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EDIT DISTANCE 

 Misspellings make approximate pattern matching an 
important problem 

 If we are to deal with inexact string matching, we must 
first define a cost function telling us how far apart two 
strings are, i.e., a distance measure between pairs of 
strings. 

 A reasonable distance measure minimizes the cost of 
the changes which have to be made to convert one 
string to another. 
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STRING EDIT OPERATIONS 

 There are three natural types of changes: 
 Substitution – Change a single character from pattern s to 

a different character in text t, such as changing “shot” to 
“spot”. 

 Insertion – Insert a single character into pattern s to help it 
match text t, such as changing “ago” to “agog”. 

 Deletion – Delete a single character from pattern s to help 
it match text t, such as changing “hour” to “our”. 
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RECURSIVE ALGORITHM 

 We can compute the edit distance with recursive 
algorithm using the observation that the last character 
in the string must either be matched, substituted, 
inserted, or deleted. 

 If we knew the cost of editing the three pairs of 
smaller strings, we could decide which option leads to 
the best solution and choose that option accordingly. 

 We can learn this cost, through the magic of 
recursion: 
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RECURSIVE EDIT DISTANCE CODE 
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#define MATCH 0   /* enumerated type symbol for match */ 
#define INSERT 1   /* enumerated type symbol for insert */ 
#define DELETE 2   /* enumerated type symbol for delete */ 
 

int string compare(char *s, char *t, int i, int j) 
{ 

int k;   /* counter */ 
int opt[3];   /* cost of the three options */ 
int lowest cost;  /* lowest cost */ 
 

if (i == 0) return(j * indel(’ ’)); 
if (j == 0) return(i * indel(’ ’)); 
 

opt[MATCH] = string compare(s,t,i-1,j-1) + match(s[i],t[j]); 
opt[INSERT] = string compare(s,t,i,j-1) + indel(t[j]); 
opt[DELETE] = string compare(s,t,i-1,j) + indel(s[i]); 
 

lowest cost = opt[MATCH]; 
for (k=INSERT; k<=DELETE; k++) 
 if (opt[k] < lowest cost) lowest cost = opt[k]; 
return( lowest cost ); 

} 

Correct but 
very slow 



SPEEDING IT UP 

 This program is absolutely correct but takes 
exponential time because it recomputes values again 
and again and again! 

 But there can only be |s|*|t| possible unique recursive 
calls, since there are only that many distinct (i,j) pairs 
to serve as the parameters of recursive calls. 

 By storing the values for each of these (i,j) pairs in a 
table, we can avoid recomputing them and just look 
them up as needed. 
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THE DYNAMIC PROGRAMMING TABLE 
 
 The table is a two-dimensional matrix m where each of 

the |s|*|t| cells contains the cost of the optimal 
solution of this subproblem, as well as a parent 
pointer explaining how we got to this location: 
 
typedef struct { 
int cost;   /* cost of reaching this cell */ 
int parent;   /* parent cell */ 
} cell; 
 
/* dynamic programming table */ 
cell m[MAXLEN+1][MAXLEN+1];  
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DIFFERENCES WITH DYNAMIC PROGRAMMING 

 The dynamic programming version has three 
differences from the recursive version: 
 First, it gets its intermediate values using table lookup 

instead of recursive calls. 
 Second, it updates the parent field of each cell, which will 

enable us to reconstruct the edit-sequence later. 
 Third, it is instrumented using a more general goal cell() 

function instead of just returning m[|s|][|t|].cost. This will 
enable us to apply this routine to a wider class of problems.  

 We assume that each string has been padded with an 
initial blank character, so the first real character of 
string s sits in s[1]. 
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EVALUATION ORDER 

 To determine the value of cell (i,j) we need three 
values sitting and waiting for us, namely, the cells      
(i-1,j-1), (i, j-1), and (i-1, j). Any evaluation order with 
this property will do, including the row-major order 
used in this program. 

 Think of the cells as vertices, where there is an edge 
(i, j) if cell i’s value is needed to compute cell j. Any 
topological sort of this DAG provides a proper 
evaluation order. 
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DYNAMIC PROGRAMMING EDIT DISTANCE 
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int string_compare(char *s, char *t) 
{ 

int i,j,k; /* counters */ 
int opt[3]; /* cost of the three options */ 
for (i=0; i<MAXLEN; i++) { 

row_init(i); 
column_init(i); 

} 
for (i=1; i<strlen(s); i++) { 

for (j=1; j<strlen(t); j++) { 
opt[MATCH] = m[i-1][j-1].cost + match(s[i],t[j]); 
opt[INSERT] = m[i][j-1].cost + indel(t[j]); 
opt[DELETE] = m[i-1][j].cost + indel(s[i]); 
m[i][j].cost = opt[MATCH]; 
m[i][j].parent = MATCH; 
for (k=INSERT; k<=DELETE; k++) 
if (opt[k] < m[i][j].cost) { 

m[i][j].cost = opt[k]; 
m[i][j].parent = k; 

} 
} 

} 
goal_cell(s,t,&i,&j); 
return( m[i][j].cost ); 

} 

typedef struct { 
int cost; /* cost of reaching this cell */ 
int parent; /* parent cell */ 

} cell; 
 
 /* dynamic programming table */ 
cell m[MAXLEN+1][MAXLEN+1]; 



EXAMPLE 

 Below is an example run, showing the cost and parent values 
 turning “thou shalt not” to “you should not” in five moves: 

 
 
 
 
 
 
 
 

 The edit sequence from “thou-shalt-not” to “you-should-not” 
 is DSMMMMMISMSMMMM 
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RECONSTRUCTING THE PATH 

 Solutions to a given dynamic programming problem 
are described by paths through the dynamic 
programming matrix, starting from the initial 
configuration (the pair of empty strings (0, 0)) down to 
the final goal state (the pair of full strings (|s|, |t|)). 

