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SOLVING SUDOKU 

 Solving Sudoku puzzles involves a form of exhaustive 
search of possible configurations. 

 However, exploiting constraints to rule out certain 
possibilities for certain positions enables us to prune 
the search to the point people can solve Sudoku by 
hand. 

 Backtracking is the key to implementing exhaustive 
search programs correctly and efficiently. 
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BACKTRACKING 

 Backtracking is a systematic method to iterate 
through all the possible configurations of a search 
space.  

 It is a general algorithm/technique which must be 
customized for each individual application. 

 In the general case, we will model our solution as a 
vector a = (a1, a2,…,an), where each element ai is 
selected from a finite ordered set Si. 
 Such a vector might represent an arrangement where ai 

contains the ith element of the permutation.  
 Or the vector might represent a given subset S, where ai is 

true if and only if the ith element of the universe is in S. 
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THE IDEA OF BACKTRACKING 

 At each step in the backtracking algorithm, we start 
from a given partial solution, say, a = (a1, a2,…,ak), and 
try to extend it by adding another element at the end. 

 After extending it, we must test  
 whether what we have so far is a solution. 
 If not, we must then check whether the partial solution is 

still potentially extendible to some complete solution. 
 If so, recur and continue.  
 If not, we delete the last element from a and try another 

possibility for that position, if one exists. 
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RECURSIVE BACKTRACKING 
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Backtrack-DFS(A, k) 
if A = (a1, a2, ..., ak) is a solution, report it. 
else 

k = k + 1 
compute Sk  /* possible next states */ 
while Sk = ∅ do 

ak = an element in Sk 
Sk = Sk − ak 
Backtrack-DFS(A, k) 



BACKTRACKING AND DFS 
 

 Backtracking is really just depth-first search on an 
implicit graph of configurations, ie partition solutions. 

 Backtracking can easily be used to iterate through all 
subsets or permutations of a set. 

 Backtracking ensures correctness by enumerating all 
possibilities. 

 For backtracking to be efficient, we must prune the 
search space. 
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IMPLEMENTATION 
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bool finished = FALSE;   /* found all solutions yet? */ 
 
backtrack(int a[], int k, data input) 
{ 

int c[MAXCANDIDATES];  /* candidates for next position */ 
int ncandidates;   /* next position candidate count */ 
int i;    /* counter */ 
if (is_a_solution(a,k,input)) 
 process_solution(a,k,input); 
else { 

k = k+1; 
construct_candidates(a,k,input,c,&ncandidates); 
for (i=0; i<ncandidates; i++) { 

a[k] = c[i]; 
make_move(a,k,input); 
backtrack(a,k,input); 
unmake_move(a,k,input); 
if (finished) return;  /* terminate early */ 

} 
} 

} 



is_a_solution(a,k,input) 
 This Boolean function tests whether the first k 

elements of vector a are a complete solution for the 
given problem.  

 The last argument, input, allows us to pass general 
information into the routine.  
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construct_candidates(a,k,input,c,ncandidates) 
 This routine fills an array c with the complete set of 

possible candidates for the kth position of a, given the 
contents of the first k-1 positions.  

 The number of candidates returned in this array is 
denoted by ncandidates. 
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process_solution(a,k) 
 This routine prints, counts, or somehow processes a 

complete solution once it is constructed. 
 Backtracking ensures correctness by enumerating all 

possibilities. 
 It ensures efficiency by never visiting a state more 

than once. 
 Because a new candidates array c is allocated with 

each recursive procedure call, the subsets of not-yet-
considered extension candidates at each position will 
not interfere with each other. 
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make_move(a,k,input)   
unmake_move(a,k,input) 
 These routines enable us to modify a data structure in 

response to the latest move, as well as clean up this 
data structure if we decide to take back the move.  

 Such a data structure could be rebuilt from scratch 
from the solution vector a as needed, but this is 
inefficient when each move involves incremental 
changes that can easily be undone. 
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CONSTRUCTING ALL SUBSETS 

 How many subsets are there of an n-element set? 
 To construct all 2n subsets, set up an array/vector of n 

cells, where the value of ai is either true or false, signifying 
whether the ith item is or is not in the subset. 

 To use the notation of the general backtrack algorithm, Sk 
= (true, false), and v is a solution whenever k >= n. 

 What order will this generate the subsets of {1,2,3}? 
(1) -> (1; 2)->(1; 2; 3)*-> 

(1; 2;-)*-> (1;-)-> (1;-; 3)*->  
(1;-;-) -> (1;-)-> (1) -> 

(-) ->(-; 2) -> (-; 2; 3)-> 
(-; 2;-) -> (-;-) ->(-;-; 3)* -> 

(-;-;-)*-> (-;-) -> (-) -> () 
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CONSTRUCTING ALL SUBSETS 

 We can construct the 2n subsets of n items by 
iterating through all possible 2n length-n vectors of 
true or false, letting the ith element denote whether 
item i is or is not in the subset. 

