Lecture slide courtesy of Prof. Steven Skiena

CSE 373 Analysis of Algorithms Fall 2016 Instructor: Prof. Sael Lee

LEC21: REVIEW OF ANALYSIS OF ALGORITHMS

Lecture slide courtesy of Prof. Steven Skiena

COURSE OUTCOME:

The ABET objectives for the course:

- 1. Ability to perform worst-case asymptotic algorithm analysis
- 2. Ability to **define and use classical combinatorial algorithms** for problems such as sorting, shortest paths and minimum spanning trees
- 3. Knowledge of **computational intractability** and **NP completeness**
- The program objective for the course:
 - + (S6) have a solid understanding of computational theory and foundational mathematics.

× Objectives

- Read about the CS accreditation <u>ABET</u> program. The A BET objectives for the course are
- Provide a rigorous introduction to worst-case asymptot ic algorithm analysis.
- Develop classical graph and combinatorial algorithms for such problems as sorting, shortest paths and mini mum spanning trees.
- Introduce the concept of computational intractability a nd NP completeness.

WHAT IS AN ALGORITHM?

- × An algorithmic problem is specified by describing the
 - + set of instances it must work on and
 - + what desired properties the output must have.
- × Properties of Algorithms
 - + Correctness: For any algorithm, we must prove that it <u>always</u> returns the desired output for <u>all legal instances of the probl</u> <u>em.</u>
 - + Efficient

PROVING CORRECTNESS: INDUCTION AND RECURSION

- Failure to find a counterexample to a given algorithm does not mean *"it is obvious"* that the algorithm is correct.
- Mathematical induction is a very useful method for proving the correctness of recursive algorithms.
- **Recursion** and induction are the same basic idea:
 - + (1) basis case,
 - + (2) general assumption,
 - + (3) general case.

Ex> proving

$$\sum_{i=1}^{n} i = n(n+1)/2$$

THE RAM MODEL OF COMPUTATION

Algorithms are an important and durable part of computer science because they can be studied in a machine/language independent way.

This is because we use the **RAM model of computation** for all our analysis.

- + Each "simple" operation (+,*, -, =, if, call) takes 1 step.
- + Loops and subroutines are *not* simple operations. They depend upon the size of the data and the contents of a subroutine.
 - × ex> "Sort" is not a single step operation.

ASYMPTOTIC NOTATIONS: NAMES OF BOUNDING FUNCTIONS

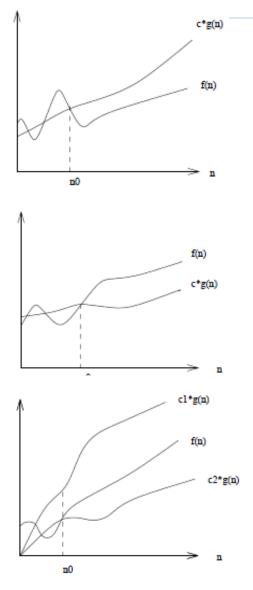
- * Big-Oh: g(n) = O(f(n)) means C*f(n) is an upper bound on g(n).
- × Big-Omega: $g(n) = \Omega(f(n))$ means C*f(n) is a *lower* bound on g(n).
- × Big-Theta: $g(n) = \Theta(f(n))$ means $C_1 * f(n)$ is an upper bound on g(n) and $C_2 * f(n)$ is a lower bound on g(n). (a.k.a. *tight bound*)

C, C_1 , and C_2 are all constants independent of n.

ASYMPTOTIC NOTATIONS

- * Big-Oh: f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below $c^*g(n)$.
- * Big-Omega: $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or above c*g(n).
- Big-Theta: $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1^*g(n)$ and $c_2^*g(n)$ inclusive.

The definitions imply a constant n_0 beyond which they are satisfied. We do not care about small values of n.



DOMINANCE RELATIONS

- × Faster-growing function *dominates* a slower-growing one
- Common functions that appear in algorithms analysis order of increasing dominance:

 $n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$

- + Constant functions, f(n) = 1
- + Logarithmic functions, $f(n) = \log n$
- + Linear functions, f(n) = n
- + Superlinear functions, $f(n) = n \lg n$
- + Quadratic functions, $f(n) = n^2$
- + Cubic functions, $f(n) = n^3$
- + Exponential functions, $f(n) = c^n$ for a given constant c > 1
- + Factorial functions, f(n) = n!

PROGRAM COMPLEXITY ANALYSIS

- × Determining time complexity analysis given a code.
 - + EX> Selection Sort Worst Case Analysis
 - + EX> Insertion Sort Worst Case Analysis
 - + EX> String Pattern Matching Worst Case Analysis
- Properties of Logarithms
 - + In relation to Trees ex> Binary Search
 - + Logarithms and Multiplication
 - + The Base is not Asymptotically Important
 - + Logarithms and Bits

DATA STRUCTURE

 Complexity of an algorithms may differ when using different data structures.

× Types of DS:

- + Contiguous vs. Linked Data Structures
- + Containers: Stacks and Queues

× Dictionary / Dynamic Set Operations & time analysis

- + Basic Operations: Search(S,k) Insert(S,x) Delete(S,x)
- + Binary Search Trees: operations.
- + Balanced Search Trees
- + Hash Tables: Collisions, hash functions, Performance on Set Operations
- + Analysis of Substring Pattern Matching using different dictionary data structures.

