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COURSE OUTCOME:  

The ABET objectives for the course:   
1. Ability to perform worst-case asymptotic algorithm analysis 
2. Ability to define and use classical combinatorial algorithms 

for problems such as sorting, shortest paths and minimum 
spanning trees 

3. Knowledge of computational intractability and NP 
completeness 

The program objective for the course: 
 (S6) have a solid understanding of computational theory 

and foundational mathematics. 
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 Objectives 
 Read about the CS accreditation ABET program. The A

BET objectives for the course are 
 Provide a rigorous introduction to worst-case asymptot

ic algorithm analysis. 
 Develop classical graph and combinatorial algorithms 

for such problems as sorting, shortest paths and mini
mum spanning trees. 

 Introduce the concept of computational intractability a
nd NP completeness. 

    

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

3 

https://www.dropbox.com/s/u5ftxndak92vulr/ABET-Students.pptx?dl=0


WHAT IS AN ALGORITHM? 

 An algorithmic problem is specified by describing the  
 set of instances it must work on and  
 what desired properties the output must have. 

 Properties of Algorithms 
 Correctness: For any algorithm, we must prove that it always 

returns the desired output for all legal instances of the probl
em. 

 Efficient 
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PROVING CORRECTNESS: INDUCTION AND RECURSION 

 Failure to find a counterexample to a given algorithm does 
not mean “it is obvious” that the algorithm is correct. 

 Mathematical induction is a very useful method for proving 
the correctness of recursive algorithms. 

 Recursion and induction are the same basic idea:  
 (1) basis case,  
 (2) general assumption,  
 (3) general case. 
Ex> proving  

�𝑖
𝑛

𝑖=1

= 𝑛(𝑛 + 1)/2 
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THE RAM MODEL OF COMPUTATION 

Algorithms are an important and durable part of 
computer science because they can be studied in a 
machine/language independent way. 
This is because we use the RAM model of computation 
for all our analysis. 

 Each “simple” operation (+,*, -, =, if, call) takes 1 step. 
 Loops and subroutines are not simple operations. They 

depend upon the size of the data and the contents of a 
subroutine.  
ex> “Sort” is not a single step operation. 
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ASYMPTOTIC NOTATIONS: NAMES OF BOUNDING FUNCTIONS 

 Big-Oh: g(n) = O(f(n)) means C*f(n) is an upper 
bound on g(n). 
 

 Big-Omega: g(n) = 𝛀(f(n)) means C*f(n) is a lower 
bound on g(n). 
 

 Big-Theta: g(n) = 𝚯(f(n)) means C1*f(n) is an upper 
bound on g(n) and C2*f(n) is a lower bound on g(n). 
(a.k.a. tight bound) 

 
C, C1, and C2 are all constants independent of n. 
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ASYMPTOTIC NOTATIONS 
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The definitions imply a constant n0 beyond which they 
are satisfied. We do not care about small values of n. 

 Big-Oh: f(n) = O(g(n)) if there are positive 
constants n0 and c such that to the right of 
n0, the value of f(n) always lies on or below 
c*g(n). 

  Big-Omega: f(n) = 𝛀(g(n)) if there are 
positive constants n0 and c such that to 
the right of n0, the value of f(n) always lies 
on or above c*g(n). 

 Big-Theta: f(n) = 𝚯 (g(n)) if there exist 
positive constants n0, c1, and c2 such that 
to the right of n0, the value of f(n) always 
lies between c1*g(n) and c2*g(n) inclusive. 



DOMINANCE RELATIONS 

 Faster-growing function dominates a slower-growing one 
 Common functions that appear in algorithms analysis 

order of increasing dominance:  
 
 
 Constant functions, f(n) = 1 
 Logarithmic functions, f(n) = log n 
 Linear functions, f(n) = n 
 Superlinear functions, f(n) = n lg n 
 Quadratic functions, f(n) = n2 

 Cubic functions, f(n) = n3 

 Exponential functions, f(n) = cn for a given constant c > 1 

 Factorial functions, f(n) = n! 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

9 



PROGRAM COMPLEXITY ANALYSIS  

 Determining time complexity analysis given a code.  
 EX> Selection Sort Worst Case Analysis 
 EX> Insertion Sort Worst Case Analysis 
 EX> String Pattern Matching Worst Case Analysis 

 Properties of Logarithms  
 In relation to Trees - ex> Binary Search 
 Logarithms and Multiplication 
 The Base is not Asymptotically Important 
 Logarithms and Bits 
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DATA STRUCTURE 

 Complexity of an algorithms may differ when using 
different data structures.  

