
LEC16: INTRODUCTION TO DYNAMIC PROGRAMMING

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

DYNAMIC PROGRAMMING

 Dynamic programming is a very powerful, general tool
for solving optimization problems on left-right-ordered
items such as character strings.

 Once understood it is relatively easy to apply, it looks
like magic until you have seen enough examples.

 Floyd’s all-pairs shortest-path algorithm was an
example of dynamic programming.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

GREEDY VS. EXHAUSTIVE SEARCH

 Greedy algorithms focus on making the best local
choice at each decision point. In the absence of a
correctness proof such greedy algorithms are very
likely to fail.

 Dynamic programming gives us a way to design
custom algorithms which systematically search all
possibilities (thus guaranteeing correctness) while
storing results to avoid recomputing (thus providing
efficiency).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

RECURRENCE RELATIONS

 A recurrence relation is an equation which is defined
in terms of itself.

 They are useful because many natural functions are
easily expressed as recurrences:
 Polynomials: 𝑎𝑛 = 𝑎𝑛−1 + 1; 𝑎1 = 1 → 𝑎𝑛 = 𝑛
 Exponentials: 𝑎𝑛 = 2𝑎𝑛−1; 𝑎1 = 2 → 𝑎𝑛 = 2𝑛
 Weird: 𝑎𝑛 = 𝑛𝑎𝑛−1; 𝑎1 = 1 → 𝑎𝑛 = 𝑛!

 Computer programs can easily evaluate the value of a
given recurrence even without the existence of a nice
closed form.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

COMPUTING FIBONACCI NUMBERS

Fn = Fn−1 + Fn−2; F0 = 0; F1 = 1

 Implementing this as a recursive procedure is easy,
but slow because we keep calculating the same value
over and over.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

HOW SLOW?

𝐹𝑛+1
𝐹𝑛

≈ 𝜙 =
1 + 5

2
≈ 1.61803

Thus 𝐹𝑛 ≈ 1.6𝑛.
Since our recursion tree has 0 and 1 as leaves,
computing Fn requires ≈ 1.6𝑛 calls!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

WHAT ABOUT DYNAMIC PROGRAMMING?

We can calculate Fn in linear time by storing small
values:

 𝐹0 = 0
 𝐹1 = 1
 for 𝑖 = 1 to 𝑛

𝐹𝑖 = 𝐹𝑖−1 + 𝐹𝑖−2
Moral: we traded space for time.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

BENEFITS OF DYNAMIC PROGRAMMING

 Dynamic programming is a technique for efficiently
computing recurrences by storing partial results.

 Once you understand dynamic programming, it is
usually easier to reinvent certain algorithms than try
to look them up!

 Dynamic programming to be one of the most useful
algorithmic techniques in practice:
 Morphing in computer graphics.
 Data compression for high density bar codes.
 Designing genes to avoid or contain specified

patterns.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

AVOIDING RECOMPUTATION BY STORING PARTIAL RESULTS

 The trick to dynamic program is to see that the naive
recursive algorithm repeatedly computes the same
subproblems over and over and over again.

 If so, storing the answers to them in a table instead of
recomputing can lead to an efficient algorithm.

 Thus we must first hunt for a correct recursive
algorithm – later we can worry about speeding it up
by using a results matrix.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

BINOMIAL COEFFICIENTS

 The most important class of counting numbers are the
binomial coefficients, where 𝑛

𝑘 counts the number of
ways to choose k things out of n possibilities.
 Committees – How many ways are there to form a

k-member committee from n people? By definition,
𝑛
𝑘 .

 Paths Across a Grid – How many ways are there to
travel from the upper-left corner of an n m grid to
the lower-right corner by walking only down and to
the right? Every path must consist of n + m steps, n
downward and m to the right, so there are 𝑛+𝑚

𝑛
such sets/paths.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

COMPUTING BINOMIAL COEFFICIENTS

 Since 𝑛
𝑘 = n!/((n - k)! k!), in principle you can

compute them straight from factorials.
 However, intermediate calculations can easily cause

arithmetic overflow even when the final coefficient fits
comfortably within an integer.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

PASCAL’S TRIANGLE

 In Pascal’s Triangle, each number is the sum of the
two numbers directly above it:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

PASCAL’S RECURRENCE

 A more stable way to compute binomial coefficients is
using the recurrence relation implicit in the
construction of Pascal’s triangle, namely, that

𝑛
𝑘

=
𝑛 − 1
𝑘 − 1

+
𝑛 − 1
𝑘

 It works because the nth element either appears or
does not appear in one of the 𝑛

𝑘 subsets of k
elements.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

BASIS CASE

 No recurrence is complete without basis cases.
 How many ways are there to choose 0 things from a

set?
 Exactly one, the empty set.

 The right term of the sum drives us up to 𝑘
𝑘 . How

many ways are there to choose k things from a k-
element set?

 Exactly one, the complete set.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

BINOMIAL COEFFICIENTS IMPLEMENTATION

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

long binomial coefficient(n,m)
int n,m; /* compute n choose m */
{

int i,j; /* counters */
long bc[MAXN][MAXN]; /* table of binomial coefficients */

for (i=0; i<=n; i++) bc[i][0] = 1;

for (j=0; j<=n; j++) bc[j][j] = 1;

for (i=1; i<=n; i++)
for (j=1; j<i; j++)
 bc[i][j] = bc[i-1][j-1] + bc[i-1][j];

return(bc[n][m]);
}

THREE STEPS TO DYNAMIC PROGRAMMING

1. Formulate the answer as a recurrence relation or
recursive algorithm.

2. Show that the number of different instances of your
recurrence is bounded by a polynomial.

3. Specify an order of evaluation for the recurrence so
you always have what you need.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

	LEC16: Introduction to Dynamic Programming
	Dynamic Programming
	Greedy vs. Exhaustive Search
	Recurrence Relations
	Computing Fibonacci Numbers
	How Slow?
	What about Dynamic Programming?
	Benefits of Dynamic Programming
	Avoiding Recomputation by Storing Partial Results
	Binomial Coefficients
	Computing Binomial Coefficients
	Pascal’s Triangle
	Pascal’s Recurrence�
	Basis Case
	Binomial Coefficients Implementation
	Three Steps to Dynamic Programming