 Reconstructing these decisions is done by walking 
backward from the goal state, following the parent 
pointer to an earlier cell.  

 The parent field for m[i,j] tells us whether the 
transform at (i, j) was MATCH, INSERT, or DELETE. 

 Walking backward reconstructs the solution in reverse 
order. 
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RECONSTRUCT PATH CODE 

 However, clever use of recursion can do the reversing for us: 
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reconstruct_path(char *s, char *t, int i, int j) 
{ 

if (m[i][j].parent == -1) return; 
 
if (m[i][j].parent == MATCH) { 

reconstruct_path(s,t,i-1,j-1); 
match_out(s, t, i, j); 
return; 

} 
 
if (m[i][j].parent == INSERT) { 

reconstruct_path(s,t,i,j-1); 
insert_out(t,j);  
return; 

} 
 
if (m[i][j].parent == DELETE) { 

reconstruct_path(s,t,i-1,j); 
delete_out(s,i); 
return; 

} 
} 



CUSTOMIZING EDIT DISTANCE 
 Table Initialization  

 The functions row_init() and column_init() initialize the 
zeroth row and column of the dynamic programming table, 
respectively. 
 
 
 

 Penalty Costs  
 The functions match(c,d) and indel(c) present the costs for 

transforming character c to d and inserting/deleting 
character c. 

 For edit distance, match costs nothing if the characters are 
identical, and 1 otherwise, while indel always returns 1. 
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row_init(int i) 
{ 

m[0][i].cost = i; 
if (i>0) 
 m[0][i].parent = INSERT; 
else 
 m[0][i].parent = -1; 

} 

column_init(int i) 
{ 

m[i][0].cost = i; 
if (i>0) 
 m[i][0].parent = DELETE; 
else 
 m[i][0].parent = -1; 

} 



 Goal Cell Identification  
 The function goal cell returns the indices of the cell marking 

the endpoint of the solution.  
 For edit distance, this is defined by the length of the two 

input strings. 
 
 

 Traceback Actions 
 The functions match_out, insert_out, and delete_out 

perform the appropriate actions for each edit-operation 
during traceback.  

 For edit distance, this might mean printing out the name of 
the operation or character involved, as determined by the 
needs of the application. 
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goal_cell(char *s, char *t, int *i, int *j) 
{ 

*i = strlen(s) - 1; 
*j = strlen(t) - 1; 

} 



SUBSTRING MATCHING 

 Suppose that we want to find where a short pattern s best 
occurs within a long text t,  
 say, searching for “Skiena” in all its misspellings (Skienna, Skena, 

Skina, . . . ). 
 Plugging this search into our original edit distance function 

will achieve little sensitivity,  
 since the vast majority of any edit cost will be that of deleting the 

body of the text. 
 We want an edit distance search where the cost of starting 

the match is independent of the position in the text,  
 so that a match in the middle is not prejudiced against. 

 Likewise, the goal state is not necessarily at the end of 
both strings, but the cheapest place to match the entire 
pattern somewhere in the text. 
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CUSTOMIZATIONS FOR SUBSTRING MATCHING 
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row_init(int i) 
{ 

m[0][i].cost = 0; /* note change */ 
m[0][i].parent = -1; /* note change */ 

} 
 
goal_cell(char *s, char *t, int *i, int *j) 
{ 

int k; /* counter */ 
 
*i = strlen(s) - 1; 
*j = 0; 
for (k=1; k<strlen(t); k++) 
 if (m[*i][k].cost < m[*i][*j].cost) *j = k; 

} 



LONGEST COMMON SUBSEQUENCE 

 The longest common subsequence (not substring) 
between “democrat” and “republican” is eca. 

 A common subsequence is defined by all the identical 
character matches in an edit trace.  

 To maximize the number of such traces, we must prevent 
substitution of non-identical characters. 

 We get the alignment we want by changing the match-cost 
function to make substitutions expensive: 
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int match(char c, char d) 
{ 

if (c == d) return(0); 
else return(MAXLEN); 

} 



MAXIMUM MONOTONE SUBSEQUENCE 

 A numerical sequence is monotonically increasing if 
the ith element is at least as big as the (i - 1)st 
element. 

 The maximum monotone subsequence problem seeks 
to delete the fewest number of elements from an 
input string S to leave a monotonically increasing 
subsequence. 

 Thus a longest increasing subsequence of 
“243517698” is “23568.” 
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REDUCTION TO LCS 

 In fact, this is just a longest common subsequence 
problem, where the second string is the elements of S 
sorted in increasing order. 

 Any common sequence of these two must  
 (a) represent characters in proper order in S, and  
 (b) use only characters with increasing position in 

the collating sequence, so the longest one does the 
job. 
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