
LEC17: EDIT DISTANCE

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

EDIT DISTANCE

 Misspellings make approximate pattern matching an
important problem

 If we are to deal with inexact string matching, we must
first define a cost function telling us how far apart two
strings are, i.e., a distance measure between pairs of
strings.

 A reasonable distance measure minimizes the cost of
the changes which have to be made to convert one
string to another.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

STRING EDIT OPERATIONS

 There are three natural types of changes:
 Substitution – Change a single character from pattern s to

a different character in text t, such as changing “shot” to
“spot”.

 Insertion – Insert a single character into pattern s to help it
match text t, such as changing “ago” to “agog”.

 Deletion – Delete a single character from pattern s to help
it match text t, such as changing “hour” to “our”.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

RECURSIVE ALGORITHM

 We can compute the edit distance with recursive
algorithm using the observation that the last character
in the string must either be matched, substituted,
inserted, or deleted.

 If we knew the cost of editing the three pairs of
smaller strings, we could decide which option leads to
the best solution and choose that option accordingly.

 We can learn this cost, through the magic of
recursion:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

RECURSIVE EDIT DISTANCE CODE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

#define MATCH 0 /* enumerated type symbol for match */
#define INSERT 1 /* enumerated type symbol for insert */
#define DELETE 2 /* enumerated type symbol for delete */

int string compare(char *s, char *t, int i, int j)
{

int k; /* counter */
int opt[3]; /* cost of the three options */
int lowest cost; /* lowest cost */

if (i == 0) return(j * indel(’ ’));
if (j == 0) return(i * indel(’ ’));

opt[MATCH] = string compare(s,t,i-1,j-1) + match(s[i],t[j]);
opt[INSERT] = string compare(s,t,i,j-1) + indel(t[j]);
opt[DELETE] = string compare(s,t,i-1,j) + indel(s[i]);

lowest cost = opt[MATCH];
for (k=INSERT; k<=DELETE; k++)
 if (opt[k] < lowest cost) lowest cost = opt[k];
return(lowest cost);

}

Correct but
very slow

SPEEDING IT UP

 This program is absolutely correct but takes
exponential time because it recomputes values again
and again and again!

 But there can only be |s|*|t| possible unique recursive
calls, since there are only that many distinct (i,j) pairs
to serve as the parameters of recursive calls.

 By storing the values for each of these (i,j) pairs in a
table, we can avoid recomputing them and just look
them up as needed.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

THE DYNAMIC PROGRAMMING TABLE

 The table is a two-dimensional matrix m where each of

the |s|*|t| cells contains the cost of the optimal
solution of this subproblem, as well as a parent
pointer explaining how we got to this location:

typedef struct {
int cost; /* cost of reaching this cell */
int parent; /* parent cell */
} cell;

/* dynamic programming table */
cell m[MAXLEN+1][MAXLEN+1];

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

DIFFERENCES WITH DYNAMIC PROGRAMMING

 The dynamic programming version has three
differences from the recursive version:
 First, it gets its intermediate values using table lookup

instead of recursive calls.
 Second, it updates the parent field of each cell, which will

enable us to reconstruct the edit-sequence later.
 Third, it is instrumented using a more general goal cell()

function instead of just returning m[|s|][|t|].cost. This will
enable us to apply this routine to a wider class of problems.

 We assume that each string has been padded with an
initial blank character, so the first real character of
string s sits in s[1].

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

EVALUATION ORDER

 To determine the value of cell (i,j) we need three
values sitting and waiting for us, namely, the cells
(i-1,j-1), (i, j-1), and (i-1, j). Any evaluation order with
this property will do, including the row-major order
used in this program.

 Think of the cells as vertices, where there is an edge
(i, j) if cell i’s value is needed to compute cell j. Any
topological sort of this DAG provides a proper
evaluation order.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

DYNAMIC PROGRAMMING EDIT DISTANCE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

int string_compare(char *s, char *t)
{

int i,j,k; /* counters */
int opt[3]; /* cost of the three options */
for (i=0; i<MAXLEN; i++) {

row_init(i);
column_init(i);

}
for (i=1; i<strlen(s); i++) {

for (j=1; j<strlen(t); j++) {
opt[MATCH] = m[i-1][j-1].cost + match(s[i],t[j]);
opt[INSERT] = m[i][j-1].cost + indel(t[j]);
opt[DELETE] = m[i-1][j].cost + indel(s[i]);
m[i][j].cost = opt[MATCH];
m[i][j].parent = MATCH;
for (k=INSERT; k<=DELETE; k++)
if (opt[k] < m[i][j].cost) {

m[i][j].cost = opt[k];
m[i][j].parent = k;

}
}

}
goal_cell(s,t,&i,&j);
return(m[i][j].cost);

}

typedef struct {
int cost; /* cost of reaching this cell */
int parent; /* parent cell */

} cell;

 /* dynamic programming table */
cell m[MAXLEN+1][MAXLEN+1];

EXAMPLE

 Below is an example run, showing the cost and parent values
 turning “thou shalt not” to “you should not” in five moves:

 The edit sequence from “thou-shalt-not” to “you-should-not”
 is DSMMMMMISMSMMMM

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

RECONSTRUCTING THE PATH

 Solutions to a given dynamic programming problem
are described by paths through the dynamic
programming matrix, starting from the initial
configuration (the pair of empty strings (0, 0)) down to
the final goal state (the pair of full strings (|s|, |t|)).

