
LEC14: BACKTRACKING (PP. 230-247)
(CH7 COMBINATORIAL SEARCH AND HEURISTIC METHODS)

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

SUDOKU

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

SOLVING SUDOKU

 Solving Sudoku puzzles involves a form of exhaustive
search of possible configurations.

 However, exploiting constraints to rule out certain
possibilities for certain positions enables us to prune
the search to the point people can solve Sudoku by
hand.

 Backtracking is the key to implementing exhaustive
search programs correctly and efficiently.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

BACKTRACKING

 Backtracking is a systematic method to iterate
through all the possible configurations of a search
space.

 It is a general algorithm/technique which must be
customized for each individual application.

 In the general case, we will model our solution as a
vector a = (a1, a2,…,an), where each element ai is
selected from a finite ordered set Si.
 Such a vector might represent an arrangement where ai

contains the ith element of the permutation.
 Or the vector might represent a given subset S, where ai is

true if and only if the ith element of the universe is in S.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

THE IDEA OF BACKTRACKING

 At each step in the backtracking algorithm, we start
from a given partial solution, say, a = (a1, a2,…,ak), and
try to extend it by adding another element at the end.

 After extending it, we must test
 whether what we have so far is a solution.
 If not, we must then check whether the partial solution is

still potentially extendible to some complete solution.
 If so, recur and continue.
 If not, we delete the last element from a and try another

possibility for that position, if one exists.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

RECURSIVE BACKTRACKING

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

Backtrack-DFS(A, k)
if A = (a1, a2, ..., ak) is a solution, report it.
else

k = k + 1
compute Sk /* possible next states */
while Sk = ∅ do

ak = an element in Sk
Sk = Sk − ak
Backtrack-DFS(A, k)

BACKTRACKING AND DFS

 Backtracking is really just depth-first search on an
implicit graph of configurations, ie partition solutions.

 Backtracking can easily be used to iterate through all
subsets or permutations of a set.

 Backtracking ensures correctness by enumerating all
possibilities.

 For backtracking to be efficient, we must prune the
search space.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

IMPLEMENTATION

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

bool finished = FALSE; /* found all solutions yet? */

backtrack(int a[], int k, data input)
{

int c[MAXCANDIDATES]; /* candidates for next position */
int ncandidates; /* next position candidate count */
int i; /* counter */
if (is_a_solution(a,k,input))
 process_solution(a,k,input);
else {

k = k+1;
construct_candidates(a,k,input,c,&ncandidates);
for (i=0; i<ncandidates; i++) {

a[k] = c[i];
make_move(a,k,input);
backtrack(a,k,input);
unmake_move(a,k,input);
if (finished) return; /* terminate early */

}
}

}

is_a_solution(a,k,input)
 This Boolean function tests whether the first k

elements of vector a are a complete solution for the
given problem.

 The last argument, input, allows us to pass general
information into the routine.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

construct_candidates(a,k,input,c,ncandidates)
 This routine fills an array c with the complete set of

possible candidates for the kth position of a, given the
contents of the first k-1 positions.

 The number of candidates returned in this array is
denoted by ncandidates.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

process_solution(a,k)
 This routine prints, counts, or somehow processes a

complete solution once it is constructed.
 Backtracking ensures correctness by enumerating all

possibilities.
 It ensures efficiency by never visiting a state more

than once.
 Because a new candidates array c is allocated with

each recursive procedure call, the subsets of not-yet-
considered extension candidates at each position will
not interfere with each other.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

make_move(a,k,input)
unmake_move(a,k,input)
 These routines enable us to modify a data structure in

response to the latest move, as well as clean up this
data structure if we decide to take back the move.

 Such a data structure could be rebuilt from scratch
from the solution vector a as needed, but this is
inefficient when each move involves incremental
changes that can easily be undone.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

CONSTRUCTING ALL SUBSETS

 How many subsets are there of an n-element set?
 To construct all 2n subsets, set up an array/vector of n

cells, where the value of ai is either true or false, signifying
whether the ith item is or is not in the subset.

 To use the notation of the general backtrack algorithm, Sk
= (true, false), and v is a solution whenever k >= n.

 What order will this generate the subsets of {1,2,3}?
(1) -> (1; 2)->(1; 2; 3)*->

(1; 2;-)*-> (1;-)-> (1;-; 3)*->
(1;-;-) -> (1;-)-> (1) ->

(-) ->(-; 2) -> (-; 2; 3)->
(-; 2;-) -> (-;-) ->(-;-; 3)* ->

(-;-;-)*-> (-;-) -> (-) -> ()

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

CONSTRUCTING ALL SUBSETS

 We can construct the 2n subsets of n items by
iterating through all possible 2n length-n vectors of
true or false, letting the ith element denote whether
item i is or is not in the subset.

 Using the notation of the general backtrack algorithm,
Sk = (true; false), and a is a solution whenever k >= n.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

is_a_solution(int a[], int k, int n)
{
 return (k == n); /* is k == n? */
}

CONSTRUCTING ALL SUBSETS

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

construct_candidates(int a[], int k, int n, int c[], int *ncandidates)
{

c[0] = TRUE;
c[1] = FALSE;
*ncandidates = 2;

}

process_solution(int a[], int k)
{

int i; /* counter */
printf("{");
for (i=1; i<=k; i++)
 if (a[i] == TRUE) printf(" %d",i);
printf(" }\n");

}

MAIN ROUTINE: SUBSETS

 Finally, we must instantiate the call to backtrack with
the right arguments.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

generate_subsets(int n)
{

int a[NMAX]; /* solution vector */
backtrack(a,0,n);

}

CONSTRUCTING ALL PERMUTATIONS

 How many permutations are there of an n-element set?
 To construct all n! permutations, set up an array/vector of

n cells, where the value of ai is an integer from 1 to n
which has not appeared thus far in the vector,
corresponding to the ith element of the permutation.

