
LEC21: OTHER REDUCTIONS

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

THE MAIN IDEA

Suppose I gave you the following algorithm to solve
the bandersnatch problem:

 Bandersnatch(G)

 Convert G to an instance of the Bo-billy problem Y .
 Call the subroutine Bo-billy on Y to solve this instance.
 Return the answer of Bo-billy(Y) as the answer to G.

Such a translation from instances of one type of
problem to instances of another type such that
answers are preserved is called a reduction.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

WHAT DOES THIS IMPLY?

 Now suppose my reduction translates G to Y in
O(P(n)):
 1. If my Bo-billy subroutine ran in O(P’(n)) I can

solve the Bandersnatch problem in O(P(n) + P’(n’))
 2. If I know that 𝛺(P’(n)) is a lower-bound to

compute Bandersnatch, then 𝛺(P’(n) - P(n’)) must
be a lowerbound to compute Bo-billy.

 Why? If I could solve Bo-billy any faster, then I could violate
my lower bound by solving Bandersnatch using the above
reduction. This implies that there can be no way to solve Bo-
billy any faster than claimed.!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

INTEGER PARTITION (SUBSET SUM)

 Input: A set of integers S and a target integer t.
 Problem: Is there a subset of S which adds up exactly

to t?
 Example: S = {1; 4; 16; 64; 256; 1040; 1041; 1093;

1284; 1344} and T = 3754
 Answer: 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 =

T
 Observe that integer partition is a number problem, as

opposed to the graph and logic problems we have
seen to date.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

INTEGER PARTITION IS NP-COMPLETE

 To prove completeness, we show that vertex cover ∝
integer partition. We use a data structure called an
incidence matrix to represent the graph G.

 How many 1’s are there in each column? Exactly two.
 How many 1’s in a particular row? Depends on the

vertex degree.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

USING THE INCIDENCE MATRIX

 The reduction from vertex cover will create n + m numbers
from G.

 The numbers from the vertices will be a base-4 realization
of rows from the incidence matrix, plus a high order digit:

𝑥𝑖 = 4 𝐸 + � 𝑏 𝑖, 𝑗 × 4𝑗
𝐸 −1

𝑗=0

 ie. V2 = 10100 becomes 45 + (44 + 42).
 The numbers from the edges will be yj = 4j .
 The target integer will be

𝑡 = 𝑘 × 4 𝐸 + � 2 × 4𝑗
𝐸 −1

𝑗=0

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

WHY?

 Each column (digit) represents an edge.
 We want a subset of vertices which covers each edge.

We can only use k x vertex/numbers, because of the
high order digit of the target.
 x0 = 100101 = 1041
 x2 = 111000 = 1344
 y1 = 000010 = 4

 We might get only one instance of each edge in a
cover – but we are free to take extra edge/numbers to
grab an extra 1 per column.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

VC IN G →INTEGER PARTITION IN S

 Given k vertices covering G, pick the k corresponding
vertex/numbers.

 Each edge in G is incident on one or two cover
vertices.

 If it is one, includes the corresponding edge/number
to give two per column.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

INTEGER PARTITION IN S → VC IN G

 Any solution to S must contain exactly k vertex/numbers.
 Why? It cannot be more because the target in that digit is

k and it cannot be less because, with at most 3 1’s per
edge/digit-column, no sum of these can carry over into the
next column. (This is why base-4 number were chosen).

 This subset of k vertex/numbers must contain at least one
edge-list per column, since if not there is no way to
account for the two in each column of the target integer,
given that we can pick up at most one edge-list using the
edge number. (Again, the prevention of carry's across
digits prevents any other possibilities).

 Neat, sweet, and NP-complete!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

 Notice that this reduction could not be performed in
polynomial time if the number were written in unary 5
= 11111.

 Big numbers is what makes integer partition hard!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

INTEGER PROGRAMMING

 Input: A set v of integer variables, a set of inequalities
over these variables, a function f(v) to maximize, and
integer B.

 Question: Does there exist an assignment of integers
to v such that all inequalities are true and f(v) >= B?
 Example:

𝑣1 ≥ 1,𝑣2 ≥ 0
𝑣1 + 𝑣2 ≤ 3

𝑓(𝑣) ∶ 2𝑣2; 𝐵 = 3
 A solution to this is 𝑣1 = 1,𝑣2 = 2.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

 Example:
𝑣1 ≥ 1; 𝑣2 ≥ 0
𝑣1 + 𝑣2 ≤ 3

𝑓 𝑣 : 2𝑣2,𝐵 = 5
 Since the maximum value of f(v) given the constraints is
2 x 2 = 4, there is no solution.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

INTEGER PROGRAMMING IS NP-HARD

 We use a reduction from Satisfiability
 Any SAT instance has Boolean variables and clauses.
 Our Integer programming problem will have twice as

many variables as the SAT instance, one for each
variable and its compliment, as well as the following
inequalities:

 For each variable vi in the set problem, we will add the
following constraints:
 1 ≤ 𝑉𝑖 ≤ 0 and 1 ≤ 𝑉𝑖 ≤ 0
 Both IP variables are restricted to values of 0 or 1, which

makes them equivalent to Boolean variables restricted to
true/false.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

 1 ≤ 𝑉𝑖 + 𝑉𝑖 ≤ 1
 Exactly one IP variable associated with a given SAT variable is 1.

