
LEC18: APPLICATIONS OF DYNAMIC PROGRAMMING

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

THREE STEPS OF DP

 There are three steps involved in solving a problem by
dynamic programming:
 1. Formulate the answer as a recurrence relation or

recursive algorithm.
 2. Show that the number of different parameter values

taken on by your recurrence is bounded by a (hopefully
small) polynomial.

 3. Specify an order of evaluation for the recurrence so the
partial results you need are always available when you need
them.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

APP1: LONGEST INCREASING SEQUENCE

 Develop an algorithm to find the longest monotonically
increasing subsequence within a sequence of n numbers.

 Difference between increasing sequence and run
 run : elements must be physical neighbors of each other.

 EX> Given S = {2, 4, 3, 5, 1, 7, 6, 9, 8},
 There are four longest increasing runs of length 2: (2, 4), (3, 5), (1,

7), and (6, 9).
 Finding the longest increasing run in a numerical sequence is

straightforward
 longest increasing subsequence (LIS) of S does not require

neighborhood.
 S has eight longest increasing subsequence in S of length 5,

including {2,3,5,6,8}.
 Finding the longest increasing subsequence is considerably trickier.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

CONSTRUCT A RECURRENCE

 To find the right recurrence, ask what information
about the first n − 1 elements of S would help you to
find the answer for the entire sequence.
 The length of the LIS in s1, s2, . . . , sn−1 seems a

useful thing to know.
 In addition, we need to know the length of the

longest sequence that sn will extend.

 Define li to be the length of the longest sequence
ending with si

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

 The LIS containing the nth number will be formed by
appending it to the longest increasing sequence to the
left of n that ends on a number smaller than sn.

 The following recurrence computes li:
𝑙𝑖 = max

0<𝑗<𝑖
𝑙𝑗 + 1 , where 𝑠𝑗 < 𝑠𝑖

𝑙0 = 0
 Goal Cell: The length of the LIS of the entire

permutation is given by max
0≤𝑖≤𝑛

𝑙𝑖, since the winning
sequence will have to end somewhere.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

 Table associated with our previous example:
S = {2, 4, 3, 5, 1, 7, 6, 9, 8}

 Reconstruction: Start from the last value of the longest
sequence and follow the pointers to the other items in the
sequence

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

auxiliary information: index pi of the
element that appears immediately
before si in the longest increasing
sequence ending at si.

2

TIME COMPLEXITY

 Each one of the n values of li is computed by
comparing si against (up to) i−1 ≤ n values to the left
of it,

 so this analysis gives a total of O(n2) time.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

APP2: THE PARTITION PROBLEM

 Problem: Integer Partition without Rearrangement
 Input: An arrangement S of nonnegative numbers {s1, .

. . , sn} and an integer k.
 Output: Partition S into k or fewer ranges, to minimize

the maximum sum over all the ranges, without
reordering any of the numbers.

 Example: three workers are given the task of scanning
through a shelf of books in search of a given piece of
information. What is the fairest way to divide the
workload (i.e. Sum # of pages in the partitions are
even) : 100 200 300 400 500 | 600 700 | 800 900

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

RECURSIVE, EXHAUSTIVE SEARCH APPROACH

 Notice that the kth partition starts right after we
placed the (k−1)st divider.

 Where can we place this last divider? Between the ith
and (i + 1)st elements for some i, where 1 ≤ i ≤ n.

 Let M[n, k] be the minimum possible cost over all
partitionings of {s1, . . . , sn} into k ranges, where the
cost of a partition is the largest sum of elements in
one of its parts.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

RECURRENCE RELATION

 What is the cost of this? The total cost will be the
larger of two quantities—
 (1) the cost of the last partition∑ 𝑠𝑗𝑛

𝑗=𝑖+1 , and
 (2) the cost of the largest partition formed to the left of i.

See the recursion?

𝑀 𝑛, 𝑘 = min
1≤𝑖≤𝑛

max(𝑚 𝑖, 𝑘 − 1 , � 𝑠𝑗

𝑛

𝑗=𝑖+1

)

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

BOUNDARY CONDITIONS

The smallest reasonable value of the
 first argument is n = 1 (first partition consists of a

single element)
𝑀 1, 𝑘 = 𝑠1, for all 𝑘 > 0 and,

 second argument is k = 1 (we do not partition S at
all).

