
LEC21: REVIEW OF ANALYSIS OF ALGORITHMS

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

COURSE OUTCOME:

The ABET objectives for the course:
1. Ability to perform worst-case asymptotic algorithm analysis
2. Ability to define and use classical combinatorial algorithms

for problems such as sorting, shortest paths and minimum
spanning trees

3. Knowledge of computational intractability and NP
completeness

The program objective for the course:
 (S6) have a solid understanding of computational theory

and foundational mathematics.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

 Objectives
 Read about the CS accreditation ABET program. The A

BET objectives for the course are
 Provide a rigorous introduction to worst-case asymptot

ic algorithm analysis.
 Develop classical graph and combinatorial algorithms

for such problems as sorting, shortest paths and mini
mum spanning trees.

 Introduce the concept of computational intractability a
nd NP completeness.



Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

https://www.dropbox.com/s/u5ftxndak92vulr/ABET-Students.pptx?dl=0

WHAT IS AN ALGORITHM?

 An algorithmic problem is specified by describing the
 set of instances it must work on and
 what desired properties the output must have.

 Properties of Algorithms
 Correctness: For any algorithm, we must prove that it always

returns the desired output for all legal instances of the probl
em.

 Efficient

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

PROVING CORRECTNESS: INDUCTION AND RECURSION

 Failure to find a counterexample to a given algorithm does
not mean “it is obvious” that the algorithm is correct.

 Mathematical induction is a very useful method for proving
the correctness of recursive algorithms.

 Recursion and induction are the same basic idea:
 (1) basis case,
 (2) general assumption,
 (3) general case.
Ex> proving

�𝑖
𝑛

𝑖=1

= 𝑛(𝑛 + 1)/2

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

THE RAM MODEL OF COMPUTATION

Algorithms are an important and durable part of
computer science because they can be studied in a
machine/language independent way.
This is because we use the RAM model of computation
for all our analysis.

 Each “simple” operation (+,*, -, =, if, call) takes 1 step.
 Loops and subroutines are not simple operations. They

depend upon the size of the data and the contents of a
subroutine.
ex> “Sort” is not a single step operation.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

Lecture slide courtesy of Prof.
Steven Skiena

ASYMPTOTIC NOTATIONS: NAMES OF BOUNDING FUNCTIONS

 Big-Oh: g(n) = O(f(n)) means C*f(n) is an upper
bound on g(n).

 Big-Omega: g(n) = 𝛀(f(n)) means C*f(n) is a lower
bound on g(n).

 Big-Theta: g(n) = 𝚯(f(n)) means C1*f(n) is an upper
bound on g(n) and C2*f(n) is a lower bound on g(n).
(a.k.a. tight bound)

C, C1, and C2 are all constants independent of n.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

ASYMPTOTIC NOTATIONS

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

The definitions imply a constant n0 beyond which they
are satisfied. We do not care about small values of n.

 Big-Oh: f(n) = O(g(n)) if there are positive
constants n0 and c such that to the right of
n0, the value of f(n) always lies on or below
c*g(n).

 Big-Omega: f(n) = 𝛀(g(n)) if there are
positive constants n0 and c such that to
the right of n0, the value of f(n) always lies
on or above c*g(n).

 Big-Theta: f(n) = 𝚯 (g(n)) if there exist
positive constants n0, c1, and c2 such that
to the right of n0, the value of f(n) always
lies between c1*g(n) and c2*g(n) inclusive.

DOMINANCE RELATIONS

 Faster-growing function dominates a slower-growing one
 Common functions that appear in algorithms analysis

order of increasing dominance:

 Constant functions, f(n) = 1
 Logarithmic functions, f(n) = log n
 Linear functions, f(n) = n
 Superlinear functions, f(n) = n lg n
 Quadratic functions, f(n) = n2

 Cubic functions, f(n) = n3

 Exponential functions, f(n) = cn for a given constant c > 1

 Factorial functions, f(n) = n!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

PROGRAM COMPLEXITY ANALYSIS

 Determining time complexity analysis given a code.
 EX> Selection Sort Worst Case Analysis
 EX> Insertion Sort Worst Case Analysis
 EX> String Pattern Matching Worst Case Analysis

 Properties of Logarithms
 In relation to Trees - ex> Binary Search
 Logarithms and Multiplication
 The Base is not Asymptotically Important
 Logarithms and Bits

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

DATA STRUCTURE

 Complexity of an algorithms may differ when using
different data structures.

 Types of DS:
 Contiguous vs. Linked Data Structures
 Containers: Stacks and Queues

 Dictionary / Dynamic Set Operations & time analysis
 Basic Operations: Search(S,k) Insert(S,x) Delete(S,x)
 Binary Search Trees: operations.
 Balanced Search Trees
 Hash Tables: Collisions, hash functions, Performance on Set

Operations
 Analysis of Substring Pattern Matching using different dictionary

data structures.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

SORTING

 Applications of sorting
 Pragmatics of Sorting
 Selection Sort:

 Data Structure Matters: Heapsort
 Priority Queue:

 operations;
 implementations;
 time analysis o f operations based of data structure used
 Applications

 Binary Heap:
 Constructing Heaps
 Heap operations and time analysis: Bubble up & Bubble down

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

SORTING

 MergeSort & Divide-and-conquer
 Analysis of Algorithms that use Divide-and-conquer

 EX> matrix multiplication
 Divide-and-Conquer Recurrences
 Application of Master Theorem

