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THREE STEPS OF DP  

 There are three steps involved in solving a problem by 
dynamic programming: 
 1. Formulate the answer as a recurrence relation or 

recursive algorithm. 
 2. Show that the number of different parameter values 

taken on by your recurrence is bounded by a (hopefully 
small) polynomial. 

 3. Specify an order of evaluation for the recurrence so the 
partial results you need are always available when you need 
them. 
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APP1: LONGEST INCREASING SEQUENCE 

 Develop an algorithm to find the longest monotonically 
increasing subsequence within a sequence of n numbers. 

 Difference between increasing sequence  and run 
 run : elements must be physical neighbors of each other. 

 EX> Given S = {2, 4, 3, 5, 1, 7, 6, 9, 8},  
 There are four longest increasing runs of length 2: (2, 4), (3, 5), (1, 

7), and (6, 9). 
 Finding the longest increasing run in a numerical sequence is 

straightforward 
 longest increasing subsequence (LIS) of S does not require 

neighborhood.  
 S has eight longest increasing subsequence in S of length 5, 

including {2,3,5,6,8}.  
 Finding the longest increasing subsequence is considerably trickier. 
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CONSTRUCT A  RECURRENCE 

 To find the right recurrence, ask what information 
about the first n − 1 elements of S would help you to 
find the answer for the entire sequence.  
 The length of the LIS in s1, s2, . . . , sn−1 seems a 

useful thing to know. 
 In addition, we need to know the length of the 

longest sequence that sn will extend. 

 Define li to be the length of the longest sequence 
ending with si 
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 The LIS containing the nth number will be formed by 
appending it to the longest increasing sequence to the 
left of n that ends on a number smaller than sn.  

 The following recurrence computes li: 
𝑙𝑖 = max

0<𝑗<𝑖
𝑙𝑗 + 1 , where 𝑠𝑗 < 𝑠𝑖  

𝑙0 = 0 
 Goal Cell: The length of the LIS of the entire 

permutation is given by max
0≤𝑖≤𝑛

𝑙𝑖, since the winning 
sequence will have to end somewhere. 
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 Table associated with our previous example: 
S = {2, 4, 3, 5, 1, 7, 6, 9, 8} 

 
 
 
 
 
 
 

 Reconstruction: Start from the last value of the longest 
sequence and follow the pointers to the other items in the 
sequence 
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auxiliary information: index pi of the 
element that appears immediately 
before si in the longest increasing 
sequence ending at si. 

2 



TIME COMPLEXITY 

 Each one of the n values of li is computed by 
comparing si against (up to) i−1 ≤ n values to the left 
of it,  

 so this analysis gives a total of O(n2) time.  
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APP2: THE PARTITION PROBLEM 

 Problem: Integer Partition without Rearrangement 
 Input: An arrangement S of nonnegative numbers {s1, . 

. . , sn} and an integer k. 
 Output: Partition S into k or fewer ranges, to minimize 

the maximum sum over all the ranges, without 
reordering any of the numbers. 

 Example: three workers are given the task of scanning 
through a shelf of books in search of a given piece of 
information.  What is the fairest way to divide the 
workload (i.e. Sum # of pages in the partitions are 
even) : 100 200 300 400 500 | 600 700 | 800 900 
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RECURSIVE, EXHAUSTIVE SEARCH APPROACH 

 Notice that the kth partition starts right after we 
placed the (k−1)st divider. 

 Where can we place this last divider? Between the ith 
and (i + 1)st elements for some i, where 1 ≤ i ≤ n. 

 Let M[n, k] be the minimum possible cost over all 
partitionings of {s1, . . . , sn} into k ranges, where the 
cost of a partition is the largest sum of elements in 
one of its parts. 
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RECURRENCE RELATION 

 What is the cost of this? The total cost will be the 
larger of two quantities— 
 (1) the cost of the last partition∑ 𝑠𝑗𝑛

𝑗=𝑖+1  , and 
 (2) the cost of the largest partition formed to the left of i. 

See the recursion?  

