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LEARNING FROM EXAMPLES

AIMA CHAPTER 18 (4-5)
Instructor: Sael Lee

Slides are mostly made from AIMA resources,
Andrew W. Moore’s tutorials: http://www.cs.cmu.edu/~awm/tutorials and
Bart Selman’s Cornell CS4700 decision tree slides



http://www.cs.cmu.edu/~awm/tutorials

AIMA Chapter 18 (4)
EVALUATING AND CHOOSING THE BEST HYPOTHESIS



CHOOSING BETWEEN HYPOTHESIS

There can be multiple consistent hypothesis
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Figure 15.1 FILES: figures/xy-plot.eps (Tue Nov 3 16:24:13 2009). (a) Example (r. f{r)) pairs
and a consistent, linear hypothesis. (b) A consistent, degree-7 polynomial hypothesis for the same data
set. (c) A different data set, which admits an exact degree-6 polynomual fit or an approximate linear fit.
(d) A sumple, exact sinuscidal fit to the same data set.




OCKHAM'S RAZOR

Given two models of similar generalization errors, one should
prefer the simpler model over the more complex model

In general there is a trade off between complex hypothesis that
fit the training data well and simpler hypothesis that may
generalize better.

Choosing between consistent hypothesis
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EVALUATING AND CHOOSING THE BEST HYPOTHESIS

Goal: Learn a hypothesis that fits the future data best.
How do we define “Future data” and “best”

“Future data”

Stationary assumption: there is a prob. distribution over examples
that remains stationary over time.

Data are selected independent and identically distributed (i.i.d)
P(Ej| Ej-1, Ej-2, ... ) = P(E)) independent
P(Ej) = P(Ej-1) = P(E}-2) = ... identically distributed

Can use any past data as the future data for testing

“Best fit”
Error rate: proportion of mistakes it makes



MODEL SELECTION
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Task of finding best hypothesis

Model selection: choosing hypothesis space
Ex> choosing the degree of the polynomial

15t Order Polynomial 3 Order Polynomial 9th Order Polynomial

Optimization: finding best hypothesis within that space
Ex> choosing the slopes (parameter) of polynomials

e Validation set
(10%) (10%)

Training set (80%) _-




CROSS-VALIDATION

k-fold cross-validation

test train train train train train test train train train
train train test train train train train train test train

train train train train test

Leave-one-out cross-validataion (k=N)

Good tutorial: http://www.youtube.com/watch?v=hihuMBCuSIU

Average
results


http://www.youtube.com/watch?v=hihuMBCuSlU

SIMPLE MODEL SELECTION ALGO

function CROSS-VALIDATION-WRAPPER(Learner, b, examples) returns a hypothesis

local variables: ¢rr7, an array. indexed by siz¢, storing training-set error rates
crrl’, an array, indexed by size, storing validation-set error rates
for size =1 to ~c do
eriT[size], err V] size] — CROSS-VALIDATION( Learner, size, k, examples)
if ¢rr1T" has converged then do
bie st _si ze — the value of size with minimum errl [size]

return Learner | best _size, coramples)

function CROSS-VALIDATION(Learner, size, b, eramples ) returns two values:
average training set error rate, average validation set error rate

fold_err T — 01 fold eV —0
for fold =110 L do
fratning _set, validation _set — PARTITION(caxamples, fold, k)
h — Learner(size, training _set)
fald _errT — fold_errT + ERROR-RATE(N, training _set)
fold _ervV — fold _errlV” YERROR-RATE(h, validation _set)
veturn fold _err Tk, fold _errV [k




FROM ERROR RATE TO LOSS

Error rate
Count(y! = y)/N
Loss function

L(x, y, ¥) = Utility(result of using y given an input x) - Utility(result of
using y given input x)

Generalization loss for a hypothesis h w.r.t L is _
Prior prob.

