart Selman’s Cornell  CS4700 decision tree slides   

http://www.cs.cmu.edu/~awm/tutorials


AIMA Chapter 18 (4) 

EVALUATING AND CHOOSING THE BEST HYPOTHESIS 



CHOOSING BETWEEN HYPOTHESIS 

AIAM Ch 18.2 
 

There can be multiple consistent hypothesis  



 Given two models of similar generalization errors, one should 
prefer the simpler model over the more complex model 

 In general there is a trade off between complex hypothesis that 
fit the training data well and simpler hypothesis that may 
generalize better.  

OCKHAM'S RAZOR 

AIAM Ch 18.2 
 

Overfitting error 

Training error 

Generalization error 

Choosing between consistent hypothesis 



 Goal: Learn a hypothesis that fits the future data best.  
 How do we define “Future data” and “best”  

 
 “Future data”  

 Stationary assumption: there is a prob. distribution over examples 
that remains stationary over time. 

 Data are selected independent and identically distributed (i.i.d) 
 P(Ej| Ej-1, Ej-2, … ) = P(Ej)   independent  

 P(Ej) = P(Ej-1) = P(Ej-2) = …  identically distributed  

 Can use any past data as the future data for testing 

 
 “Best fit”  

 Error rate: proportion of mistakes it makes 

EVALUATING AND CHOOSING THE BEST HYPOTHESIS 

AIAM Ch 18.4 



 Task of finding best hypothesis 
 Model selection: choosing hypothesis space 

 Ex> choosing the degree of the polynomial 
 
 
 
 
 

 
 Optimization: finding best hypothesis within that space 

 Ex> choosing the slopes (parameter) of polynomials 

 

MODEL SELECTION 

AIAM Ch 18.4.1 
 

3rd Order Polynomial 1st Order Polynomial 9th Order Polynomial 

• Validation set 

Training set (80%) Test set Validation set 

(10%) (10%) 



 k-fold cross-validation 

CROSS-VALIDATION 

AIAM Ch 18.4 
 

test train train train train 

train train test train train 

train test train train train 

train train train test train 

train train train train test 

Average 
results 

 Leave-one-out cross-validataion (k=N) 

Good tutorial: http://www.youtube.com/watch?v=hihuMBCuSlU 

http://www.youtube.com/watch?v=hihuMBCuSlU


 AIAM Ch 18.4 
 

SIMPLE MODEL SELECTION ALGO  

 



 Error rate 
 Count(y ! =  𝑦�)/N 

 Loss function 
 L(x, y, 𝑦�) = Utility(result of using y given an input x) – Utility(result of 

using 𝑦� given input x) 

FROM ERROR RATE TO LOSS 

AIAM Ch 18.4.2 

Generalization loss for a hypothesis h w.r.t L is  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿 ℎ =  � 𝐿 𝑦, ℎ 𝑥 𝑃(𝑥,𝑦)
𝑥,𝑦 ∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑖𝑖𝑖𝑖𝑖

 

Prior prob. 
Unknown 

ℎ∗ = 𝑎𝑎𝑎𝑎𝑎𝑎ℎ∈𝐻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿 ℎ  

𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿,𝐸 ℎ =  
1
𝑁 � 𝐿 𝑦, ℎ 𝑥

(𝑥,𝑦)∈𝐸

 
Empirical loss 



 Doing model selection and optimization at once 
 Search for a hypothesis that directly minimized the weighted sum of 

empirical loss and the complexity of the hypothesis 

REGULARIZATION 

AIAM Ch 18.4.3 
 

𝐶𝐶𝐶𝐶 ℎ = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ℎ +  𝜆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ) 
 
ℎ�∗ =  𝑎𝑎𝑎𝑎𝑎𝑎ℎ∈𝐻 𝐶𝐶𝐶𝐶(ℎ) 

 

Need to learn this para. on validation set 



AIMA Chapter 18 (6) 

PARAMETRIC LEARNING  
- REGRESSION & CLASSIFICATION 



 Linear regression assumes that the expected value of the 
output given an input, E[y|x], is linear. 