𝑀 𝑛, 𝑘 = min
1≤𝑖≤𝑛

max(𝑚 𝑖, 𝑘 − 1 , � 𝑠𝑗

𝑛

𝑗=𝑖+1

) 
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BOUNDARY CONDITIONS 

The smallest reasonable value of the  
 first argument is n = 1 (first partition consists of a 

single element) 
𝑀 1, 𝑘 = 𝑠1, for all 𝑘 > 0 and, 

 second argument is k = 1 (we do not partition S at 
all). 

𝑀 𝑛, 1 =  � 𝑠𝑖
𝑛

𝑖=1
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TIME ANALYSIS 

 When we store the partial results, total of k · n cells 
exist in the table. 

 How much time does it take to compute the result     
M[n, k]?  
 find the minimum of n’ quantities each of which is 

the maximum of the table lookup and a sum of at 
most n elements 

 -> at most n2 time per box 
 

 Total recurrence can be computed in O(kn3) time 
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CODE 
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partition(int s[], int n, int k) 
{ 

int m[MAXN+1][MAXK+1];   /* DP table for values */ 
int d[MAXN+1][MAXK+1];   /* DP table for dividers */ 
int p[MAXN+1];    /* prefix sums array */ 
int cost;    /* test split cost */ 
int i,j,x;    /* counters */ 
 

p[0] = 0;    /* construct prefix sums */ 
for (i=1; i<=n; i++) p[i]=p[i-1]+s[i]; 
 

for (i=1; i<=n; i++) m[i][1] = p[i]; /* initialize boundaries */ 
for (j=1; j<=k; j++) m[1][j] = s[1]; 
 

for (i=2; i<=n; i++) /* evaluate main recurrence */ 
for (j=2; j<=k; j++) { 

m[i][j] = MAXINT; 
for (x=1; x<=(i-1); x++) { 

cost = max(m[x][j-1], p[i]-p[x]); 
if (m[i][j] > cost) { 

m[i][j] = cost; 
d[i][j] = x; 

} 
} 

} 
reconstruct_partition(s,d,n,k); /* print book partition */ 

} 

We keep track of 
prefix sums 
𝑝[𝑖]  = ∑ 𝑠𝑘𝑖

𝑘=1  
for faster run time 
since∑ 𝑠𝑘

𝑗
𝑘=𝑖 =

𝑝 𝑘 − 𝑝[𝑗] 

Since 

� 𝑠𝑘
𝑗

𝑘=𝑖
= 𝑝 𝑘 − 𝑝 𝑗  

Enables us to evaluate the 
recurrence in linear 
time per cell, yielding an 
O(kn2) algorithm. 



RECONSTRUCTING ACTUAL PARTITION 

 Final value of M(n,k) will be the cost of the largest range in 
the optimal partition 

 Matrix D is used to reconstruct the optimal partition by 
work backward from D[n, k] and add a divider at each 
specified position.  
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reconstruct_partition(int s[],int d[MAXN+1][MAXK+1], int n, int k) 
{ 

if (k==1) 
 print_books(s,1,n); 
else { 

reconstruct_partition(s,d,d[n][k],k-1); 
print_books(s,d[n][k]+1,n); 

} 
} 
 
print_books(int s[], int start, int end) 
{ 

int i; /* counter */ 
for (i=start; i<=end; i++) printf(" %d ",s[i]); 
printf("\n"); 

} 



EXAMPLE 
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Partitioning 
{1, 1, 1, 1, 1, 1, 1, 1, 1}  
into {{1, 1, 1}, {1, 1, 1}, {1, 
1, 1}} 

Partitioning  
{1, 2, 3, 4, 5, 6, 7, 8, 9} 
into {{1, 2, 3, 4, 5}, {6, 7}, {8, 9}} 

Notice that final value of M(n, k) is the cost of the largest range in 
the optimal partition. 



PARSING CONTEXT-FREE GRAMMARS 

 Learning it in your compiler class.  
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MINIMUM WEIGHT TRIANGULATION 

 A triangulation of a polygon P = {v1, . . . , vn, v1} is a set 
of nonintersecting diagonals that partitions the polygo
n into triangles. 

 The weight of a triangulation is the sum of the lengths 
of its diagonals. 
 
 
 
 

 We seek to find its minimum weight triangulation for a 
given polygon p 
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RECURRENCE  

 Observe that every edge of the input polygon must be 
in volved in exactly one triangle. Turning this edge (i,j) 
into a triangle means identifying the third vertex,k.  
 