 Types of DS:  
 Contiguous vs. Linked Data Structures 
 Containers: Stacks and Queues 

 Dictionary / Dynamic Set Operations & time analysis 
 Basic Operations: Search(S,k) Insert(S,x) Delete(S,x) 
 Binary Search Trees: operations.  
 Balanced Search Trees 
 Hash Tables: Collisions, hash functions, Performance on Set 

Operations 
 Analysis of Substring Pattern Matching  using different dictionary 

data structures.  
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SORTING 

 Applications of sorting 
 Pragmatics of Sorting 
 Selection Sort:  

 Data Structure Matters: Heapsort 
 Priority Queue:  

 operations;  
 implementations;  
 time analysis o f operations based of data structure used  
 Applications 

 Binary Heap:  
 Constructing Heaps 
 Heap operations and time analysis: Bubble up & Bubble down 

 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

12 



SORTING 

 MergeSort & Divide-and-conquer 
 Analysis of Algorithms that use Divide-and-conquer 

 EX> matrix multiplication 
 Divide-and-Conquer Recurrences 
 Application of Master Theorem 

 Quicksort & Partitioning  
 Analysis – Best case, worst case, average case analysis 
 Randomized analysis  

 Lower Bound Analysis on Sorting – comparison based 
 Non-Comparison-Based Sorting 

 Bucketsort – time complexity  
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GRAPH DATA STRUCTURES 

 Graph data structure – characteristics & operations  
 Adjacency Matrix 
 Adjacency list 

 Graph terminology: 
 Degree 
 Connected & strongly connected  

 Types of graphs: 
 Directed vs. Undirected Graphs 
 Weighted vs. Unweighted Graphs 
 Simple vs. Non-simple Graphs 
 Sparse vs. Dense Graphs 
 Cyclic vs. Acyclic Graphs 
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BREADTH-FIRST SEARCH 

 Graph traversal: We want to visit every vertex and ever
y edge exactly once in some well-defined order. 

 Breadth-first search is appropriate if we are interested 
in shortest paths on unweighted graphs. 

 How BFS works on graphs.  
 Data Structure for BFS – using queue 
 Applications of BFS 

 Shortest Paths  
 Connected Components 
 Two-Coloring Graphs – Bipartite  
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DEPTH-FIRST SEARCH 

 BFS v.s. DFS 
 How DFS works on graphs. 
 Characteristics of DFS algo 

 Edge Classification for DFS: tree edges, back edges, …  
 Finding ancestor and descendants by time intervals  & appli

cations 
 Data structure for DFS: stack  (recursion)  
 Applications of DFS 

 Finding Cycles 
 Articulation Vertices 
 Topological Sorting 
 Strongly Connected Components 
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MINIMUM SPANNING TREES & GREEDY ALGORITHMS  

 Input: Edge-weighted graphs 
 Characteristic of MSP  
 Applications 

 Net Partitioning 
 provides a good heuristic for traveling salesman problems 

 Prim’s Algorithm :  
 how it works, characteristics, & time analysis 

 Kruskal’s Algorithm :  
 how it works, characteristics, and time analysis 
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SHORTEST PATH 

 Characteristic of shortest path problem 
 Dijkstra’s Algorithm (single source shortest path) 

 how it works (Dynamic Programing), characteristics, & time 
analysis 

 Difference between Prim’s/Dijkstra’s  

 The Floyd-Warshall Algorithm (all-pairs shortest path) 
 how it works (Dynamic Programing), characteristics, & time 

analysis 

 Applications: 
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BACKTRACKING 

 What is Backtracking used for?  
 How to apply Backtracking  

 Modeling the solution vector  
 Recursive structure – similar to DFS 
 How to model: is_a_solution(a,k,input); process_solution(a,k,input

); construct_candidates(a,k,input,c,&ncandidates); make_move(a,
k,input); 

 Applications:  
 Sudoku 
 Constructing all Subsets 
 Constructing all Permutations 
 The Eight-Queens Problem 
 Can Eight Pieces Cover a Chess Board? 
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HEURISTIC SEARCH 

 Backtracking searches all configurations to find the best of all 
possible solutions. 

 Heuristic methods provide an alternate way to approach 
difficult combinatorial optimization problems. 
 Solution space representation 
 Cost function 

 Heuristic search methods:  
 Random sampling,  
 local search strategy  

Gradient-descent search 
Simulated annealing 
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DYNAMIC PROGRAMMING 

 When DP is appropriate.  
 Characteristics & Benefitsof DP 

 systematically search all possibilities (thus guaranteeing cor
rectness) while storing results to avoid recomputing 

 Three Steps to Dynamic Programming 
1. Formulate the answer as a recurrence relation 
2. Show that the number of different instances of your 

recurrence is bounded by a polynomial. 
3. Specify an order of evaluation for the recurrence so you 

always have what you need. 
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DP CONT.  

 Examples: 
 Fibonacci Numbers 
 Binomial Coefficients - Pascal’s Triangle 

 Edit Distance & applications  
 How Edit Distance works & analysis 
 Substring Matching 
 Longest Common Subsequence 
 Maximum Monotone Subsequence (Longest Increasing Sequence

) 
 The Partition Problem 
 Minimum Weight Triangulation 

 Comparing DP with Recurrence 
 Limitations of Dynamic Programming: TSP  

 Principle of optimality 
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NP-COMPLETENESS 

 Bandersnatch(G) 
 Convert G to an instance of the Bo-billy problem Y . 
 Call the subroutine Bo-billy on Y to solve this instance. 
 Return the answer of Bo-billy(Y) as the answer to G. 

 Now suppose my reduction translates G to Y in 
O(P(n)): 
 1. If my Bo-billy subroutine ran in O(P’(n)) I can 

solve the Bandersnatch problem in O(P(n) + P’(n’)) 
 2. If I know that 𝛺(P’(n)) is a lower-bound to 

compute Bandersnatch, then 𝛺(P’(n) - P(n’)) must 
be a lowerbound to compute Bo-billy. 
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 Concepts: problem , instance, decision problem  
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