CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

LEC19; INTRODUCTION TO NP-COMPLETENESS

Lecture slide courtesy of Prof. Steven Skiena

REPORTING TO THE BOSS

Suppose you fail to find a fast algorithm. What can you tell your boss?
"I guess l'm too dumb. . ." (dangerous confession)
"There is no fast algorithm!" (lower bound proof) "I can't solve it, but no one else in the world can, either. . ." (NP-completeness reduction)

THE THEORY OF NP-COMPLETENESS

Several times this semester we have encountered problems for which we couldn't find efficient algorithms, such as thetraveling salesman problem. We also couldn't prove exponential-time lower bounds for these problems.

* By the early 1970s, literally hundreds of problems were stuck in this limbo.

The theory of NP-Completeness, developed by Stephen Cook and Richard Karp, provided the tools to show that all of these problems were really the same problem.

THE MAIN IDEA

Suppose I gave you the following algorithm to solve the bandersnatch problem:

* Bandersnatch(G)
+ Convert G to an instance of the Bo-billy problem Y .
+ Call the subroutine Bo-billy on Y to solve this instance.
+ Return the answer of Bo-billy(Y) as the answer to G.

Such a translation from instances of one type of problem to instances of another type such that answers are preserved is called a reduction.

WHAT DOES THIS IMPLY?

* Now suppose my reduction translates G to Y in O(P(n)):
+ 1. If my Bo-billy subroutine ran in $O\left(P^{\prime}(n)\right)$ I can solve the Bandersnatch problem in $O\left(P(n)+P^{\prime}\left(n^{\prime}\right)\right)$

2. If I know that $\Omega\left(P^{\prime}(n)\right)$ is a lower-bound to compute Bandersnatch, then $\Omega\left(P^{\prime}(n)-P\left(n^{\prime}\right)\right)$ must be a lowerbound to compute Bo-billy.

The second argument is the idea we use to prove problems hard!

WHAT IS A PROBLEM?

A problem is a general question, with parameters for the input and conditions on what is a satisfactory answer or solution.

+ Example: The Traveling Salesman
+ Problem: Given a weighted graph G, what tour $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ minimizes $\sum_{i=1}^{n-1} d\left[v_{i}, v_{i+1}\right]+d\left[v_{n}, v_{1}\right]$.

WHAT IS AN INSTANCE?

An instance is a problem with the input parameters specified.
TSP instance: $d\left[v_{1} ; d_{2}\right]=10, d\left[v_{1} ; d_{3}\right]=5, d\left[v_{1} ; d_{4}\right]=$ $9, d\left[v_{2} ; d_{3}\right]=6, d\left[v_{2} ; d_{4}\right]=9, d\left[v_{3} ; d_{4}\right]=3$

Solution: $\left\{\mathrm{v}_{1} ; \mathrm{v}_{2} ; \mathrm{v}_{3} ; \mathrm{v}_{4}\right\}$ cost $=27$

INPUT ENCODINGS

* Note that there are many possible ways to encode the input graph:
+ adjacency matrices, edge lists, etc.
All reasonable encodings will be within polynomial size of each other.

The fact that we can ignore minor differences in encoding is important.

* We are concerned with the difference between algorithms which are polynomial and exponential in the size of the input.

DECISION PROBLEMS

\times A problem with answers restricted to yes and no is called a decision problem.

* Most interesting optimization problems can be phrased as decision problems which capture the essence of the computation.
* For convenience, from now on we will talk only about decision problems.

THE TRAVELING SALESMAN DECISION PROBLEM

Given a weighted graph G and integer k, does there exist a traveling salesman tour with (cost <= k)?

* Using binary search and the decision version of the problem we can find the optimal TSP solution.

REDUCTIONS

* Reducing (tranforming) one algorithm problem A to another problem B is an argument that if you can figure out how to solve B then you can solve A.
* We showed that many algorithm problems are reducible to sorting (e.g. element uniqueness, mode, etc.).
* A computer scientist and an engineer wanted some tea. . .

SATISFIABILITY

Consider the following logic problem:
Instance: A set V of variables and a set of clauses C over V.

Question: Does there exist a satisfying truth assignment for C?

* Example 1: $\mathrm{V}=\mathrm{v}_{1}, \mathrm{v}_{2}$ and $\mathrm{C}=\left\{\left\{\mathrm{v}_{1}, \overline{v_{2}}\right\},\left\{\overline{v_{1}}, \mathrm{v}_{2}\right\}\right\}$
* A clause is satisfied when at least one literal in it is TRUE. C is satisfied when $v_{1}=v_{2}=T R U E$.

NOT SATISFIABLE

Example 2: $V=v_{1}, v_{2}$

$$
C=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, \overline{v_{2}}\right\},\left\{\overline{v_{1}}\right\}\right\}
$$

Although you try, and you try, and you try and you try, you can get no satisfaction.
There is no satisfying assignment since v_{1} must be FALSE (third clause), so v_{2} must be FALSE (second clause), but then the first clause is not satisfiable!

