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THREE STEPS OF DP  

 There are three steps involved in solving a problem by 
dynamic programming: 
 1. Formulate the answer as a recurrence relation or 

recursive algorithm. 
 2. Show that the number of different parameter values 

taken on by your recurrence is bounded by a (hopefully 
small) polynomial. 

 3. Specify an order of evaluation for the recurrence so the 
partial results you need are always available when you need 
them. 
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APP1: LONGEST INCREASING SEQUENCE 

 Develop an algorithm to find the longest monotonically 
increasing subsequence within a sequence of n numbers. 

 Difference between increasing sequence  and run 
 run : elements must be physical neighbors of each other. 

 EX> Given S = {2, 4, 3, 5, 1, 7, 6, 9, 8},  
 There are four longest increasing runs of length 2: (2, 4), (3, 5), (1, 

7), and (6, 9). 
 Finding the longest increasing run in a numerical sequence is 

straightforward 
 longest increasing subsequence (LIS) of S does not require 

neighborhood.  
 S has eight longest increasing subsequence in S of length 5, 

including {2,3,5,6,8}.  
 Finding the longest increasing subsequence is considerably trickier. 
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CONSTRUCT A  RECURRENCE 

 To find the right recurrence, ask what information 
about the first n − 1 elements of S would help you to 
find the answer for the entire sequence.  
 The length of the LIS in s1, s2, . . . , sn−1 seems a 

useful thing to know. 
 In addition, we need to know the length of the 

longest sequence that sn will extend. 

 Define li to be the length of the longest sequence 
ending with si 
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 The LIS containing the nth number will be formed by 
appending it to the longest increasing sequence to the 
left of n that ends on a number smaller than sn.  

 The following recurrence computes li: 
𝑙𝑖 = max

0<𝑗<𝑖
𝑙𝑗 + 1 , where 𝑠𝑗 < 𝑠𝑖  

𝑙0 = 0 
 Goal Cell: The length of the LIS of the entire 

permutation is given by max
0≤𝑖≤𝑛

𝑙𝑖, since the winning 
sequence will have to end somewhere. 
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 Table associated with our previous example: 
S = {2, 4, 3, 5, 1, 7, 6, 9, 8} 

 
 
 
 
 
 
 

 Reconstruction: Start from the last value of the longest 
sequence and follow the pointers to the other items in the 
sequence 
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auxiliary information: index pi of the 
element that appears immediately 
before si in the longest increasing 
sequence ending at si. 

2 



TIME COMPLEXITY 

 Each one of the n values of li is computed by 
comparing si against (up to) i−1 ≤ n values to the left 
of it,  

 so this analysis gives a total of O(n2) time.  
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APP2: THE PARTITION PROBLEM 

 Problem: Integer Partition without Rearrangement 
 Input: An arrangement S of nonnegative numbers {s1, . 

. . , sn} and an integer k. 
 Output: Partition S into k or fewer ranges, to minimize 

the maximum sum over all the ranges, without 
reordering any of the numbers. 

 Example: three workers are given the task of scanning 
through a shelf of books in search of a given piece of 
information.  What is the fairest way to divide the 
workload (i.e. Sum # of pages in the partitions are 
even) : 100 200 300 400 500 | 600 700 | 800 900 
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RECURSIVE, EXHAUSTIVE SEARCH APPROACH 

 Notice that the kth partition starts right after we 
placed the (k−1)st divider. 

 Where can we place this last divider? Between the ith 
and (i + 1)st elements for some i, where 1 ≤ i ≤ n. 

 Let M[n, k] be the minimum possible cost over all 
partitionings of {s1, . . . , sn} into k ranges, where the 
cost of a partition is the largest sum of elements in 
one of its parts. 
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RECURRENCE RELATION 

 What is the cost of this? The total cost will be the 
larger of two quantities— 
 (1) the cost of the last partition∑ 𝑠𝑗𝑛

𝑗=𝑖+1  , and 
 (2) the cost of the largest partition formed to the left of i. 

See the recursion?  