 

 
 Let T[i, j] be the cost of triangulating from vertex vi to v

ertex vj , ignoring the length of the chord dij from vi t vj . 
𝑇 𝑖, 𝑗 =  min

𝑖+1≤𝑘≤𝑗−1
(𝑇 𝑖, 𝑘 + 𝑇 𝑘, 𝑗 + 𝑑𝑖𝑖 + 𝑑𝑘𝑘) 

 Basis: when i and j are immediate neighbors, as  
T[i, i+1] = 0. 
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 Evaluation an proceed in terms of the gap size from i to j: 
 
 
 
 
 
 
 

 There are 𝑛
2  values of T, each of which takes O(j −i) time if we 

evaluate the sections in order of increasing size.  
 Since j − i = O(n), complete evaluation takes O(n3) time and 

O(n2) space. 
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Minimum-Weight-Triangulation(P) 
for i = 1 to n − 1 do T[i, i + 1] = 0 

for gap = 2 to n − 1 
for i = 1 to n − gap do 

j = i + gap 
   𝑇 𝑖, 𝑗 =  min

𝑖+1≤𝑘≤𝑗−1
(𝑇 𝑖, 𝑘 + 𝑇 𝑘, 𝑗 + 𝑑𝑖𝑖 + 𝑑𝑘𝑘) 

return T[1, n] 



LIMITATIONS OF DYNAMIC PROGRAMMING: TSP 

 Dynamic programming doesn’t always work. 
 Working example: 

 Problem: Longest Simple Path 
 Input: A weighted graph G, with specified start and 

end vertices s and t. 
Output: What is the most expensive path from s to t 

that does not visit any vertex more than once? 
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WHEN ARE DP ALGORITHMS CORRECT? 

 Suppose we define LP[i, j] as a function denoting the 
length of the longest simple path from i to j. 

 Note that the longest simple path from i to j had to visit 
some vertex x right before reaching j.  
 Thus, the last edge visited must be of the form (x, j). 

 Recurrence relation: the length of the longest path, where 
c(x, j) is the cost/weight of edge (x, j): 

𝐿𝐿 𝑖, 𝑗 =  max
(𝑥,𝑗)∈𝐸

𝐿𝐿 𝑖, 𝑥 + 𝑐(𝑥, 𝑗) 

 Can you see the problem? 
 Does not enforce simplicity (we are not allowed to visit any vertex 

more than once) 
 No evaluation order: It is not clear what the smaller subprograms 

are. 
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PRINCIPLE OF OPTIMALITY 

 Dynamic programming can be applied to any problem that 
observes the principle of optimality: partial solutions can 
be optimally extended with regard to the state after the 
partial solution, instead of the specifics of the partial 
solution itself. 
 Future decisions are made based on the consequences of 

previous decisions, not the actual decisions themselves 
 Problems do not satisfy the principle of optimality when the 

specifics of the operations matter, as opposed to just the cost of 
the operations. 

 Example: in deciding whether to extend an approximate 
string matching by a substitution, insertion, or deletion, we 
did not need to know which sequence of operations had 
been performed to date.  
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WHEN ARE DP ALGORITHMS EFFICIENT? 

 Running time of DP is a function of following: 
 (1) number of partial solutions we must keep track of, and  
 (2) how long it take to evaluate each partial solution. 

 The partial solutions should be completely described 
by specifying the stopping places in the input 
 Once the order is fixed, there are relatively few possible 

stopping places or states, so we get efficient algorithms. 
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 When the objects are not firmly ordered, we get an 
exponential number of possible partial solutions. 

 EX> Suppose the state of our partial solution is entire 
path P taken from the start to end vertex.   
𝐿𝐿 𝑖, 𝑗, 𝑃 + 𝑥 =  max

𝑥,𝑗 ∈𝐸,𝑥,𝑗∉𝑃
𝐿𝐿 𝑖, 𝑥, 𝑃 + 𝑐(𝑥, 𝑗) 

This is Correct but not efficient: 
 The path P consists of an ordered sequence of up to n − 3 

vertices. There can be up to (n − 3)! such paths! 
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