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DYNAMIC PROGRAMMING 

 Dynamic programming is a very powerful, general tool 
for solving optimization problems on left-right-ordered 
items such as character strings. 

 Once understood it is relatively easy to apply, it looks 
like magic until you have seen enough examples. 

 Floyd’s all-pairs shortest-path algorithm was an 
example of dynamic programming. 
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GREEDY VS. EXHAUSTIVE SEARCH 

 Greedy algorithms focus on making the best local 
choice at each decision point. In the absence of a 
correctness proof such greedy algorithms are very 
likely to fail. 

 Dynamic programming gives us a way to design 
custom algorithms which systematically search all 
possibilities (thus guaranteeing correctness) while 
storing results to avoid recomputing (thus providing 
efficiency). 
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RECURRENCE RELATIONS 

 A recurrence relation is an equation which is defined 
in terms of itself.  

 They are useful because many natural functions are 
easily expressed as recurrences: 
 Polynomials: 𝑎𝑛 =  𝑎𝑛−1  +  1; 𝑎1 =  1 →  𝑎𝑛 =  𝑛 
 Exponentials: 𝑎𝑛 =  2𝑎𝑛−1;  𝑎1  =  2 → 𝑎𝑛  =  2𝑛 
 Weird: 𝑎𝑛  =  𝑛𝑎𝑛−1;  𝑎1 =  1 →  𝑎𝑛  =  𝑛! 

 Computer programs can easily evaluate the value of a 
given recurrence even without the existence of a nice 
closed form. 
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COMPUTING FIBONACCI NUMBERS 

Fn  =  Fn−1 +  Fn−2;  F0 =  0; F1 =  1 
 

 Implementing this as a recursive procedure is easy, 
but slow because we keep calculating the same value 
over and over. 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

5 



HOW SLOW? 

𝐹𝑛+1
𝐹𝑛

≈ 𝜙 =
1 + 5

2
≈ 1.61803 

 
Thus 𝐹𝑛 ≈ 1.6𝑛. 
Since our recursion tree has 0 and 1 as leaves,  
computing Fn requires  ≈ 1.6𝑛 calls! 
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WHAT ABOUT DYNAMIC PROGRAMMING? 

We can calculate Fn in linear time by storing small 
values: 

 𝐹0  =  0 
 𝐹1  =  1 
 for 𝑖 =  1 to 𝑛 

𝐹𝑖  =  𝐹𝑖−1  +  𝐹𝑖−2 
Moral: we traded space for time. 
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BENEFITS OF DYNAMIC PROGRAMMING 

 Dynamic programming is a technique for efficiently 
computing recurrences by storing partial results. 

 Once you understand dynamic programming, it is 
usually easier to reinvent certain algorithms than try 
to look them up! 

 Dynamic programming to be one of the most useful 
algorithmic techniques in practice: 
  Morphing in computer graphics. 
  Data compression for high density bar codes. 
  Designing genes to avoid or contain specified 

patterns. 
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AVOIDING RECOMPUTATION BY STORING PARTIAL RESULTS 

 The trick to dynamic program is to see that the naive 
recursive algorithm repeatedly computes the same 
subproblems over and over and over again.  

 If so, storing the answers to them in a table instead of 
recomputing can lead to an efficient algorithm. 

 Thus we must first hunt for a correct recursive 
algorithm – later we can worry about speeding it up 
by using a results matrix. 
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BINOMIAL COEFFICIENTS 

 The most important class of counting numbers are the 
binomial coefficients, where 𝑛

𝑘  counts the number of 
ways to choose k things out of n possibilities. 
 Committees – How many ways are there to form a 

k-member committee from n people? By definition, 
𝑛
𝑘  . 

 Paths Across a Grid – How many ways are there to 
travel from the upper-left corner of an n  m grid to 
the lower-right corner by walking only down and to 
the right? Every path must consist of n + m steps, n 
downward and m to the right, so there are 𝑛+𝑚

𝑛  
such sets/paths. 
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COMPUTING BINOMIAL COEFFICIENTS 

 Since 𝑛
𝑘  = n!/((n - k)! k!), in principle you can 

compute them straight from factorials. 
 However, intermediate calculations can easily cause 

arithmetic overflow even when the final coefficient fits 
comfortably within an integer. 
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PASCAL’S TRIANGLE 

 In Pascal’s Triangle, each number is the sum of the 
two numbers directly above it: 
 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 
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PASCAL’S RECURRENCE 
 

 A more stable way to compute binomial coefficients is 
using the recurrence relation implicit in the 
construction of Pascal’s triangle, namely, that 

𝑛
𝑘

=
𝑛 − 1
𝑘 − 1

+
𝑛 − 1
𝑘

 

 It works because the nth element either appears or 
does not appear in one of the  𝑛

𝑘  subsets of k 
elements. 
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BASIS CASE 

 No recurrence is complete without basis cases. 
 How many ways are there to choose 0 things from a 

set?  
 Exactly one, the empty set. 

 The right term of the sum drives us up to 𝑘
𝑘 . How 

many ways are there to choose k things from a k-
element set?  

 Exactly one, the complete set. 
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BINOMIAL COEFFICIENTS IMPLEMENTATION 
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long binomial coefficient(n,m) 
int n,m;   /* compute n choose m */ 
{ 

int i,j;   /* counters */ 
long bc[MAXN][MAXN]; /* table of binomial coefficients */ 
 

for (i=0; i<=n; i++) bc[i][0] = 1; 
 

for (j=0; j<=n; j++) bc[j][j] = 1; 
 

for (i=1; i<=n; i++) 
for (j=1; j<i; j++) 
 bc[i][j] = bc[i-1][j-1] + bc[i-1][j]; 
 

return( bc[n][m] ); 
} 



THREE STEPS TO DYNAMIC PROGRAMMING 

1. Formulate the answer as a recurrence relation or 
recursive algorithm. 

2. Show that the number of different instances of your 
recurrence is bounded by a polynomial. 

3. Specify an order of evaluation for the recurrence so 
you always have what you need. 
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