 To use the notation of the general backtrack algorithm, Sk
=(1, …, n) - v, and v is a solution whenever k >= n.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

CONSTRUCTING ALL PERMUTATIONS

 To avoid repeating permutation elements,
 Sk =(1, …, n) - a, and a is a solution whenever k = n

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

construct_candidates(int a[], int k, int n, int c[], int *ncandidates)
{

int i; /* counter */
bool in_perm[NMAX]; /* who is in the permutation? */
for (i=1; i<NMAX; i++) in_perm[i] = FALSE;
for (i=0; i<k; i++) in_perm[a[i]] = TRUE;

*ncandidates = 0;
for (i=1; i<=n; i++)

if (in_perm[i] == FALSE) {
c[*ncandidates] = i;
*ncandidates = *ncandidates + 1;

}
}

AUXILIARY ROUTINES

 Completing the job of generating permutations
requires specifying process solution and is a solution,
as well as setting the appropriate arguments to
backtrack.

 All are essentially the same as for subsets:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

process_solution(int a[], int k)
{

int i; /* counter */
for (i=1; i<=k; i++)
 printf(" %d",a[i]);
printf("\n");

}

is_a_solution(int a[], int k, int n)
{
 return (k == n);
}

MAIN PROGRAM: PERMUTATIONS

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

generate_permutations(int n)
{

int a[NMAX]; /* solution vector */
backtrack(a,0,n);

}

THE EIGHT-QUEENS PROBLEM

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

The eight queens problem is a classical puzzle of
positioning eight queens on an 8x8 chessboard such that
no two queens threaten each other

EIGHT QUEENS: REPRESENTATION

 What is concise, efficient representation for an n-queens
solution, and how big must it be?

 Since no two queens can occupy the same column, we
know that the n columns of a complete solution must form
a permutation of n. By avoiding repetitive elements, we
reduce our search space to just 8! = 40,320 – clearly
short work for any reasonably fast machine.

 The critical routine is the candidate constructor. We
repeatedly check whether the kth square on the given row
is threatened by any previously positioned queen. If so, we
move on, but if not we include it as a possible candidate:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

CANDIDATE CONSTRUCTOR: EIGHT QUEENS

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

 The remaining routines are simple, particularly since
we are only interested in counting the solutions, not
displaying them:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

FINDING THE QUEENS: MAIN PROGRAM

 This program can find the 365,596 solutions for n =
14 in minutes.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

25

CAN EIGHT PIECES COVER A CHESS BOARD?

 Consider the 8 main pieces in chess (king, queen, two
rooks, two bishops, two knights). Can they be
positioned on a chessboard so every square is
threatened?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

26

COMBINATORIAL SEARCH

 Only 63 square are threatened in this configuration.
Since 1849, no one had been able to find an
arrangement with bishops on different colors to cover
all squares.

 We can resolve this question by searching through all
possible board configurations if we spend enough
time.

 We will use it as an example of how to attack a
combinatorial search problem.

 With clever use of backtracking and pruning
techniques, surprisingly large problems can be solved
by exhaustive search.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

27

HOW MANY CHESS CONFIGURATIONS MUST BE TESTED?

 Picking a square for each piece gives us the bound:
 64!=(64 - 8)! = 178, 462, 987, 637, 760 ≈ 1015

 Anything much larger than 108 is unreasonable to
search on a modest computer in a modest amount of
time.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

28

EXPLOITING SYMMETRY

 However, we can exploit symmetry to save work. With
reflections along horizontal, vertical, and diagonal
axis, the queen can go in only 10 non-equivalent
positions.

 Even better, we can restrict the white bishop to 16
spots and the queen to 16, while being certain that we
get all distinct configurations.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

29

COVERING THE CHESS BOARD

 In covering the chess board, we prune whenever we find
there is a square which we cannot cover given the initial
configuration!

 Specifically, each piece can threaten a certain maximum
number of squares (queen 27, king 8, rook 14, etc.) We
prune whenever the number of unthreated squares
exceeds the sum of the maximum remaining coverage.

 This backtrack search eliminates 95% of the search
space, when the pieces are ordered by decreasing
mobility.

 With precomputing the list of possible moves, this program
could search 1,000 positions per second.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

30

END GAME

 But this is still too slow!
1012=103 = 109 seconds > 1000 days

 Although we might further speed the program by an
order of magnitude, we need to prune more nodes!

 By using a more clever algorithm, we eventually were
able to prove no solution existed, in less than one
day’s worth of computing.

 You too can fight the combinatorial explosion!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

31

	LEC14: BackTracking (pp. 230-247)�(ch7 Combinatorial Search and heuristic methods)
	Sudoku
	Solving Sudoku
	Backtracking
	The Idea of Backtracking
	Recursive Backtracking
	Backtracking and DFS�
	Implementation
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Constructing all Subsets
	Constructing All Subsets
	Constructing All Subsets
	Main Routine: Subsets
	Constructing all Permutations
	Constructing All Permutations
	Auxiliary Routines
	Main Program: Permutations
	The Eight-Queens Problem
	Eight Queens: Representation
	Candidate Constructor: Eight Queens
	Slide Number 24
	Finding the Queens: Main Program
	Can Eight Pieces Cover a Chess Board?
	Combinatorial Search
	How Many Chess Configurations Must be Tested?
	Exploiting Symmetry
	Covering the Chess Board
	End Game

