@ Ko rea q\& Stony Brook
University

CSE 373 Analysis of Algorithms
Fall 2016

Instructor: Prof. Sael Lee

LEC18: APPLICATIONS OF DYNAMIC PROGRAMMING

Lecture slide courtesy of Prof. Steven Skiena

THREE STEPS OF DP

There are three steps involved in solving a problem by
dynamic programming:
1. Formulate the answer as a recurrence relation or
recursive algorithm.
2. Show that the number of different parameter values

taken on by your recurrence is bounded by a (hopefully
small) polynomial.

3. Specify an order of evaluation for the recurrence so the
partial results you need are always available when you need

them.

APP1: LONGEST INCREASING SEQUENCE

Develop an algorithm to find the longest monotonically
increasing subsequence within a sequence of n numbers.

Difference between increasing sequence and run

run : elements must be physical neighbors of each other.
EX>GivenS=1{2,4,3,5,1,7,6,9, 8],

There are four longest increasing runs of length 2: (2, 4), (3, 5), (1,
7), and (6, 9).

Finding the longest increasing run in a numerical sequence is
straightforward

longest increasing subsequence (LIS) of S does not require
neighborhood.

S has eight longest increasing subsequence in S of length 5,
including {2,3,5,6,8]).

Finding the longest increasing subsequence is considerably trickier.

CONSTRUCT A RECURRENCE

To find the right recurrence, ask what information
about the first n — 1 elements of S would help you to
find the answer for the entire sequence.

The length of the LISins,, s,,...,S,_, seems a
useful thing to know.

In addition, we need to know the length of the
longest sequence that s, will extend.

Define [, to be the length of the longest sequence
ending with s,

The LIS containing the nth number will be formed by
appending it to the longest increasing sequence to the
left of n that ends on a number smaller than s,,.

The following recurrence computes |/

[; = on<1?§i lj + 1, where (Sj < Si)
lO — O

Goal Cell: The length of the LIS of the entire

permutation is given by max [;, since the winning
<l<n

sequence will have to end somewhere.

Table associated with our previous example:
S = {27 47 37 57 17 77 67 97 8}

Sequence s;
Length [;

Aﬁ(/// Predecessor p;
auxiliary information: index pi of the

element that appears immediately
before si in the longest increasing
sequence ending at si.

Reconstruction: Start from the last value of the longest
sequence and follow the pointers to the other items in the

sequence

bk | B2
el M
=1

=] 2] =
e | | &
S| E) oo

3
2
1

o] G| &
| e
=] Wy

TIME COMPLEXITY

Each one of the n values of . is computed by
comparing s; against (up to) i—1 < n values to the left
of it,

so this analysis gives a total of O(n?) time.

APP2: THE PARTITION PROBLEM

Problem: Integer Partition without Rearrangement

Input: An arrangement S of nonnegative numbers {s,, .
.., S,} and an integer k.

Output: Partition S into k or fewer ranges, to minimize
the maximum sum over all the ranges, without
reordering any of the numbers.

Example: three workers are given the task of scanning
through a shelf of books in search of a given piece of
Information. What is the fairest way to divide the
workload (i.e. Sum # of pages in the partitions are
even) : 100 200 300 400 500 | 600 700 | 800 900

RECURSIVE, EXHAUSTIVE SEARCH APPROACH

Notice that the kth partition starts right after we
placed the (k—1)st divider.

Where can we place this last divider? Between the ith
and (i + 1)st elements for some i, where 1 <ij<n.

Let M[n, k] be the minimum possible cost over all
partitionings of {s,, . .., s} into k ranges, where the
cost of a partition is the largest sum of elements in
one of its parts.

RECURRENCE RELATION

What is the cost of this? The total cost will be the
larger of two quantities—

(1) the cost of the last partition}_;,, s; , and

(2) the cost of the largest partition formed to the left of J.