 Reconstructing these decisions is done by walking
backward from the goal state, following the parent
pointer to an earlier cell.

 The parent field for m[i,j] tells us whether the
transform at (i, j) was MATCH, INSERT, or DELETE.

 Walking backward reconstructs the solution in reverse
order.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

RECONSTRUCT PATH CODE

 However, clever use of recursion can do the reversing for us:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

reconstruct_path(char *s, char *t, int i, int j)
{

if (m[i][j].parent == -1) return;

if (m[i][j].parent == MATCH) {

reconstruct_path(s,t,i-1,j-1);
match_out(s, t, i, j);
return;

}

if (m[i][j].parent == INSERT) {

reconstruct_path(s,t,i,j-1);
insert_out(t,j);
return;

}

if (m[i][j].parent == DELETE) {

reconstruct_path(s,t,i-1,j);
delete_out(s,i);
return;

}
}

CUSTOMIZING EDIT DISTANCE
 Table Initialization

 The functions row_init() and column_init() initialize the
zeroth row and column of the dynamic programming table,
respectively.

 Penalty Costs
 The functions match(c,d) and indel(c) present the costs for

transforming character c to d and inserting/deleting
character c.

 For edit distance, match costs nothing if the characters are
identical, and 1 otherwise, while indel always returns 1.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

row_init(int i)
{

m[0][i].cost = i;
if (i>0)
 m[0][i].parent = INSERT;
else
 m[0][i].parent = -1;

}

column_init(int i)
{

m[i][0].cost = i;
if (i>0)
 m[i][0].parent = DELETE;
else
 m[i][0].parent = -1;

}

 Goal Cell Identification
 The function goal cell returns the indices of the cell marking

the endpoint of the solution.
 For edit distance, this is defined by the length of the two

input strings.

 Traceback Actions
 The functions match_out, insert_out, and delete_out

perform the appropriate actions for each edit-operation
during traceback.

 For edit distance, this might mean printing out the name of
the operation or character involved, as determined by the
needs of the application.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

goal_cell(char *s, char *t, int *i, int *j)
{

*i = strlen(s) - 1;
*j = strlen(t) - 1;

}

SUBSTRING MATCHING

 Suppose that we want to find where a short pattern s best
occurs within a long text t,
 say, searching for “Skiena” in all its misspellings (Skienna, Skena,

Skina, . . .).
 Plugging this search into our original edit distance function

will achieve little sensitivity,
 since the vast majority of any edit cost will be that of deleting the

body of the text.
 We want an edit distance search where the cost of starting

the match is independent of the position in the text,
 so that a match in the middle is not prejudiced against.

 Likewise, the goal state is not necessarily at the end of
both strings, but the cheapest place to match the entire
pattern somewhere in the text.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

CUSTOMIZATIONS FOR SUBSTRING MATCHING

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

row_init(int i)
{

m[0][i].cost = 0; /* note change */
m[0][i].parent = -1; /* note change */

}

goal_cell(char *s, char *t, int *i, int *j)
{

int k; /* counter */

*i = strlen(s) - 1;
*j = 0;
for (k=1; k<strlen(t); k++)
 if (m[*i][k].cost < m[*i][*j].cost) *j = k;

}

LONGEST COMMON SUBSEQUENCE

 The longest common subsequence (not substring)
between “democrat” and “republican” is eca.

 A common subsequence is defined by all the identical
character matches in an edit trace.

 To maximize the number of such traces, we must prevent
substitution of non-identical characters.

 We get the alignment we want by changing the match-cost
function to make substitutions expensive:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

int match(char c, char d)
{

if (c == d) return(0);
else return(MAXLEN);

}

MAXIMUM MONOTONE SUBSEQUENCE

 A numerical sequence is monotonically increasing if
the ith element is at least as big as the (i - 1)st
element.

 The maximum monotone subsequence problem seeks
to delete the fewest number of elements from an
input string S to leave a monotonically increasing
subsequence.

 Thus a longest increasing subsequence of
“243517698” is “23568.”

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

REDUCTION TO LCS

 In fact, this is just a longest common subsequence
problem, where the second string is the elements of S
sorted in increasing order.

 Any common sequence of these two must
 (a) represent characters in proper order in S, and
 (b) use only characters with increasing position in

the collating sequence, so the longest one does the
job.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

	LEC17: Edit Distance
	Edit Distance
	String Edit Operations
	Recursive Algorithm
	Recursive Edit Distance Code
	Speeding it Up
	The Dynamic Programming Table�
	Differences with Dynamic Programming
	Evaluation Order
	Dynamic Programming Edit Distance
	Example
	Reconstructing the Path
	Reconstruct Path Code
	Customizing Edit Distance
	Slide Number 15
	Substring Matching
	Customizations for Substring Matching
	Longest Common Subsequence
	Maximum Monotone Subsequence
	Reduction to LCS