 Thus exactly one of Vi and 𝑉 i are true!

 For each clause 𝐶𝑖 = {𝑣1, 𝑣2, 𝑣3 , … , 𝑣𝑛} in the SAT
instance, construct a constraint:

𝑣1 + 𝑣2 + 𝑣3 + … 𝑣𝑛 ≥ 1
 Thus at least one IP variable = 1 in each clause!
 Satisfying the constraint equals satisfying the clause!

 Our maximization function and bound are relatively
unimportant: 𝑓(𝑣) = 𝑉1𝐵 = 0.

 Clearly this reduction can be done in polynomial time.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

SHOW THAT REDUCTION PRESERVES THE ANSWER

 Any SAT solution gives a solution to the IP problem
 A TRUE literal in SAT corresponds to a 1 in the IP.
 If the expression is satisfied, at least one literal per clause

must be TRUE, so the sum in the inequality is 1.

 Any IP solution gives a SAT solution
 All variables of any IP solution are 0 or 1. Set the literals

corresponding to 1 to be TRUE and those of 0 to FALSE.
 No Boolean variable and its complement will both be true,

so it is a legal assignment which satisfies the clauses.

 Neat, sweet, and NP-complete!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

THINGS TO NOTICE

 1. The reduction preserved the structure of the problem.
 Note that the reduction did not solve the problem – it just put it in

a different format.
 2. The possible IP instances which result are a small

subset of the possible IP instances,
 but since some of them are hard, the problem in general must be

hard.
 3. The transformation captures the essence of why IP is

hard
 - it has nothing to do with big coefficients or big ranges on

variables; for restricting to 0/1 is enough.
 A careful study of what properties we do need for our reduction

tells us a lot about the problem.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

 4. It is not obvious that IP≤NP, since the numbers
assigned to the variables may be too large to write in
polynomial time - don’t be too hasty!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

CONVEX HULL AND SORTING

 A nice example of a reduction goes from sorting
numbers to the convex hull problem:

 We must translate each number to a point. We can
map x to (x, x2).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

Each integer is mapped to a point on the parabola y = x2.
 Since this parabola is convex, every point is on the

convex hull.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

 Further since neighboring points on the convex hull have
neighboring x values, the convex hull returns the points
sorted by x-coordinate, ie. the original numbers.
Sort(S)

For each i ∈ S, create point (i; i2).
Call subroutine convex-hull on this point set.
From the leftmost point in the hull,
 read off the points from left to right.

 Recall the sorting lower bound of Ω(n lg n).
 If we could do convex hull in better than Ω(n lg n). we

could sort faster than Ω(n lg n) – which violates our lower
bound.

 Thus convex hull must take Ω(n lg n) as well!!!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

 Observe that any O(n lg n) convex hull algorithm also
gives us a complicated but correct O(n lg n) sorting
algorithm as well.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

P VERSUS NP

 Satisfiability is in NP, since we can guess an assignment of
TRUE, FALSE to the literals and check it in polynomial time.

 The precise distinction between whether a problem is in P
or NP is somewhat technical, requiring formal language
theory and Turing machines to state correctly.

 However, intuitively a problem is in P, (ie. polynomial) if it
can be solved in time polynomial in the size of the input.

 A problem is in NP if, given the answer, it is possible to
verify that the answer is correct within time polynomial in
the size of the input.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

CLASSIFYING EXAMPLE PROBLEMS

 Example P – Is there a path from s to t in G of length
less than k.

 Example NP – Is there a TSP tour in G of length less
than k. Given the tour, it is easy to add up the costs
and convince me it is correct.

 Example not NP – How many TSP tours are there in G
of length less than k. Since there can be an
exponential number of them, we cannot count them
all in polynomial time.

 Don’t let this issue confuse you – the important idea
here is of reductions as a way of proving hardness.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

	LEC21: Other Reductions
	The Main Idea
	What Does this Imply?
	Integer Partition (Subset Sum)
	Integer Partition is NP-complete
	Using the Incidence Matrix
	Why?
	VC in G →Integer Partition in S
	Integer Partition in S → VC in G
	Slide Number 10
	Integer Programming
	Slide Number 12
	Integer Programming is NP-Hard
	Slide Number 14
	Show that reduction preserves the answer
	Things to Notice
	Slide Number 17
	Convex Hull and Sorting
	Slide Number 19
	Slide Number 20
	Slide Number 21
	P versus NP
	Classifying Example Problems