Unknown
GenLoss; (h) = z L(y, h(x))P(x,y)

(x,y)EALLpossible input
h* = argminpcyGenlLoss; (h)

Empirical loss

1
EmpLoss; g(h) = N Z L(y,h(x))

(x,y)EE



REGULARIZATION

Doing model selection and optimization at once

Search for a hypothesis that directly minimized the weighted sum of
empirical loss and the complexity of the hypothesis

Need to learn this para. on validation set

Cost(h) = EmpLoss(h) + A Complexity(h)

h* = argmingey Cost(h)



AIMA Chapter 18 (6)

PARAMETRIC LEARNING
- REGRESSION & CLASSIFICATION
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Linear regression assumes that the expected value of the
output given an input, E[y|x], is linear.

Goal of linear regression:
Find the gest fit h,, that minimize the loss function
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UNIVARIATE LINEAR REGRESSION IN PROBABILISTIC MODEL
inputs outputs
Assume that the data is formed by - —
¥, = wx;+ noise, ;:: :j
where... xs=4 y,=3.1

* the noise signals are independent
e the noise has a normal distribution with mean O and unknown variance o2

Than P(y|w,x) has a normal distribution with
°* mean wx
* variance 02

P(y|w,x) = Normal(u = wx, 6?)




BAYESIAN LINEAR REGRESSION

y; = wx; + Normal(0, 62)

P(y|w,x) = Normal(u = wx, ?)

We have a set of datapoints (x;,¥1) (Xo,Y5) - (XyY5)
which are EVIDENCE about w.

We want to infer w from the data

P(W|xq, X5, e, X0, V1, Vo, s Vn) = Normal(u = wx, 02)

* You can use BAYES rule to work out a posterior distribution for w
given the data.

 Oryou could do Maximum Likelihood Estimation



BEYOND LINEAR MODEL

Beyond linear models, analytical solutions generally do
not exist:

require alternative method
Maximum Likelihood Extimate
Gradient Decent method (*note: hill climbing)

W <- any point in the parameter space
Loop until convergence do
for each wi in w do Loss

W, <—w, — agvaoss(w)
l

W

Step size: learning
rate

Wp



TWO TYPES OF GRADIENT DECENT

Batch gradient decent

Minimize the sum of the individual losses for each example

E J 2
Wi <-w, — a o, v — (W1xj + Wo))
j

Convergence t unique global minimal guaranteed (in linear
case) as long as a is selected small enough

Can be slow to converge

Stochastic gradient decent
Minimize the individual losses one example at a time

d
oW, Vi — (Wlxj + Wo))z

Fixed rate a does not guaranty convergence (but scheduled
decreasing learning rate does)

Convergence is faster than batch gradient decent



MULTIVARIATE LINEAR REGRESSION

e Parameter optimization in multivariate regression

AIMA @W(P@B= o d wixj + WaXja + o+ WiXjg

= Z w;X;; ; where xjo =1
i=0

hSW(Xj) = WTX]' = Z?:() Win,i

*

w* = argmin,Loss(h,,)

Loss(hy) = Z?’ﬂ()’i — (wyx + wp))?

* Regulating the complexity in multivariate regression

Cost(h) = EmpLoss(h) + A Complexity(h)

Complexity(h =L (w) = w; |4

If g=1: L1 regularization -> tends to create sparse model



MULTIVARIATE LINEAR REGRESSION CONT,

Minimizing EmpLoss(w) + A Complexity(w)
= minimizing EmpLoss(w) subjected to the constraint that
Complexity(w) < c for c that is related to 1

L1 regularization vs L2 regularization

Optimization with
regularization:

Find the point closes to the
minimum (center of contour)

-> L1 regularization leads to

Figure 18.14  FILES: figures/diamond.eps (Wed Nov 4 14:45:53 2009). Why L1 regularization wel gh‘l‘_S Of Zeros
tends to produce a sparse model (a) With 1 regularization (box), the minimal achievable loss (con-
centric contours) often occurs on an axis, meaning a weight of zero. (b) With L. regularization {circle),

the minimal loss 13 likely to eccur anywhere on the circle, giving no preference to zero weights.




LINEAR CLASSIFICATION WITH A HARD THRESHOLD

Linear functions can be used for classification as well as regression

Decision boundary
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Figure 18.15

linearly separable.

