
LEC18: APPLICATIONS OF DYNAMIC PROGRAMMING

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

THREE STEPS OF DP

 There are three steps involved in solving a problem by
dynamic programming:
 1. Formulate the answer as a recurrence relation or

recursive algorithm.
 2. Show that the number of different parameter values

taken on by your recurrence is bounded by a (hopefully
small) polynomial.

 3. Specify an order of evaluation for the recurrence so the
partial results you need are always available when you need
them.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

APP1: LONGEST INCREASING SEQUENCE

 Develop an algorithm to find the longest monotonically
increasing subsequence within a sequence of n numbers.

 Difference between increasing sequence and run
 run : elements must be physical neighbors of each other.

 EX> Given S = {2, 4, 3, 5, 1, 7, 6, 9, 8},
 There are four longest increasing runs of length 2: (2, 4), (3, 5), (1,

7), and (6, 9).
 Finding the longest increasing run in a numerical sequence is

straightforward
 longest increasing subsequence (LIS) of S does not require

neighborhood.
 S has eight longest increasing subsequence in S of length 5,

including {2,3,5,6,8}.
 Finding the longest increasing subsequence is considerably trickier.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

CONSTRUCT A RECURRENCE

 To find the right recurrence, ask what information
about the first n − 1 elements of S would help you to
find the answer for the entire sequence.
 The length of the LIS in s1, s2, . . . , sn−1 seems a

useful thing to know.
 In addition, we need to know the length of the

longest sequence that sn will extend.

 Define li to be the length of the longest sequence
ending with si

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

 The LIS containing the nth number will be formed by
appending it to the longest increasing sequence to the
left of n that ends on a number smaller than sn.

 The following recurrence computes li:
𝑙𝑖 = max

0<𝑗<𝑖
𝑙𝑗 + 1 , where 𝑠𝑗 < 𝑠𝑖

𝑙0 = 0
 Goal Cell: The length of the LIS of the entire

permutation is given by max
0≤𝑖≤𝑛

𝑙𝑖, since the winning
sequence will have to end somewhere.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

 Table associated with our previous example:
S = {2, 4, 3, 5, 1, 7, 6, 9, 8}

 Reconstruction: Start from the last value of the longest
sequence and follow the pointers to the other items in the
sequence

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

auxiliary information: index pi of the
element that appears immediately
before si in the longest increasing
sequence ending at si.

2

TIME COMPLEXITY

 Each one of the n values of li is computed by
comparing si against (up to) i−1 ≤ n values to the left
of it,

 so this analysis gives a total of O(n2) time.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

APP2: THE PARTITION PROBLEM

 Problem: Integer Partition without Rearrangement
 Input: An arrangement S of nonnegative numbers {s1, .

. . , sn} and an integer k.
 Output: Partition S into k or fewer ranges, to minimize

the maximum sum over all the ranges, without
reordering any of the numbers.

 Example: three workers are given the task of scanning
through a shelf of books in search of a given piece of
information. What is the fairest way to divide the
workload (i.e. Sum # of pages in the partitions are
even) : 100 200 300 400 500 | 600 700 | 800 900

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

RECURSIVE, EXHAUSTIVE SEARCH APPROACH

 Notice that the kth partition starts right after we
placed the (k−1)st divider.

 Where can we place this last divider? Between the ith
and (i + 1)st elements for some i, where 1 ≤ i ≤ n.

 Let M[n, k] be the minimum possible cost over all
partitionings of {s1, . . . , sn} into k ranges, where the
cost of a partition is the largest sum of elements in
one of its parts.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

RECURRENCE RELATION

 What is the cost of this? The total cost will be the
larger of two quantities—
 (1) the cost of the last partition∑ 𝑠𝑗𝑛

𝑗=𝑖+1 , and
 (2) the cost of the largest partition formed to the left of i.

See the recursion?

𝑀 𝑛, 𝑘 = min
1≤𝑖≤𝑛

max(𝑚 𝑖, 𝑘 − 1 , � 𝑠𝑗

𝑛

𝑗=𝑖+1

)

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

BOUNDARY CONDITIONS

The smallest reasonable value of the
 first argument is n = 1 (first partition consists of a

single element)
𝑀 1,𝑘 = 𝑠1, for all 𝑘 > 0 and,

 second argument is k = 1 (we do not partition S at
all).