See the recursion?
n

Mn, k]| = 1rzll_i<r}1 max(mli, k — 1], z Sj)
o j=i+1

BOUNDARY CONDITIONS

The smallest reasonable value of the

first argument is n = 1 (first partition consists of a
single element)
M|1,k] = s{,forall k > 0 and,

second argument is k = 1 (we do not partition S at

all).
M[n, 1] = Z s,
=1

TIME ANALYSIS

When we store the partial results, total of k- n cells
exist in the table.

How much time does it take to compute the result
MI[n, k]7?

find the minimum of n” quantities each of which is
the maximum of the table lookup and a sum of at
most n elements

-> at most n? time per box

Total recurrence can be computed in O(kn3) time

{
CODE

partition(int's[], int n, int k)

int M[MAXN+1][MAXK+1]; /* DP table for values */
int dAIMAXN+1][MAXK+1]; /* DP table for dividers */
int p[MAXN+1]; /* prefix sums array */
int cost; /* test split cost */

int i,j,x; /* counters */

p[O] = O; /* construct prefix sums */
for (i=1; i<=n; i++) p[i]=p[i-1]+s[i]; \ We keep track of

)
for (i=1; i<=n; i++) m[i][1] = p[i]; /* initialize bound
for (j=1; j<=k; j++) m[1][j] = s[1];

for (i=2; i<=n; i++) /* evaluate main recurrence */
for (j=2; j<=k; j*+) {

aries| prefix sums

pli] = 2;.(:1 Sk
for faster run time

sinceY,_; Sk =

mli][j] = MAXINT: plk] — pl[j]
for (x=1; x<=(i-1); x++) { _
cost = max(mix|[i-1], pli-pix); |5,
if (M0 > cost) { > s =plkl - plj
ml[i][j] = cost; k=i
dlil[] = x; Enables us to evaluate the

}

}

recurrence in linear
time per cell, yielding an
O(kn?) algorithm.

reconstruct_partition(s,d,n,k); /* print book partition */

RECONSTRUCTING ACTUAL PARTITION

Final value of M(n,k) will be the cost of the largest range in
the optimal partition

Matrix D is used to reconstruct the optimal partition by
work backward from D[n, k] and add a divider at each

specified position.
reconstruct_partition(int s[],int d[MAXN+1][MAXK+1], int n, int k)

if (k==1)
print_books(s,1,n);

else {
reconstruct_partition(s,d,d[n][Kk],k-1);

} print_books(s,d[n][k]+1,n);
}

print_books(int s[], int start, int end)

int i; /* counter */
for (i=start; i<=end; i++) printf(" %d ",s[i]);
printf("\n");

EXAMPLE

M k D k

mn | 2 3 mn 1 2 3
1 111 1

1 2 1 1 1 11
1 3 2 1 1 1 2
1 4 2 2 1 2 2
1 5 3 2 1 2 3
1 6 3 2 1 3 4
1 7 4 3 1 3 4
1 8 4 3 1 1 5
1 9 5 3 1 1 6

Partitioning

(1,1,1,1,1,1,1,1, 1}
into {{1, 1, 1}, {1, 1, 1}, {1,
1, 1)

M k I k

mn 1 2 3 mn 1 2 3
1 1 1 1 1

2 3 2 2 2 1 1
3 £ 3 3 3 2 2
4 10 (i} 4 4 3 3
5 15 9 i 5 3 |
[§] 21 11 9 [§] .| 3
7 28 15 11 i 3 i
5 36 21 15 5 5 £
9 45 24 17 9 £ T

Partitioning
{17 27 37 47 57 67 77 87 9}
into {{1, 2, 3, 4, 5}, {6, 7}, {8, 9}

Notice that final value of M(n, k) is the cost of the largest range in

the optimal partition.

PARSING CONTEXT-FREE GRAMMARS

Learning it in your compiler class.

MINIMUM WEIGHT TRIANGULATION

A triangulation of a polygon P ={v,, ..., v, v,} is a set
of nonintersecting diagonals that partitions the polygo
n into triangles.
The weight of a triangulation is the sum of the lengths
of its diagonals.