FILES: . (a) Plot of two seismic data parameters. body wave magnitude T and surface
wave magnitude ;. for earthquakes (white circles) and nuclear explosions (black circles) oceurnng
between 1982 and 1990 in Asia and the Middle East (7). Also shown is a decision boundary between

the classes. () The same domain with more data points. The earthquakes and explosions are no longer

Decision boundary learning




LINEAR CLASSIFICATION WITH A HARD THRESHOLD CONT,

1. Classification hypothesis:

hy,(x) =1ifwix >0
otherwise 0.

2. Hard threshold function:
hy,(x) = Threshold(w'x) where Threshold(z) =1ifz >0
otherwise 0.
3. Logistic:
1

hW(X) = LOgiStiC(WTX) = W)
1+e” W' X

hard threshold logistics




LOGISTIC REGRESSION: CLASSIFICATION

Unlike linear regression, it is not possible to find a closed-form solution for the
coefficient values that maximizes the likelihood function, so an iterative process
must be used. We will use gradient decent again.
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Figure 18.18 FILES: . Eepeat of the expenments in Figure 1815 psing logistic regression and
squared error. The plot in (a) covers 5000 iterations rather than 1000, while (b) and (c) use the same
scale.




NAIVE BAYES NETWORK FOR CLASSIFICATION

Classification examples:

Spam filtering Hand written digit recognition

transaction, this is by virture of its nature
as being utterly confidencial and top

Dear Sir. 9 D
x First, | must solicit your confidence in this 1

secret. . ? 1
TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS

MESSAGE AND PUT "REMOVE" IN THE
SUBJECT. l 2

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm

beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was

working pre being stuck in the corner, but

when | plugged it in, hit the power nothing Q

happened. ?7?




NAIVE BAYES FOR SPAM FILTERING

Naive Bayes assumptions:
=> Evidences are independently drawn

fl:wordl  f2:word2  f3:word3 .. fniwordn

P(Y,f1,£2,...fn)= P(Y) [1; P(fi|Y)

* We only specify how each feature depends on the class
* Total number of parameters is linear in n

P(FilY)

Dictionary of
size N



INFERENCE IN NAIVE BAYES

MODEL
Y:Spam?
P(Y,f1,f2,...,fn
- P(Y|f1,f2,....,fn) =« Fs(fl = fn))
: - . =aP(Y)IL; P(filY)
#@dl/M #!v_grd2/M #Xv_grds/M #ngcin/l\/l
Goal: compute posterior over causes
Step 1: get joint probability of causes and evidence
P(Y:fl---fn-) —
PEylsfl---fn; ] };Eylg%igﬂmg
P(ya, f1..- fn |::> Y2 i Jily2
P('!M_-sfi oo fn) P(yy) Hi-P(fé‘yk)
Step 2: get probability of evidence P(f1,f2,...,fn)

Step 3: renormalize P(Y|f1,f2,...,fn)



Assumptions:
Bag of words
Count word frequency
Dictionary

What do we need in order to use naive Bayes?

Estimates of local conditional probability tables
P(Y), the prior over labels
P(Fi|Y) for each feature (evidence variable)

These probabilities are collectively called the parameters of the model and
denoted by 0

Learning the parameters
P(Y) & P(Fi|Y) & P(Fi|-Y) from data

> PFEiIlY =1 S PEIY =1

i=1..size(dictionary) i=1..size(dictionary)



EXAMPLE: SPAM FILTERING CONT,

SPAM

Offer is secret
Click secret link
Secret sports link

Q: P(“secret” | spam)=3/9=1/3
P(“secret” | ham)=1/15

P(SPAM) = 9/(9+15) = 3/8
P(HAM) = 1-3/8 =5/8

SPAM

fliwordl  f2:word2  f3:word3

HAM

Play sports today
Went play sports
Secret sports event
Sport is today
Sport costs money

P(SPAM | M=“sport”)
P(M|SPAM)P(SPAM)
P(M | SPAM)P(SPAM)+P(M | HAM)P(HAM)
13
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