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SHORTEST PATHS 

 Finding the shortest path between two nodes in a 
graph arises in many different applications: 
 Transportation problems – finding the cheapest 

way to travel between two locations. 
 Motion planning – what is the most natural way for 

a cartoon character to move about a simulated 
environment. 

 Communications problems – how look will it take 
for a message to get between two places? Which 
two locations are furthest apart, ie. what is the 
diameter of the network. 
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SHORTEST PATHS: UNWEIGHTED GRAPHS 

 In an unweighted graph, the cost of a path is just the 
number of edges on the shortest path, which can be found 
in O(n+m) time via breadth-first search. 

 In a weighted graph, the weight of a path between two 
vertices is the sum of the weights of the edges on a path. 

 BFS will not work on weighted graphs because sometimes 
visiting more edges can lead to shorter distance,  
 ie.1 + 1 + 1 + 1 + 1 + 1 + 1 < 10. 

 Note that there can be an exponential number of shortest 
paths between two nodes – so we cannot report all 
shortest paths efficiently. 
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NEGATIVE EDGE WEIGHTS 

 Note that negative cost cycles render the problem of 
finding the shortest path meaningless, since you can 
always loop around the negative cost cycle more to 
reduce the cost of the path. 

 Thus in our discussions, we will assume that all edge 
weights are positive. Other algorithms deal correctly 
with negative cost edges. 

 Minimum spanning trees are unaffected by negative 
cost edges. 
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DIJKSTRA’S ALGORITHM 

 The principle behind Dijkstra’s algorithm is that if 
S,…,x,…,t is the shortest path from s to t, then s,…,x 
had better be the shortest path from s to x. 

 This suggests a dynamic programming-like strategy, 
where we store the distance from s to all nearby 
nodes, and use them to find the shortest path to more 
distant nodes. 
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INITIALIZATION AND UPDATE 

 The shortest path from s to s, d(s, s) = 0.  
 If all edge weights are positive, the smallest edge 

incident to s, say (s, x), defines d(s,x). 
 We can use an array to store the length of the shortest 

path to each node. Initialize each to1 to start. 
 Soon as we establish the shortest path from s to a 

new node x, we go through each of its incident edges 
to see if there is a better way from s to other nodes 
thru x. 
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PSEUDOCODE: DIJKSTRA’S ALGORITHM 
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ShortestPath-Dijkstra(G, s, t) 
known = {s} 
for i = 1 to n, dist[i] = ∞ 
for each edge (s, v), dist[v] = w(s, v) 
last = s 
while (last != t) 

select vnext, the unknown vertex minimizing dist[v] 
for each edge (vnext, x)  
 dist[x] = min[dist[x], dist[vnext] + w(vnext, x)] 
last = vnext 
known = known ∪ {vnext} 

Complexity: O(n2). 
The basic idea is very similar to Prim’s algorithm. 



DIJKSTRA EXAMPLE 
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DIJKSTRA’S IMPLEMENTATION 

See how little changes from Prim’s algorithm! 
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dijkstra(graph *g, int start)  /* WAS prim(g,start) */ 
{ 

int i;   /* counter */ 
edgenode *p;  /* temporary pointer */ 
bool intree[MAXV+1];  /* is the vertex in the tree yet? */ 
int distance[MAXV+1];  /* distance vertex is from start */ 
int v;   /* current vertex to process */ 
int w;   /* candidate next vertex */ 
int weight;   /* edge weight */ 
int dist;   /* best current distance from start */ 
 
for (i=1; i<=g->nvertices; i++) { 

intree[i] = FALSE; 
distance[i] = MAXINT; 
parent[i] = -1; 

} 
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distance[start] = 0; 
v = start; 
while (intree[v] == FALSE) { 

intree[v] = TRUE; 
p = g->edges[v]; 
while (p != NULL) { 

w = p->y; 
weight = p->weight; 
if (distance[w] > (distance[v]+weight)) {  /* CHANGED */  

distance[w] = distance[v]+weight;    /* CHANGED */  
parent[w] = v;      /* CHANGED */  

} 
p = p->next; 

} 
 
v = 1; 
dist = MAXINT; 
for (i=1; i<=g->nvertices; i++) 

if ((intree[i] == FALSE) && (dist > distance[i])) { 
dist = distance[i]; 
v = i; 

} 
} 

} 



PRIM’S/DIJKSTRA’S ANALYSIS 

 Finding the minimum weight fringe-edge takes O(n) 
time – just bump through fringe list. 

 After adding a vertex to the tree, running through its 
adjacency list to update the cost of adding fringe 
vertices (there may be a cheaper way through the new 
vertex) can be done in O(n) time. 