𝑀 𝑛, 𝑘 = min
1≤𝑖≤𝑛

max(𝑚 𝑖, 𝑘 − 1 , � 𝑠𝑗

𝑛

𝑗=𝑖+1

) 
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BOUNDARY CONDITIONS 

The smallest reasonable value of the  
 first argument is n = 1 (first partition consists of a 

single element) 
𝑀 1,𝑘 = 𝑠1, for all 𝑘 > 0 and, 

 second argument is k = 1 (we do not partition S at 
all). 

𝑀 𝑛, 1 =  � 𝑠𝑖
𝑛

𝑖=1
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TIME ANALYSIS 

 When we store the partial results, total of k · n cells 
exist in the table. 

 How much time does it take to compute the result     
M[n, k]?  
 find the minimum of n’ quantities each of which is 

the maximum of the table lookup and a sum of at 
most n elements 

 -> at most n2 time per box 
 

 Total recurrence can be computed in O(kn3) time 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

12 



CODE 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

13 

partition(int s[], int n, int k) 
{ 

int m[MAXN+1][MAXK+1];   /* DP table for values */ 
int d[MAXN+1][MAXK+1];   /* DP table for dividers */ 
int p[MAXN+1];    /* prefix sums array */ 
int cost;    /* test split cost */ 
int i,j,x;    /* counters */ 
 

p[0] = 0;    /* construct prefix sums */ 
for (i=1; i<=n; i++) p[i]=p[i-1]+s[i]; 
 

for (i=1; i<=n; i++) m[i][1] = p[i]; /* initialize boundaries */ 
for (j=1; j<=k; j++) m[1][j] = s[1]; 
 

for (i=2; i<=n; i++) /* evaluate main recurrence */ 
for (j=2; j<=k; j++) { 

m[i][j] = MAXINT; 
for (x=1; x<=(i-1); x++) { 

cost = max(m[x][j-1], p[i]-p[x]); 
if (m[i][j] > cost) { 

m[i][j] = cost; 
d[i][j] = x; 

} 
} 

} 
reconstruct_partition(s,d,n,k); /* print book partition */ 

} 

We keep track of 
prefix sums 
𝑝[𝑖]  = ∑ 𝑠𝑘𝑖

𝑘=1  
for faster run time 
since∑ 𝑠𝑘

𝑗
𝑘=𝑖 =

𝑝 𝑘 − 𝑝[𝑗] 

Since 

� 𝑠𝑘
𝑗

𝑘=𝑖
= 𝑝 𝑘 − 𝑝 𝑗  

Enables us to evaluate the 
recurrence in linear 
time per cell, yielding an 
O(kn2) algorithm. 



RECONSTRUCTING ACTUAL PARTITION 

 Final value of M(n,k) will be the cost of the largest range in 
the optimal partition 

 Matrix D is used to reconstruct the optimal partition by 
work backward from D[n, k] and add a divider at each 
specified position.  
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reconstruct_partition(int s[],int d[MAXN+1][MAXK+1], int n, int k) 
{ 

if (k==1) 
 print_books(s,1,n); 
else { 

reconstruct_partition(s,d,d[n][k],k-1); 
print_books(s,d[n][k]+1,n); 

} 
} 
 
print_books(int s[], int start, int end) 
{ 

int i; /* counter */ 
for (i=start; i<=end; i++) printf(" %d ",s[i]); 
printf("\n"); 

} 



EXAMPLE 
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Partitioning 
{1, 1, 1, 1, 1, 1, 1, 1, 1}  
into {{1, 1, 1}, {1, 1, 1}, {1, 
1, 1}} 

Partitioning  
{1, 2, 3, 4, 5, 6, 7, 8, 9} 
into {{1, 2, 3, 4, 5}, {6, 7}, {8, 9}} 

Notice that final value of M(n, k) is the cost of the largest range in 
the optimal partition. 



PARSING CONTEXT-FREE GRAMMARS 

 Learning it in your compiler class.  

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

16 



MINIMUM WEIGHT TRIANGULATION 

 A triangulation of a polygon P = {v1, . . . , vn, v1} is a set 
of nonintersecting diagonals that partitions the polygo
n into triangles. 

 The weight of a triangulation is the sum of the lengths 
of its diagonals. 
 
 
 
 

 We seek to find its minimum weight triangulation for a 
given polygon p 
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RECURRENCE  

 Observe that every edge of the input polygon must be 
in volved in exactly one triangle. Turning this edge (i,j) 
into a triangle means identifying the third vertex,k.  
 