𝑀 𝑛, 1 = � 𝑠𝑖
𝑛

𝑖=1

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

TIME ANALYSIS

 When we store the partial results, total of k · n cells
exist in the table.

 How much time does it take to compute the result
M[n, k]?
 find the minimum of n’ quantities each of which is

the maximum of the table lookup and a sum of at
most n elements

 -> at most n2 time per box

 Total recurrence can be computed in O(kn3) time

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

CODE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

partition(int s[], int n, int k)
{

int m[MAXN+1][MAXK+1]; /* DP table for values */
int d[MAXN+1][MAXK+1]; /* DP table for dividers */
int p[MAXN+1]; /* prefix sums array */
int cost; /* test split cost */
int i,j,x; /* counters */

p[0] = 0; /* construct prefix sums */
for (i=1; i<=n; i++) p[i]=p[i-1]+s[i];

for (i=1; i<=n; i++) m[i][1] = p[i]; /* initialize boundaries */
for (j=1; j<=k; j++) m[1][j] = s[1];

for (i=2; i<=n; i++) /* evaluate main recurrence */
for (j=2; j<=k; j++) {

m[i][j] = MAXINT;
for (x=1; x<=(i-1); x++) {

cost = max(m[x][j-1], p[i]-p[x]);
if (m[i][j] > cost) {

m[i][j] = cost;
d[i][j] = x;

}
}

}
reconstruct_partition(s,d,n,k); /* print book partition */

}

We keep track of
prefix sums
𝑝[𝑖] = ∑ 𝑠𝑘𝑖

𝑘=1
for faster run time
since∑ 𝑠𝑘

𝑗
𝑘=𝑖 =

𝑝 𝑘 − 𝑝[𝑗]

Since

� 𝑠𝑘
𝑗

𝑘=𝑖
= 𝑝 𝑘 − 𝑝 𝑗

Enables us to evaluate the
recurrence in linear
time per cell, yielding an
O(kn2) algorithm.

RECONSTRUCTING ACTUAL PARTITION

 Final value of M(n,k) will be the cost of the largest range in
the optimal partition

 Matrix D is used to reconstruct the optimal partition by
work backward from D[n, k] and add a divider at each
specified position.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

reconstruct_partition(int s[],int d[MAXN+1][MAXK+1], int n, int k)
{

if (k==1)
 print_books(s,1,n);
else {

reconstruct_partition(s,d,d[n][k],k-1);
print_books(s,d[n][k]+1,n);

}
}

print_books(int s[], int start, int end)
{

int i; /* counter */
for (i=start; i<=end; i++) printf(" %d ",s[i]);
printf("\n");

}

EXAMPLE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

Partitioning
{1, 1, 1, 1, 1, 1, 1, 1, 1}
into {{1, 1, 1}, {1, 1, 1}, {1,
1, 1}}

Partitioning
{1, 2, 3, 4, 5, 6, 7, 8, 9}
into {{1, 2, 3, 4, 5}, {6, 7}, {8, 9}}

Notice that final value of M(n, k) is the cost of the largest range in
the optimal partition.

PARSING CONTEXT-FREE GRAMMARS

 Learning it in your compiler class.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

MINIMUM WEIGHT TRIANGULATION

 A triangulation of a polygon P = {v1, . . . , vn, v1} is a set
of nonintersecting diagonals that partitions the polygo
n into triangles.

 The weight of a triangulation is the sum of the lengths
of its diagonals.

 We seek to find its minimum weight triangulation for a
given polygon p

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

RECURRENCE

 Observe that every edge of the input polygon must be
in volved in exactly one triangle. Turning this edge (i,j)
into a triangle means identifying the third vertex,k.