𝑀 𝑛, 1 = � 𝑠𝑖
𝑛

𝑖=1

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

TIME ANALYSIS

 When we store the partial results, total of k · n cells
exist in the table.

 How much time does it take to compute the result
M[n, k]?
 find the minimum of n’ quantities each of which is

the maximum of the table lookup and a sum of at
most n elements

 -> at most n2 time per box

 Total recurrence can be computed in O(kn3) time

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

CODE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

partition(int s[], int n, int k)
{

int m[MAXN+1][MAXK+1]; /* DP table for values */
int d[MAXN+1][MAXK+1]; /* DP table for dividers */
int p[MAXN+1]; /* prefix sums array */
int cost; /* test split cost */
int i,j,x; /* counters */

p[0] = 0; /* construct prefix sums */
for (i=1; i<=n; i++) p[i]=p[i-1]+s[i];

for (i=1; i<=n; i++) m[i][1] = p[i]; /* initialize boundaries */
for (j=1; j<=k; j++) m[1][j] = s[1];

for (i=2; i<=n; i++) /* evaluate main recurrence */
for (j=2; j<=k; j++) {

m[i][j] = MAXINT;
for (x=1; x<=(i-1); x++) {

cost = max(m[x][j-1], p[i]-p[x]);
if (m[i][j] > cost) {

m[i][j] = cost;
d[i][j] = x;

}
}

}
reconstruct_partition(s,d,n,k); /* print book partition */

}

We keep track of
prefix sums
𝑝[𝑖] = ∑ 𝑠𝑘𝑖

𝑘=1
for faster run time
since∑ 𝑠𝑘

𝑗
𝑘=𝑖 =

𝑝 𝑘 − 𝑝[𝑗]

Since

� 𝑠𝑘
𝑗

𝑘=𝑖
= 𝑝 𝑘 − 𝑝 𝑗

Enables us to evaluate the
recurrence in linear
time per cell, yielding an
O(kn2) algorithm.

RECONSTRUCTING ACTUAL PARTITION

 Final value of M(n,k) will be the cost of the largest range in
the optimal partition

 Matrix D is used to reconstruct the optimal partition by
work backward from D[n, k] and add a divider at each
specified position.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

reconstruct_partition(int s[],int d[MAXN+1][MAXK+1], int n, int k)
{

if (k==1)
 print_books(s,1,n);
else {

reconstruct_partition(s,d,d[n][k],k-1);
print_books(s,d[n][k]+1,n);

}
}

print_books(int s[], int start, int end)
{

int i; /* counter */
for (i=start; i<=end; i++) printf(" %d ",s[i]);
printf("\n");

}

EXAMPLE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

Partitioning
{1, 1, 1, 1, 1, 1, 1, 1, 1}
into {{1, 1, 1}, {1, 1, 1}, {1,
1, 1}}

Partitioning
{1, 2, 3, 4, 5, 6, 7, 8, 9}
into {{1, 2, 3, 4, 5}, {6, 7}, {8, 9}}

Notice that final value of M(n, k) is the cost of the largest range in
the optimal partition.

PARSING CONTEXT-FREE GRAMMARS

 Learning it in your compiler class.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

MINIMUM WEIGHT TRIANGULATION

 A triangulation of a polygon P = {v1, . . . , vn, v1} is a set
of nonintersecting diagonals that partitions the polygo
n into triangles.

 The weight of a triangulation is the sum of the lengths
of its diagonals.

 We seek to find its minimum weight triangulation for a
given polygon p

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

RECURRENCE

 Observe that every edge of the input polygon must be
in volved in exactly one triangle. Turning this edge (i,j)
into a triangle means identifying the third vertex,k.