 Goal of linear regression: 
 Find the gest fit hw that minimize the loss function 

 

UNIVARIATE LINEAR REGRESSION 
AIMA Ch 18.6.1 

ℎ𝑤 = 𝑤1𝑥 + 𝑤0 
 
𝐿𝐿𝐿𝐿 ℎ𝑤 =  ∑ (𝑦𝑖  − 𝑤1𝑥 + 𝑤0 )2𝑁

𝑗=1   
L2 Loss 
function 

𝑤∗  = 𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝐿𝐿𝐿𝐿 ℎ𝑤  
 
⇒ 𝜕

𝜕𝑤0
∑ (𝑦𝑖  − 𝑤1𝑥 + 𝑤0 )2= 0𝑁
𝑗=1  

      𝜕
𝜕𝑤1

∑ (𝑦𝑖  − 𝑤1𝑥 + 𝑤0 )2= 0𝑁
𝑗=1   



UNIVARIATE LINEAR REGRESSION IN PROBABILISTIC MODEL 

Assume that the data is formed by 

where… 
• the noise signals are independent 
• the noise has a normal distribution with mean 0 and unknown variance σ2 

Than P(y|w,x) has a normal distribution with 
• mean wx 
• variance σ2 

P(y|w, x)  = Normal(𝜇 = 𝑤𝑤,𝜎2)  



BAYESIAN LINEAR REGRESSION 

𝑦𝑖 = w𝑥𝑖 + Normal(0,𝜎2)  

P(y|w, x)  = Normal(𝜇 = 𝑤𝑤,𝜎2)  

We have a set of datapoints (x1,y1) (x2,y2) … (xn,yn) 
which are EVIDENCE about w. 
 
We want to infer w from the data 

P(w|𝑥1, 𝑥2, … , 𝑥𝑛,𝑦1, 𝑦2, … ,𝑦𝑛)  = Normal(𝜇 = 𝑤𝑤,𝜎2)  

• You can use BAYES rule to work out a posterior distribution for w 
given the data. 
 

• Or you could do Maximum Likelihood Estimation 



 Beyond linear models, analytical solutions generally do 
not exist:  
 require alternative method  

 Maximum Likelihood Extimate  
 Gradient Decent method (*note: hill climbing) 

 
w <- any point in the parameter space 
Loop until convergence do 
 for each wi in w do 
 
 

* BEYOND LINEAR MODEL 
AIMA Ch 18.6.1 
 

wi <− wi  
−  α

𝜕
𝜕𝑤𝑖

𝐿𝐿𝐿𝐿(𝒘) 

Step size: learning 
rate 



 Batch gradient decent 
 Minimize the sum of the individual losses for each example 

 
  
 
 Convergence t unique global minimal guaranteed (in linear 

case) as long as 𝛼 is selected small enough 
 Can be slow to converge 

 Stochastic gradient decent 
 Minimize the individual losses one example at a time 

 
  
 Fixed rate 𝛼 does not guaranty convergence (but scheduled 

decreasing learning rate does) 
 Convergence is faster than batch gradient decent 

TWO TYPES OF GRADIENT DECENT 
AIMA Ch 18.6.1 
 

wi <− wi  
−  α�

𝜕
𝜕𝑤𝑖

(𝑦𝑖  − 𝑤1𝑥𝑗 + 𝑤0 )2
𝑗

 

wi <− wi  
−  α

𝜕
𝜕𝑤𝑖

(𝑦𝑖  − 𝑤1𝑥𝑗 + 𝑤0 )2 



 AIMA Ch 18.6.2 

MULTIVARIATE LINEAR REGRESSION 

 ℎ𝑠𝑠 x𝑗 = wTx𝑗 = ∑ 𝑤𝑖𝑥𝑗,𝑖
𝑛
𝑖=0  

ℎ𝑠𝑠 x𝑗 = 𝑤0 + 𝑤1𝑥𝑗,1 + 𝑤2𝑥𝑗,2 +  … + 𝑤𝑛𝑥𝑗,𝑛

=  �𝑤𝑖𝑥𝑗,𝑖

𝑛

𝑖=0

 ;  𝑤𝑤𝑤𝑤𝑤 𝑥𝑗,0 = 1 

𝐿𝐿𝐿𝐿 ℎ𝑤 =  ∑ (𝑦𝑖  − 𝑤1𝑥 + 𝑤0 )2𝑁
𝑗=1   

𝑤∗  = 𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝐿𝐿𝐿𝐿 ℎ𝑤  

𝐶𝐶𝐶𝐶 ℎ = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ℎ +  𝜆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ) 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ℎ𝑠𝑠 = 𝐿𝑞 w = � |𝑤𝑖|𝑞
𝑖

 

• Regulating the complexity in multivariate regression  

If q=1: L1 regularization -> tends to create sparse model 

• Parameter optimization in multivariate regression  

 



MULTIVARIATE LINEAR REGRESSION CONT. 