 Let T[i, j] be the cost of triangulating from vertex vi to v

ertex vj , ignoring the length of the chord dij from vi t vj .
𝑇 𝑖, 𝑗 = min

𝑖+1≤𝑘≤𝑗−1
(𝑇 𝑖, 𝑘 + 𝑇 𝑘, 𝑗 + 𝑑𝑖𝑘 + 𝑑𝑘𝑗)

 Basis: when i and j are immediate neighbors, as
T[i, i+1] = 0.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

 Evaluation an proceed in terms of the gap size from i to j:

 There are 𝑛
2 values of T, each of which takes O(j −i) time if we

evaluate the sections in order of increasing size.
 Since j − i = O(n), complete evaluation takes O(n3) time and

O(n2) space.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

Minimum-Weight-Triangulation(P)
for i = 1 to n − 1 do T[i, i + 1] = 0

for gap = 2 to n − 1
for i = 1 to n − gap do

j = i + gap
 𝑇 𝑖, 𝑗 = min

𝑖+1≤𝑘≤𝑗−1
(𝑇 𝑖, 𝑘 + 𝑇 𝑘, 𝑗 + 𝑑𝑖𝑘 + 𝑑𝑘𝑗)

return T[1, n]

LIMITATIONS OF DYNAMIC PROGRAMMING: TSP

 Dynamic programming doesn’t always work.
 Working example:

 Problem: Longest Simple Path
 Input: A weighted graph G, with specified start and

end vertices s and t.
Output: What is the most expensive path from s to t

that does not visit any vertex more than once?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

WHEN ARE DP ALGORITHMS CORRECT?

 Suppose we define LP[i, j] as a function denoting the
length of the longest simple path from i to j.

 Note that the longest simple path from i to j had to visit
some vertex x right before reaching j.
 Thus, the last edge visited must be of the form (x, j).

 Recurrence relation: the length of the longest path, where
c(x, j) is the cost/weight of edge (x, j):

𝐿𝐿 𝑖, 𝑗 = max
(𝑥,𝑗)∈𝐸

𝐿𝐿 𝑖, 𝑥 + 𝑐(𝑥, 𝑗)

 Can you see the problem?
 Does not enforce simplicity (we are not allowed to visit any vertex

more than once)
 No evaluation order: It is not clear what the smaller subprograms

are.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

PRINCIPLE OF OPTIMALITY

 Dynamic programming can be applied to any problem that
observes the principle of optimality: partial solutions can
be optimally extended with regard to the state after the
partial solution, instead of the specifics of the partial
solution itself.
 Future decisions are made based on the consequences of

previous decisions, not the actual decisions themselves
 Problems do not satisfy the principle of optimality when the

specifics of the operations matter, as opposed to just the cost of
the operations.

 Example: in deciding whether to extend an approximate
string matching by a substitution, insertion, or deletion, we
did not need to know which sequence of operations had
been performed to date.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

WHEN ARE DP ALGORITHMS EFFICIENT?

 Running time of DP is a function of following:
 (1) number of partial solutions we must keep track of, and
 (2) how long it take to evaluate each partial solution.

 The partial solutions should be completely described
by specifying the stopping places in the input
 Once the order is fixed, there are relatively few possible

stopping places or states, so we get efficient algorithms.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

 When the objects are not firmly ordered, we get an
exponential number of possible partial solutions.

 EX> Suppose the state of our partial solution is entire
path P taken from the start to end vertex.
𝐿𝐿 𝑖, 𝑗,𝐿 + 𝑥 = max

𝑥,𝑗 ∈𝐸,𝑥,𝑗∉𝑃
𝐿𝐿 𝑖, 𝑥,𝐿 + 𝑐(𝑥, 𝑗)

This is Correct but not efficient:
 The path P consists of an ordered sequence of up to n − 3

vertices. There can be up to (n − 3)! such paths!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

	LEC18: Applications of Dynamic Programming
	Three Steps of DP
	App1: Longest Increasing Sequence
	construct a recurrence
	Slide Number 5
	Slide Number 6
	time complexity
	APP2: The Partition Problem
	recursive, exhaustive search approach
	recurrence relation
	Boundary conditions
	Time analysis
	Code
	Reconstructing actual partition
	Example
	Parsing Context-Free Grammars
	Minimum Weight Triangulation
	Recurrence
	Slide Number 19
	Limitations of Dynamic Programming: TSP
	When are DP Algorithms Correct?
	Principle of optimality
	When are DP Algorithms Efficient?
	Slide Number 24