 

 
 Let T[i, j] be the cost of triangulating from vertex vi to v

ertex vj , ignoring the length of the chord dij from vi t vj . 
𝑇 𝑖, 𝑗 =  min

𝑖+1≤𝑘≤𝑗−1
(𝑇 𝑖, 𝑘 + 𝑇 𝑘, 𝑗 + 𝑑𝑖𝑘 + 𝑑𝑘𝑗) 

 Basis: when i and j are immediate neighbors, as  
T[i, i+1] = 0. 
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 Evaluation an proceed in terms of the gap size from i to j: 
 
 
 
 
 
 
 

 There are 𝑛
2  values of T, each of which takes O(j −i) time if we 

evaluate the sections in order of increasing size.  
 Since j − i = O(n), complete evaluation takes O(n3) time and 

O(n2) space. 
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Minimum-Weight-Triangulation(P) 
for i = 1 to n − 1 do T[i, i + 1] = 0 

for gap = 2 to n − 1 
for i = 1 to n − gap do 

j = i + gap 
   𝑇 𝑖, 𝑗 =  min

𝑖+1≤𝑘≤𝑗−1
(𝑇 𝑖, 𝑘 + 𝑇 𝑘, 𝑗 + 𝑑𝑖𝑘 + 𝑑𝑘𝑗) 

return T[1, n] 



LIMITATIONS OF DYNAMIC PROGRAMMING: TSP 

 Dynamic programming doesn’t always work. 
 Working example: 

 Problem: Longest Simple Path 
 Input: A weighted graph G, with specified start and 

end vertices s and t. 
Output: What is the most expensive path from s to t 

that does not visit any vertex more than once? 
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WHEN ARE DP ALGORITHMS CORRECT? 

 Suppose we define LP[i, j] as a function denoting the 
length of the longest simple path from i to j. 

 Note that the longest simple path from i to j had to visit 
some vertex x right before reaching j.  
 Thus, the last edge visited must be of the form (x, j). 

 Recurrence relation: the length of the longest path, where 
c(x, j) is the cost/weight of edge (x, j): 

𝐿𝐿 𝑖, 𝑗 =  max
(𝑥,𝑗)∈𝐸

𝐿𝐿 𝑖, 𝑥 + 𝑐(𝑥, 𝑗) 

 Can you see the problem? 
 Does not enforce simplicity (we are not allowed to visit any vertex 

more than once) 
 No evaluation order: It is not clear what the smaller subprograms 

are. 
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PRINCIPLE OF OPTIMALITY 

 Dynamic programming can be applied to any problem that 
observes the principle of optimality: partial solutions can 
be optimally extended with regard to the state after the 
partial solution, instead of the specifics of the partial 
solution itself. 
 Future decisions are made based on the consequences of 

previous decisions, not the actual decisions themselves 
 Problems do not satisfy the principle of optimality when the 

specifics of the operations matter, as opposed to just the cost of 
the operations. 

 Example: in deciding whether to extend an approximate 
string matching by a substitution, insertion, or deletion, we 
did not need to know which sequence of operations had 
been performed to date.  
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WHEN ARE DP ALGORITHMS EFFICIENT? 

 Running time of DP is a function of following: 
 (1) number of partial solutions we must keep track of, and  
 (2) how long it take to evaluate each partial solution. 

 The partial solutions should be completely described 
by specifying the stopping places in the input 
 Once the order is fixed, there are relatively few possible 

stopping places or states, so we get efficient algorithms. 
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 When the objects are not firmly ordered, we get an 
exponential number of possible partial solutions. 

 EX> Suppose the state of our partial solution is entire 
path P taken from the start to end vertex.   
𝐿𝐿 𝑖, 𝑗,𝐿 + 𝑥 =  max

𝑥,𝑗 ∈𝐸,𝑥,𝑗∉𝑃
𝐿𝐿 𝑖, 𝑥,𝐿 + 𝑐(𝑥, 𝑗) 

This is Correct but not efficient: 
 The path P consists of an ordered sequence of up to n − 3 

vertices. There can be up to (n − 3)! such paths! 
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