L1 regularization vs L2 regularization  

-> L1 regularization leads to 
weights of zeros  

Minimizing 𝐸𝐸𝐸𝐸𝐸𝐸𝐸 w +  𝜆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 w  
= minimizing 𝐸𝐸𝐸𝐸𝐸𝐸𝐸 w  subjected to the constraint that 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 w ≤ 𝑐 for c that is related to 𝜆 

Optimization with 
regularization:  
Find the point closes to the 
minimum (center of contour) 



LINEAR CLASSIFICATION WITH A HARD THRESHOLD 
AIMA ch 18.6.3 

Linear functions can be used for classification as well as regression 

Decision boundary learning 

Decision boundary  



LINEAR CLASSIFICATION WITH A HARD THRESHOLD CONT. 

ℎw x = 1 if w𝑇x ≥ 0    
otherwise 0.  

1. Classification hypothesis:  

3. Logistic:   

ℎw x = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 w𝑇x       where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑧 = 1 if 𝑧 ≥ 0    
otherwise 0.  

logistics  hard threshold  

ℎw x = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 w𝑇x  = 1

1+𝑒− w𝑇x  
  

2. Hard threshold function:   

No longer 
0/1 



LOGISTIC REGRESSION: CLASSIFICATION  

Unlike linear regression, it is not possible to find a closed-form solution for the 
coefficient values that maximizes the likelihood function, so an iterative process 
must be used. We will use gradient decent again.   



 Classification examples:  

NAÏVE BAYES NETWORK FOR CLASSIFICATION  
20.2.2 

Hand written digit recognition Spam filtering 



NAÏVE BAYES FOR SPAM FILTERING 

… 

Y:Spam? 

f1:word1 f2:word2 f3:word3 fn:wordn Dictionary of 
size N 

Naïve Bayes assumptions: 
=> Evidences are independently drawn 

P(Y,f1,f2,…,fn)= 𝑃(𝑌)∏ 𝑃(𝑓𝑓|𝑌)𝑖  

• We only specify how each feature depends on the class 
• Total number of parameters is linear in n 

P(Y)  

P(Fi|Y)  



INFERENCE IN NAÏVE BAYES 

 

Goal: compute posterior over causes 

Step 1: get joint probability of causes and evidence 

Step 2: get probability of evidence 

Step 3: renormalize 

P(f1,f2,…,fn) 

P(Y|f1,f2,…,fn) 

P(Y|f1,f2,…,fn) = αP(Y,f1,f2,…,fn)
P(f1,f2,…,fn)  

= α𝑃(𝑌)∏ 𝑃(𝑓𝑖|𝑌)𝑖  
… 

Y:Spam? 

#Word1/M #Word2/M #Word3/M #Wordn/M 

MODEL 



 Assumptions: 
 Bag of words  
 Count word frequency 
 Dictionary 

 What do we need in order to use naïve Bayes? 
 Estimates of local conditional probability tables 

 P(Y), the prior over labels 
 P(Fi|Y) for each feature (evidence variable) 
 These probabilities are collectively called the parameters of the model and 

denoted by θ 

 Learning the parameters  
 P(Y) & P(Fi|Y) & P(Fi|-Y) from data  

 

� P(Fi|Y) = 1
𝑖=1…𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

 � P(Fi|−Y) = 1
𝑖=1…𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

 



EXAMPLE: SPAM FILTERING CONT.  

SPAM HAM 

Offer is secret 
Click secret link 
Secret sports link 

Play sports today 
Went play sports 
Secret sports event 
Sport is today 
Sport costs money 

Q: P(“secret” | spam) = 3/9 = 1/3 
   P(“secret” | ham ) = 1/15 

SPAM 

f1:word1 f2:word2 f3:word3 

 P(SPAM|M=“sport”)  

   = P(M|SPAM)P(SPAM)
P(M|SPAM)P(SPAM)+P(M|HAM)P(HAM) 

   = 
1
3∗
3
8

1
3∗
3
8+

1
3∗
5
8
 

P(SPAM) = 9/(9+15) = 3/8 
P(HAM) = 1-3/8 = 5/8  
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