 Let T[i, j] be the cost of triangulating from vertex vi to v

ertex vj , ignoring the length of the chord dij from vi t vj .
𝑇 𝑖, 𝑗 = min

𝑖+1≤𝑘≤𝑗−1
(𝑇 𝑖, 𝑘 + 𝑇 𝑘, 𝑗 + 𝑑𝑖𝑖 + 𝑑𝑘𝑘)

 Basis: when i and j are immediate neighbors, as
T[i, i+1] = 0.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

 Evaluation an proceed in terms of the gap size from i to j:

 There are 𝑛
2 values of T, each of which takes O(j −i) time if we

evaluate the sections in order of increasing size.
 Since j − i = O(n), complete evaluation takes O(n3) time and

O(n2) space.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

Minimum-Weight-Triangulation(P)
for i = 1 to n − 1 do T[i, i + 1] = 0

for gap = 2 to n − 1
for i = 1 to n − gap do

j = i + gap
 𝑇 𝑖, 𝑗 = min

𝑖+1≤𝑘≤𝑗−1
(𝑇 𝑖, 𝑘 + 𝑇 𝑘, 𝑗 + 𝑑𝑖𝑖 + 𝑑𝑘𝑘)

return T[1, n]

LIMITATIONS OF DYNAMIC PROGRAMMING: TSP

 Dynamic programming doesn’t always work.
 Working example:

 Problem: Longest Simple Path
 Input: A weighted graph G, with specified start and

end vertices s and t.
Output: What is the most expensive path from s to t

that does not visit any vertex more than once?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

WHEN ARE DP ALGORITHMS CORRECT?

 Suppose we define LP[i, j] as a function denoting the
length of the longest simple path from i to j.

 Note that the longest simple path from i to j had to visit
some vertex x right before reaching j.
 Thus, the last edge visited must be of the form (x, j).

 Recurrence relation: the length of the longest path, where
c(x, j) is the cost/weight of edge (x, j):

𝐿𝐿 𝑖, 𝑗 = max
(𝑥,𝑗)∈𝐸

𝐿𝐿 𝑖, 𝑥 + 𝑐(𝑥, 𝑗)

 Can you see the problem?
 Does not enforce simplicity (we are not allowed to visit any vertex

more than once)
 No evaluation order: It is not clear what the smaller subprograms

are.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

PRINCIPLE OF OPTIMALITY

 Dynamic programming can be applied to any problem that
observes the principle of optimality: partial solutions can
be optimally extended with regard to the state after the
partial solution, instead of the specifics of the partial
solution itself.
 Future decisions are made based on the consequences of

previous decisions, not the actual decisions themselves
 Problems do not satisfy the principle of optimality when the

specifics of the operations matter, as opposed to just the cost of
the operations.

 Example: in deciding whether to extend an approximate
string matching by a substitution, insertion, or deletion, we
did not need to know which sequence of operations had
been performed to date.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

WHEN ARE DP ALGORITHMS EFFICIENT?

 Running time of DP is a function of following:
 (1) number of partial solutions we must keep track of, and
 (2) how long it take to evaluate each partial solution.

 The partial solutions should be completely described
by specifying the stopping places in the input
 Once the order is fixed, there are relatively few possible

stopping places or states, so we get efficient algorithms.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

 When the objects are not firmly ordered, we get an
exponential number of possible partial solutions.

 EX> Suppose the state of our partial solution is entire
path P taken from the start to end vertex.
𝐿𝐿 𝑖, 𝑗, 𝑃 + 𝑥 = max

𝑥,𝑗 ∈𝐸,𝑥,𝑗∉𝑃
𝐿𝐿 𝑖, 𝑥, 𝑃 + 𝑐(𝑥, 𝑗)

This is Correct but not efficient:
 The path P consists of an ordered sequence of up to n − 3

vertices. There can be up to (n − 3)! such paths!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

	LEC18: Applications of Dynamic Programming
	Three Steps of DP
	App1: Longest Increasing Sequence
	construct a recurrence
	Slide Number 5
	Slide Number 6
	time complexity
	APP2: The Partition Problem
	recursive, exhaustive search approach
	recurrence relation
	Boundary conditions
	Time analysis
	Code
	Reconstructing actual partition
	Example
	Parsing Context-Free Grammars
	Minimum Weight Triangulation
	Recurrence
	Slide Number 19
	Limitations of Dynamic Programming: TSP
	When are DP Algorithms Correct?
	Principle of optimality
	When are DP Algorithms Efficient?
	Slide Number 24