 Quicksort & Partitioning
 Analysis – Best case, worst case, average case analysis
 Randomized analysis

 Lower Bound Analysis on Sorting – comparison based
 Non-Comparison-Based Sorting

 Bucketsort – time complexity

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

GRAPH DATA STRUCTURES

 Graph data structure – characteristics & operations
 Adjacency Matrix
 Adjacency list

 Graph terminology:
 Degree
 Connected & strongly connected

 Types of graphs:
 Directed vs. Undirected Graphs
 Weighted vs. Unweighted Graphs
 Simple vs. Non-simple Graphs
 Sparse vs. Dense Graphs
 Cyclic vs. Acyclic Graphs

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

BREADTH-FIRST SEARCH

 Graph traversal: We want to visit every vertex and ever
y edge exactly once in some well-defined order.

 Breadth-first search is appropriate if we are interested
in shortest paths on unweighted graphs.

 How BFS works on graphs.
 Data Structure for BFS – using queue
 Applications of BFS

 Shortest Paths
 Connected Components
 Two-Coloring Graphs – Bipartite

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

DEPTH-FIRST SEARCH

 BFS v.s. DFS
 How DFS works on graphs.
 Characteristics of DFS algo

 Edge Classification for DFS: tree edges, back edges, …
 Finding ancestor and descendants by time intervals & appli

cations
 Data structure for DFS: stack (recursion)
 Applications of DFS

 Finding Cycles
 Articulation Vertices
 Topological Sorting
 Strongly Connected Components

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

MINIMUM SPANNING TREES & GREEDY ALGORITHMS

 Input: Edge-weighted graphs
 Characteristic of MSP
 Applications

 Net Partitioning
 provides a good heuristic for traveling salesman problems

 Prim’s Algorithm :
 how it works, characteristics, & time analysis

 Kruskal’s Algorithm :
 how it works, characteristics, and time analysis

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

SHORTEST PATH

 Characteristic of shortest path problem
 Dijkstra’s Algorithm (single source shortest path)

 how it works (Dynamic Programing), characteristics, & time
analysis

 Difference between Prim’s/Dijkstra’s

 The Floyd-Warshall Algorithm (all-pairs shortest path)
 how it works (Dynamic Programing), characteristics, & time

analysis

 Applications:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

BACKTRACKING

 What is Backtracking used for?
 How to apply Backtracking

 Modeling the solution vector
 Recursive structure – similar to DFS
 How to model: is_a_solution(a,k,input); process_solution(a,k,input

); construct_candidates(a,k,input,c,&ncandidates); make_move(a,
k,input);

 Applications:
 Sudoku
 Constructing all Subsets
 Constructing all Permutations
 The Eight-Queens Problem
 Can Eight Pieces Cover a Chess Board?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

HEURISTIC SEARCH

 Backtracking searches all configurations to find the best of all
possible solutions.

 Heuristic methods provide an alternate way to approach
difficult combinatorial optimization problems.
 Solution space representation
 Cost function

 Heuristic search methods:
 Random sampling,
 local search strategy

Gradient-descent search
Simulated annealing

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

DYNAMIC PROGRAMMING

 When DP is appropriate.
 Characteristics & Benefitsof DP

 systematically search all possibilities (thus guaranteeing cor
rectness) while storing results to avoid recomputing

 Three Steps to Dynamic Programming
1. Formulate the answer as a recurrence relation
2. Show that the number of different instances of your

recurrence is bounded by a polynomial.
3. Specify an order of evaluation for the recurrence so you

always have what you need.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

DP CONT.

 Examples:
 Fibonacci Numbers
 Binomial Coefficients - Pascal’s Triangle

 Edit Distance & applications
 How Edit Distance works & analysis
 Substring Matching
 Longest Common Subsequence
 Maximum Monotone Subsequence (Longest Increasing Sequence

)
 The Partition Problem
 Minimum Weight Triangulation

 Comparing DP with Recurrence
 Limitations of Dynamic Programming: TSP

 Principle of optimality

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

NP-COMPLETENESS

 Bandersnatch(G)
 Convert G to an instance of the Bo-billy problem Y .
 Call the subroutine Bo-billy on Y to solve this instance.
 Return the answer of Bo-billy(Y) as the answer to G.

 Now suppose my reduction translates G to Y in
O(P(n)):
 1. If my Bo-billy subroutine ran in O(P’(n)) I can

solve the Bandersnatch problem in O(P(n) + P’(n’))
 2. If I know that 𝛺(P’(n)) is a lower-bound to

compute Bandersnatch, then 𝛺(P’(n) - P(n’)) must
be a lowerbound to compute Bo-billy.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

 Concepts: problem , instance, decision problem

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

25

	LEC21: Review of Analysis of Algorithms
	Course Outcome:
	Slide Number 3
	What Is An Algorithm?
	Proving Correctness: Induction and Recursion
	The RAM Model of Computation
	Asymptotic Notations: Names of Bounding Functions
	Asymptotic Notations
	Dominance Relations
	Program complexity Analysis
	Data Structure
	Sorting
	Sorting
	Graph Data Structures
	Breadth-First Search
	Depth-First Search
	Minimum Spanning Trees & Greedy algorithms
	Shortest Path
	BackTracking
	Heuristic Search
	Dynamic Programming
	DP cont.
	NP-Completeness
	Slide Number 24
	Slide Number 25