SORTING

- Applications of sorting
- × Pragmatics of Sorting
- × Selection Sort:
 - + Data Structure Matters: Heapsort

× Priority Queue:

- + operations;
- + implementations;
- + time analysis o f operations based of data structure used
- + Applications
- × Binary Heap:
 - + Constructing Heaps
 - + Heap operations and time analysis: Bubble up & Bubble down

SORTING

- MergeSort & Divide-and-conquer
- × Analysis of Algorithms that use Divide-and-conquer
 - + EX> matrix multiplication
 - + Divide-and-Conquer Recurrences
 - + Application of Master Theorem
- × Quicksort & Partitioning
 - + Analysis Best case, worst case, average case analysis
 - + Randomized analysis
- × Lower Bound Analysis on Sorting comparison based
- × Non-Comparison-Based Sorting
 - + Bucketsort time complexity

GRAPH DATA STRUCTURES

Scheme Graph data structure – characteristics & operations

- + Adjacency Matrix
- + Adjacency list
- × Graph terminology:
 - + Degree
 - + Connected & strongly connected
- × Types of graphs:
 - + Directed vs. Undirected Graphs
 - + Weighted vs. Unweighted Graphs
 - + Simple vs. Non-simple Graphs
 - + Sparse vs. Dense Graphs
 - + Cyclic vs. Acyclic Graphs

BREADTH-FIRST SEARCH

- Graph traversal: We want to visit every vertex and ever y edge exactly once in some well-defined order.
- * Breadth-first search is appropriate if we are interested in <u>shortest paths on unweighted graphs</u>.
- × How BFS works on graphs.
- × Data Structure for BFS using queue
- × Applications of BFS
 - + Shortest Paths
 - + Connected Components
 - + Two-Coloring Graphs Bipartite

DEPTH-FIRST SEARCH

- × BFS v.s. DFS
- × How DFS works on graphs.
- × Characteristics of DFS algo
 - + Edge Classification for DFS: tree edges, back edges, ...
 - + Finding ancestor and descendants by time intervals & appli cations
- × Data structure for DFS: stack (recursion)
- × Applications of DFS
 - + Finding Cycles
 - + Articulation Vertices
 - + Topological Sorting
 - + Strongly Connected Components

MINIMUM SPANNING TREES & GREEDY ALGORITHMS

- × Input: Edge-weighted graphs
- × Characteristic of MSP
- × Applications
 - + Net Partitioning
 - + provides a good heuristic for traveling salesman problems
- × Prim's Algorithm :
 - + how it works, characteristics, & time analysis
- × Kruskal's Algorithm :
 - + how it works, characteristics, and time analysis

SHORTEST PATH

- × Characteristic of shortest path problem
- × Dijkstra's Algorithm (single source shortest path)
 - + how it works (Dynamic Programing), characteristics, & time analysis
 - + Difference between Prim's/Dijkstra's
- × The Floyd-Warshall Algorithm (all-pairs shortest path)
 - how it works (Dynamic Programing), characteristics, & time analysis
- × Applications:

BACKTRACKING

- What is Backtracking used for?
- × How to apply Backtracking
 - + Modeling the solution vector
 - + Recursive structure similar to DFS
 - + How to model: is_a_solution(a,k,input); process_solution(a,k,input); construct_candidates(a,k,input,c,&ncandidates); make_move(a, k,input);

× Applications:

- + Sudoku
- + Constructing all Subsets
- + Constructing all Permutations
- + The Eight-Queens Problem
- + Can Eight Pieces Cover a Chess Board?

HEURISTIC SEARCH

- Backtracking searches all configurations to find the best of all possible solutions.
- * Heuristic methods provide an alternate way to approach difficult combinatorial optimization problems.
 - + Solution space representation
 - + Cost function
- × Heuristic search methods:
 - + Random sampling,
 - + local search strategy
 - × Gradient-descent search
 - × Simulated annealing

DYNAMIC PROGRAMMING

- × When DP is appropriate.
- Characteristics & Benefitsof DP
 - + <u>systematically search all possibilities</u> (thus guaranteeing cor rectness) <u>while storing results to avoid recomputing</u>
- × Three Steps to Dynamic Programming
 - 1. Formulate the answer as a recurrence relation
 - 2. Show that the number of different instances of your recurrence is bounded by a polynomial.
 - 3. Specify an order of evaluation for the recurrence so you always have what you need.

DP CONT.

- × Examples:
 - + Fibonacci Numbers
 - + Binomial Coefficients Pascal's Triangle
- Edit Distance & applications
 - + How Edit Distance works & analysis
 - + Substring Matching
 - + Longest Common Subsequence
 - + Maximum Monotone Subsequence (Longest Increasing Sequence)
 - + The Partition Problem
 - + Minimum Weight Triangulation
- Comparing DP with Recurrence
- × Limitations of Dynamic Programming: TSP
 - + Principle of optimality

NP-COMPLETENESS

- × Bandersnatch(G)
 - + Convert G to an instance of the Bo-billy problem Y .
 - + Call the subroutine Bo-billy on Y to solve this instance.
 - + Return the answer of Bo-billy(Y) as the answer to G.
- Now suppose my reduction translates G to Y in O(P(n)):
 - + 1. If my Bo-billy subroutine ran in O(P'(n)) I can solve the Bandersnatch problem in O(P(n) + P'(n'))
 - + 2. If I know that $\Omega(P'(n))$ is a lower-bound to compute Bandersnatch, then $\Omega(P'(n) P(n'))$ must be a lowerbound to compute Bo-billy.

Concepts: *problem , instance, decision problem*

