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THE MAIN IDEA 

Suppose I gave you the following algorithm to solve 
the bandersnatch problem: 

 
 Bandersnatch(G) 

 Convert G to an instance of the Bo-billy problem Y . 
 Call the subroutine Bo-billy on Y to solve this instance. 
 Return the answer of Bo-billy(Y) as the answer to G. 

 
Such a translation from instances of one type of 
problem to instances of another type such that 
answers are preserved is called a reduction. 
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WHAT DOES THIS IMPLY? 

 Now suppose my reduction translates G to Y in 
O(P(n)): 
 1. If my Bo-billy subroutine ran in O(P’(n)) I can 

solve the Bandersnatch problem in O(P(n) + P’(n’)) 
 2. If I know that 𝛺(P’(n)) is a lower-bound to 

compute Bandersnatch, then 𝛺(P’(n) - P(n’)) must 
be a lowerbound to compute Bo-billy. 

 Why? If I could solve Bo-billy  any faster, then I could violate 
my lower bound by solving Bandersnatch using the above 
reduction. This implies that there can be no way to solve Bo-
billy any faster than claimed.! 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

3 



INTEGER PARTITION (SUBSET SUM) 

 Input: A set of integers S and a target integer t. 
 Problem: Is there a subset of S which adds up exactly 

to t? 
 Example: S = {1; 4; 16; 64; 256; 1040; 1041; 1093; 

1284; 1344} and T = 3754 
 Answer: 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 

T 
 Observe that integer partition is a number problem, as 

opposed to the graph and logic problems we have 
seen to date. 
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INTEGER PARTITION IS NP-COMPLETE 

 To prove completeness, we show that vertex cover ∝ 
integer partition. We use a data structure called an 
incidence matrix to represent the graph G. 
 
 
 
 
 

 How many 1’s are there in each column? Exactly two. 
 How many 1’s in a particular row? Depends on the 

vertex degree. 
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USING THE INCIDENCE MATRIX 

 The reduction from vertex cover will create n + m numbers 
from G. 

 The numbers from the vertices will be a base-4 realization 
of rows from the incidence matrix, plus a high order digit: 

𝑥𝑖  = 4 𝐸  +  � 𝑏 𝑖, 𝑗 × 4𝑗
𝐸 −1

𝑗=0
 

 ie. V2 = 10100 becomes 45 + (44 + 42). 
 The numbers from the edges will be yj = 4j . 
 The target integer will be 

𝑡 = 𝑘 × 4 𝐸  + � 2 × 4𝑗
𝐸 −1

𝑗=0
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WHY? 

 Each column (digit) represents an edge.  
 We want a subset of vertices which covers each edge. 

We can only use k x vertex/numbers, because of the 
high order digit of the target. 
 x0 = 100101 = 1041  
 x2 = 111000 = 1344 
 y1 = 000010 = 4 

 We might get only one instance of each edge in a 
cover – but we are free to take extra edge/numbers to 
grab an extra 1 per column. 
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VC IN G →INTEGER PARTITION IN S 

 Given k vertices covering G, pick the k corresponding 
vertex/numbers.  

 Each edge in G is incident on one or two cover 
vertices.  

 If it is one, includes the corresponding edge/number 
to give two per column. 
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INTEGER PARTITION IN S → VC IN G 

 Any solution to S must contain exactly k vertex/numbers. 
 Why? It cannot be more because the target in that digit is 

k and it cannot be less because, with at most 3 1’s per 
edge/digit-column, no sum of these can carry over into the 
next column. (This is why base-4 number were chosen). 

 This subset of k vertex/numbers must contain at least one 
edge-list per column, since if not there is no way to 
account for the two in each column of the target integer, 
given that we can pick up at most one edge-list using the 
edge number. (Again, the prevention of carry's across 
digits prevents any other possibilities). 

 Neat, sweet, and NP-complete! 
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 Notice that this reduction could not be performed in 
polynomial time if the number were written in unary 5 
= 11111.  

 Big numbers is what makes integer partition hard! 
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INTEGER PROGRAMMING 

 Input: A set v of integer variables, a set of inequalities 
over these variables, a function f(v) to maximize, and 
integer B. 