 Using the notation of the general backtrack algorithm, 
Sk = (true; false), and a is a solution whenever k >= n. 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

14 

is_a_solution(int a[], int k, int n) 
{ 
 return (k == n);  /* is k == n? */ 
} 



CONSTRUCTING ALL SUBSETS 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

15 

construct_candidates(int a[], int k, int n, int c[], int *ncandidates) 
{ 

c[0] = TRUE; 
c[1] = FALSE; 
*ncandidates = 2; 

} 
 
process_solution(int a[], int k) 
{ 

int i; /* counter */ 
printf("{"); 
for (i=1; i<=k; i++) 
 if (a[i] == TRUE) printf(" %d",i); 
printf(" }\n"); 

} 



MAIN ROUTINE: SUBSETS 

 Finally, we must instantiate the call to backtrack with 
the right arguments. 
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generate_subsets(int n) 
{ 

int a[NMAX];   /* solution vector */ 
backtrack(a,0,n); 

} 



CONSTRUCTING ALL PERMUTATIONS 

 How many permutations are there of an n-element set? 
 To construct all n! permutations, set up an array/vector of 

n cells, where the value of ai is an integer from 1 to n 
which has not appeared thus far in the vector, 
corresponding to the ith element of the permutation. 

 To use the notation of the general backtrack algorithm, Sk 
=(1, …, n) - v, and v is a solution whenever k >= n. 
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CONSTRUCTING ALL PERMUTATIONS 

 To avoid repeating permutation elements, 
 Sk =(1, …, n) - a, and a is a solution whenever k = n 
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construct_candidates(int a[], int k, int n, int c[], int *ncandidates) 
{ 

int i;    /* counter */ 
bool in_perm[NMAX];  /* who is in the permutation? */ 
for (i=1; i<NMAX; i++) in_perm[i] = FALSE; 
for (i=0; i<k; i++) in_perm[ a[i] ] = TRUE; 
 
*ncandidates = 0; 
for (i=1; i<=n; i++) 

if (in_perm[i] == FALSE) { 
c[ *ncandidates] = i; 
*ncandidates = *ncandidates + 1; 

} 
} 



AUXILIARY ROUTINES 

 Completing the job of generating permutations 
requires specifying process solution and is a solution, 
as well as setting the appropriate arguments to 
backtrack. 

 All are essentially the same as for subsets: 
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process_solution(int a[], int k) 
{ 

int i; /* counter */ 
for (i=1; i<=k; i++)  
 printf(" %d",a[i]); 
printf("\n"); 

} 

is_a_solution(int a[], int k, int n) 
{ 
 return (k == n); 
} 



MAIN PROGRAM: PERMUTATIONS 
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generate_permutations(int n) 
{ 

int a[NMAX];   /* solution vector */ 
backtrack(a,0,n); 

} 



THE EIGHT-QUEENS PROBLEM 
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The eight queens problem is a classical puzzle of 
positioning eight queens on an 8x8 chessboard such that 
no two queens threaten each other 



EIGHT QUEENS: REPRESENTATION 

 What is concise, efficient representation for an n-queens 
solution, and how big must it be? 

 Since no two queens can occupy the same column, we 
know that the n columns of a complete solution must form 
a permutation of n. By avoiding repetitive elements, we 
reduce our search space to just 8! = 40,320 – clearly 
short work for any reasonably fast machine. 

 The critical routine is the candidate constructor. We 
repeatedly check whether the kth square on the given row 
is threatened by any previously positioned queen. If so, we 
move on, but if not we include it as a possible candidate: 
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CANDIDATE CONSTRUCTOR: EIGHT QUEENS 
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 The remaining routines are simple, particularly since 
we are only interested in counting the solutions, not 
displaying them: 
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FINDING THE QUEENS: MAIN PROGRAM 

 This program can find the 365,596 solutions for n = 
14 in minutes. 
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CAN EIGHT PIECES COVER A CHESS BOARD? 

 Consider the 8 main pieces in chess (king, queen, two 
rooks, two bishops, two knights). Can they be 
positioned on a chessboard so every square is 
threatened? 
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COMBINATORIAL SEARCH 

 Only 63 square are threatened in this configuration. 
Since 1849, no one had been able to find an 
arrangement with bishops on different colors to cover 
all squares. 

 We can resolve this question by searching through all 
possible board configurations if we spend enough 
time. 

 We will use it as an example of how to attack a 
combinatorial search problem. 

 With clever use of backtracking and pruning 
techniques, surprisingly large problems can be solved 
by exhaustive search. 
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HOW MANY CHESS CONFIGURATIONS MUST BE TESTED? 

 Picking a square for each piece gives us the bound: 
 64!=(64 - 8)! = 178, 462, 987, 637, 760 ≈ 1015 

 Anything much larger than 108 is unreasonable to 
search on a modest computer in a modest amount of 
time. 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

28 



EXPLOITING SYMMETRY 

 However, we can exploit symmetry to save work. With 
reflections along horizontal, vertical, and diagonal 
axis, the queen can go in only 10 non-equivalent 
positions. 

 Even better, we can restrict the white bishop to 16 
spots and the queen to 16, while being certain that we 
get all distinct configurations. 
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COVERING THE CHESS BOARD 

 In covering the chess board, we prune whenever we find 
there is a square which we cannot cover given the initial 
configuration! 

 Specifically, each piece can threaten a certain maximum 
number of squares (queen 27, king 8, rook 14, etc.) We 
prune whenever the number of unthreated squares 
exceeds the sum of the maximum remaining coverage. 

 This backtrack search eliminates 95% of the search 
space, when the pieces are ordered by decreasing 
mobility. 

 With precomputing the list of possible moves, this program 
could search 1,000 positions per second. 
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END GAME 

 But this is still too slow! 
1012=103 = 109 seconds > 1000 days 

 Although we might further speed the program by an 
order of magnitude, we need to prune more nodes! 

 By using a more clever algorithm, we eventually were 
able to prove no solution existed, in less than one 
day’s worth of computing. 

 You too can fight the combinatorial explosion! 
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