 Total time is O(n2). 
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ALL-PAIRS SHORTEST PATH 

 Notice that finding the shortest path between a pair of 
vertices (s,t) in worst case requires first finding the 
shortest path from s to all other vertices in the graph. 

 Many applications, such as finding the center or 
diameter of a graph, require finding the shortest path 
between all pairs of vertices. 

 We can run Dijkstra’s algorithm n times (once from 
each possible start vertex) to solve all-pairs shortest 
path problem in O(n3). Can we do better? 
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DYNAMIC PROGRAMMING AND SHORTEST PATHS 

 The four-step approach to dynamic programming is: 
1. Characterize the structure of an optimal solution. 
2. Recursively define the value of an optimal solution. 
3. Compute this recurrence in a bottom-up fashion. 
4. Extract the optimal solution from computed 
information. 
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INITIALIZATION 

 From the adjacency matrix, we can construct the 
following matrix: 
 D[i, j] = ∞,  if i ≠ j and (vi, vj) is not in E 
 D[i, j] = w(i, j),  if (vi; vj) ∈ E 
 D[i, j] = 0,  if i = j 

 
 This tells us the shortest path going through no 

intermediate nodes. 
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CHARACTERIZATION BASED ON PATH LENGTH 

 There are several ways to characterize the shortest 
path between two nodes in a graph.  

 Note that the shortest path from i to j, i ≠j, using at 
most M edges consists of the shortest path from i to k 
using at most  M-1 edges+W(k; j) for some k. 

 This suggests that we can compute all-pair shortest 
path with an induction based on the number of edges 
in the optimal path. 
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RECURRENCE ON PATH LENGTH 

 Let d[i, j]m be the length of the shortest path from i to j 
using at most m edges. 

 What is d[i, j]0? 
      d[i, j]0  = 0   if i = j 
  = 1  if i ≠ j 
 What if we know d[i, j]m-1 for all i, j? 
      d[i; j]m  = min( d[i,j]m-1, min(d[i,k]m-1 + w[k, j]) ) 
  = min(d[I, k]m-1 + w[k,j]); 1 ≤ 𝑘 ≤ 𝑖 
     since w[k, k] = 0 
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NOT FLOYD IMPLEMENTATION 

 This gives us a recurrence, which we can evaluate in a 
bottom up fashion: 
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for i = 1 to n 
for j = 1 to n 
 𝑑 𝑖, 𝑗 𝑚 = ∞ 
 for k = 1 to n 
          𝑑 𝑖, 𝑗 0 = 𝑀𝑖𝑀( 𝑑 𝑖,𝑘 𝑚,𝑑 𝑖,𝑘 𝑚−1 +  𝑑[𝑘, 𝑗]) 



TIME ANALYSIS 

 This is an O(n3) algorithm just like matrix 
multiplication, but it only goes from m to m + 1 edges. 

 Since the shortest path between any two nodes must 
use at most n edges (unless we have negative cost 
cycles), we must repeat that procedure n times (m = 1 
to n) for an O(n4) algorithm. 

 Although this is slick, observe that even O(n3log n) is 
faster than running Dijkstra’s algorithm starting from 
each vertex! 
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THE FLOYD-WARSHALL ALGORITHM 

 An alternate recurrence yields a more efficient 
dynamic programming formulation.  

 Number the vertices from 1 to n. 
 Let d[i,j]k be the shortest path from i to j using only 

vertices from 1,2,…,k as possible intermediate 
vertices. 

 What is d[j,j]0?  
 With no intermediate vertices, any path consists of at 

most one edge, so d[i,j]0 = w[i,j]. 
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RECURRENCE RELATION 

 In general, adding a new vertex k + 1 helps iff a path 
goes through it, so 
 

        d[i,j]k  = w[i,j] if k = 0 
  = min(d[i, j]k-1 + d[i,k]k-1 + [k,j]k-1); 1 ≤ 𝑘 
 
 Although this looks similar to the previous recurrence, 

it isn’t. 
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IMPLEMENTATION 

 The following algorithm implements it: 
 
 
 
 
 

 This obviously runs in 𝜃(n3) time, which is asymptotically 
no better than n calls to Dijkstra’s algorithm. 

 However, the loops are so tight and it is so short and 
simple that it runs better in practice by a constant factor. 
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d0 = w 
for k = 1 to n 

for I = 1 to n 
 for k = 1 to n 
       𝑑 𝑖, 𝑗 𝑘 = 𝑀𝑖𝑀( 𝑑 𝑖, 𝑗 𝑘−1,𝑑 𝑖,𝑘 𝑘−1 +  𝑑 𝑘, 𝑗 𝑘−1) 
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