 Question: Does there exist an assignment of integers 
to v such that all inequalities are true and f(v) >= B? 
 Example: 

𝑣1 ≥  1,𝑣2 ≥  0 
𝑣1  +  𝑣2 ≤   3 

𝑓(𝑣) ∶  2𝑣2;  𝐵 =  3 
 A solution to this is 𝑣1  =  1,𝑣2  =  2. 
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 Example: 
𝑣1 ≥ 1; 𝑣2 ≥  0 
𝑣1  +  𝑣2 ≤   3 

𝑓 𝑣 :  2𝑣2,𝐵 =  5 
 Since the maximum value of f(v) given the constraints is 
2 x 2 = 4, there is no solution. 
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INTEGER PROGRAMMING IS NP-HARD 

 We use a reduction from Satisfiability 
 Any SAT instance has Boolean variables and clauses.  
 Our Integer programming problem will have twice as 

many variables as the SAT instance, one for each 
variable and its compliment, as well as the following 
inequalities: 

 For each variable vi in the set problem, we will add the 
following constraints: 
 1 ≤ 𝑉𝑖 ≤ 0 and 1 ≤  𝑉𝑖 ≤  0 
 Both IP variables are restricted to values of 0 or 1, which 

makes them equivalent to Boolean variables restricted to 
true/false. 
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 1 ≤  𝑉𝑖  +  𝑉𝑖  ≤ 1 
 Exactly one IP variable associated with a given SAT variable is 1.  

 Thus exactly one of Vi and 𝑉 i are true! 

 For each clause 𝐶𝑖  = {𝑣1, 𝑣2, 𝑣3 , … , 𝑣𝑛} in the SAT 
instance, construct a constraint: 

𝑣1  +  𝑣2  +  𝑣3  +  … 𝑣𝑛 ≥ 1 
 Thus at least one IP variable = 1 in each clause! 
 Satisfying the constraint equals satisfying the clause! 

 Our maximization function and bound are relatively 
unimportant: 𝑓(𝑣)  =  𝑉1𝐵 =  0. 

 Clearly this reduction can be done in polynomial time. 
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SHOW THAT REDUCTION PRESERVES THE ANSWER 

 Any SAT solution gives a solution to the IP problem  
 A TRUE literal in SAT corresponds to a 1 in the IP.  
 If the expression is satisfied, at least one literal per clause 

must be TRUE, so the sum in the inequality is  1. 

 Any IP solution gives a SAT solution  
 All variables of any IP solution are 0 or 1. Set the literals 

corresponding to 1 to be TRUE and those of 0 to FALSE.  
 No Boolean variable and its complement will both be true, 

so it is a legal assignment which satisfies the clauses. 

 Neat, sweet, and NP-complete! 
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THINGS TO NOTICE 

 1. The reduction preserved the structure of the problem. 
  Note that the reduction did not solve the problem – it just put it in 

a different format. 
 2. The possible IP instances which result are a small 

subset of the possible IP instances,  
 but since some of them are hard, the problem in general must be 

hard. 
 3. The transformation captures the essence of why IP is 

hard  
 - it has nothing to do with big coefficients or big ranges on 

variables; for restricting to 0/1 is enough.  
 A careful study of what properties we do need for our reduction 

tells us a lot about the problem. 
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 4. It is not obvious that IP≤NP, since the numbers 
assigned to the variables may be too large to write in 
polynomial time - don’t be too hasty! 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

17 



CONVEX HULL AND SORTING 

 A nice example of a reduction goes from sorting 
numbers to the convex hull problem: 
 
 
 
 
 
 

 We must translate each number to a point. We can 
map x to (x, x2). 
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Each integer is mapped to a point on the parabola y = x2. 
 Since this parabola is convex, every point is on the 

convex hull.  
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 Further since neighboring points on the convex hull have 
neighboring x values, the convex hull returns the points 
sorted by x-coordinate, ie. the original numbers. 
Sort(S) 

For each i ∈ S, create point (i; i2). 
Call subroutine convex-hull on this point set. 
From the leftmost point in the hull, 
  read off the points from left to right. 

 Recall the sorting lower bound of Ω(n lg n).  
 If we could do convex hull in better than Ω(n lg n). we 

could sort faster than Ω(n lg n) – which violates our lower 
bound. 

 Thus convex hull must take Ω(n lg n) as well!!! 
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 Observe that any O(n lg n) convex hull algorithm also 
gives us a complicated but correct O(n lg n) sorting 
algorithm as well. 
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P VERSUS NP 

 Satisfiability is in NP, since we can guess an assignment of 
TRUE, FALSE to the literals and check it in polynomial time. 

 The precise distinction between whether a problem is in P 
or NP is somewhat technical, requiring formal language 
theory and Turing machines to state correctly. 

 However, intuitively a problem is in P, (ie. polynomial) if it 
can be solved in time polynomial in the size of the input. 

 A problem is in NP if, given the answer, it is possible to 
verify that the answer is correct within time polynomial in 
the size of the input. 
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CLASSIFYING EXAMPLE PROBLEMS 

 Example P – Is there a path from s to t in G of length 
less than k. 

 Example NP – Is there a TSP tour in G of length less 
than k. Given the tour, it is easy to add up the costs 
and convince me it is correct. 

 Example not NP – How many TSP tours are there in G 
of length less than k. Since there can be an 
exponential number of them, we cannot count them 
all in polynomial time. 

 Don’t let this issue confuse you – the important idea 
here is of reductions  as a way of proving hardness. 
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