We seek to find its minimum weight triangulation for a
given polygon p

RECURRENCE

Observe that every edge of the input polygon must be
In volved in exactly one triangle. Turning this edge (i,))
Into a triangle means identifying the third vertex,k.

k

Let T1J, j] be the cost of triangulating from vertex v, to v
ertex v;, ignoring the length of the chord d; from v; tv;.

Tli,jl= min (T[i,k]+Tlk,j] +d; + dk])

I+1<k<j-—1
Basis: when i and j are immediate neighbors, as
TMi, i+1] =

Evaluation an proceed in terms of the gap size from i to J:

Minimum-Weight-Triangulation(P)
fori=1ton—-1doT[i,i+1]=0
forgap=2ton-1
fori=1ton—gapdo
J=1i+gap
Tli,jl = l.+1glki£1j_1(71[i; k] +Tlk,jl + dy + di;)
return T[1, n]

There are () values of T, each of which takes O(j i) time if we
evaluate the sections in order of increasing size.

Since j — i = O(n), complete evaluation takes O(n3) time and
O(n?) space.

LIMITATIONS OF DYNAMIC PROGRAMMING: TSP

Dynamic programming doesn’t always work.
Working example:
Problem: Longest Simple Path

Input: A weighted graph G, with specified start and
end vertices s and t.

Output: What is the most expensive path fromstot
that does not visit any vertex more than once?

WHEN ARE DP ALGORITHMS CORRECT?

Suppose we define LP[i, j] as a function denoting the
length of the longest simple path from i to j.

Note that the longest simple path from j to j had to visit
some vertex x right before reaching j.

Thus, the last edge visited must be of the form (X, j).
Recurrence relation: the length of the longest path, where
c(x, j) is the cost/weight of edge (X, j):

LP[i,j] = [Dax. LP[i, x| + ¢(x,)

Can you see the problem?

Does not enforce simplicity (we are not allowed to visit any vertex
more than once)

No evaluation order: It is not clear what the smaller subprograms
are.

PRINCIPLE OF OPTIMALITY

Dynamic programming can be applied to any problem that
observes the principle of optimality. partial solutions can
be optimally extended with regard to the state after the
partial solution, instead of the specifics of the partial
solution itself.

Future decisions are made based on the consequences of
previous decisions, not the actual decisions themselves

Problems do not satisfy the principle of optimality when the
specifics of the operations matter, as opposed to just the cost of

the operations.
Example: in deciding whether to extend an approximate
string matching by a substitution, insertion, or deletion, we
did not need to know which sequence of operations had
been performed to date.

WHEN ARE DP ALGORITHMS EFFICIENT?

Running time of DP is a function of following:
(1) number of partial solutions we must keep track of, and
(2) how long it take to evaluate each partial solution.

The partial solutions should be completely described
by specifying the stopping places in the input

Once the order is fixed, there are relatively few possible
stopping places or states, so we get efficient algorithms.

When the objects are not firmly ordered, we get an
exponential number of possible partial solutions.

EX> Suppose the state of our partial solution is entire
path P taken from the start to end vertex.

LP[i,j,P +x] = o RX LP[i,x, P| + c(x,))

This is Correct but not efficient:

The path P consists of an ordered sequence of upton —3
vertices. There can be up to (n — 3)! such paths!

	LEC18: Applications of Dynamic Programming
	Three Steps of DP
	App1: Longest Increasing Sequence
	construct a recurrence
	Slide Number 5
	Slide Number 6
	time complexity
	APP2: The Partition Problem
	recursive, exhaustive search approach
	recurrence relation
	Boundary conditions
	Time analysis
	Code
	Reconstructing actual partition
	Example
	Parsing Context-Free Grammars
	Minimum Weight Triangulation
	Recurrence
	Slide Number 19
	Limitations of Dynamic Programming: TSP
	When are DP Algorithms Correct?
	Principle of optimality
	When are DP Algorithms Efficient?
	Slide Number 24

