
LEC13:
 SHORTEST PATH

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

SHORTEST PATHS

 Finding the shortest path between two nodes in a
graph arises in many different applications:
 Transportation problems – finding the cheapest

way to travel between two locations.
 Motion planning – what is the most natural way for

a cartoon character to move about a simulated
environment.

 Communications problems – how look will it take
for a message to get between two places? Which
two locations are furthest apart, ie. what is the
diameter of the network.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

SHORTEST PATHS: UNWEIGHTED GRAPHS

 In an unweighted graph, the cost of a path is just the
number of edges on the shortest path, which can be found
in O(n+m) time via breadth-first search.

 In a weighted graph, the weight of a path between two
vertices is the sum of the weights of the edges on a path.

 BFS will not work on weighted graphs because sometimes
visiting more edges can lead to shorter distance,
 ie.1 + 1 + 1 + 1 + 1 + 1 + 1 < 10.

 Note that there can be an exponential number of shortest
paths between two nodes – so we cannot report all
shortest paths efficiently.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

NEGATIVE EDGE WEIGHTS

 Note that negative cost cycles render the problem of
finding the shortest path meaningless, since you can
always loop around the negative cost cycle more to
reduce the cost of the path.

 Thus in our discussions, we will assume that all edge
weights are positive. Other algorithms deal correctly
with negative cost edges.

 Minimum spanning trees are unaffected by negative
cost edges.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

DIJKSTRA’S ALGORITHM

 The principle behind Dijkstra’s algorithm is that if
S,…,x,…,t is the shortest path from s to t, then s,…,x
had better be the shortest path from s to x.

 This suggests a dynamic programming-like strategy,
where we store the distance from s to all nearby
nodes, and use them to find the shortest path to more
distant nodes.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

INITIALIZATION AND UPDATE

 The shortest path from s to s, d(s, s) = 0.
 If all edge weights are positive, the smallest edge

incident to s, say (s, x), defines d(s,x).
 We can use an array to store the length of the shortest

path to each node. Initialize each to1 to start.
 Soon as we establish the shortest path from s to a

new node x, we go through each of its incident edges
to see if there is a better way from s to other nodes
thru x.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

PSEUDOCODE: DIJKSTRA’S ALGORITHM

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

ShortestPath-Dijkstra(G, s, t)
known = {s}
for i = 1 to n, dist[i] = ∞
for each edge (s, v), dist[v] = w(s, v)
last = s
while (last != t)

select vnext, the unknown vertex minimizing dist[v]
for each edge (vnext, x)
 dist[x] = min[dist[x], dist[vnext] + w(vnext, x)]
last = vnext
known = known ∪ {vnext}

Complexity: O(n2).
The basic idea is very similar to Prim’s algorithm.

DIJKSTRA EXAMPLE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

DIJKSTRA’S IMPLEMENTATION

See how little changes from Prim’s algorithm!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

dijkstra(graph *g, int start) /* WAS prim(g,start) */
{

int i; /* counter */
edgenode *p; /* temporary pointer */
bool intree[MAXV+1]; /* is the vertex in the tree yet? */
int distance[MAXV+1]; /* distance vertex is from start */
int v; /* current vertex to process */
int w; /* candidate next vertex */
int weight; /* edge weight */
int dist; /* best current distance from start */

for (i=1; i<=g->nvertices; i++) {

intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

distance[start] = 0;
v = start;
while (intree[v] == FALSE) {

intree[v] = TRUE;
p = g->edges[v];
while (p != NULL) {

w = p->y;
weight = p->weight;
if (distance[w] > (distance[v]+weight)) { /* CHANGED */

distance[w] = distance[v]+weight; /* CHANGED */
parent[w] = v; /* CHANGED */

}
p = p->next;

}

v = 1;
dist = MAXINT;
for (i=1; i<=g->nvertices; i++)

if ((intree[i] == FALSE) && (dist > distance[i])) {
dist = distance[i];
v = i;

}
}

}

PRIM’S/DIJKSTRA’S ANALYSIS

 Finding the minimum weight fringe-edge takes O(n)
time – just bump through fringe list.

 After adding a vertex to the tree, running through its
adjacency list to update the cost of adding fringe
vertices (there may be a cheaper way through the new
vertex) can be done in O(n) time.

 Total time is O(n2).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

ALL-PAIRS SHORTEST PATH

 Notice that finding the shortest path between a pair of
vertices (s,t) in worst case requires first finding the
shortest path from s to all other vertices in the graph.

 Many applications, such as finding the center or
diameter of a graph, require finding the shortest path
between all pairs of vertices.

 We can run Dijkstra’s algorithm n times (once from
each possible start vertex) to solve all-pairs shortest
path problem in O(n3). Can we do better?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

DYNAMIC PROGRAMMING AND SHORTEST PATHS

 The four-step approach to dynamic programming is:
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute this recurrence in a bottom-up fashion.
4. Extract the optimal solution from computed
information.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

INITIALIZATION

 From the adjacency matrix, we can construct the
following matrix:
 D[i, j] = ∞, if i ≠ j and (vi, vj) is not in E
 D[i, j] = w(i, j), if (vi; vj) ∈ E
 D[i, j] = 0, if i = j

 This tells us the shortest path going through no

intermediate nodes.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

CHARACTERIZATION BASED ON PATH LENGTH

 There are several ways to characterize the shortest
path between two nodes in a graph.

 Note that the shortest path from i to j, i ≠j, using at
most M edges consists of the shortest path from i to k
using at most M-1 edges+W(k; j) for some k.

 This suggests that we can compute all-pair shortest
path with an induction based on the number of edges
in the optimal path.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

RECURRENCE ON PATH LENGTH

 Let d[i, j]m be the length of the shortest path from i to j
using at most m edges.

 What is d[i, j]0?
 d[i, j]0 = 0 if i = j
 = 1 if i ≠ j
 What if we know d[i, j]m-1 for all i, j?
 d[i; j]m = min(d[i,j]m-1, min(d[i,k]m-1 + w[k, j]))
 = min(d[I, k]m-1 + w[k,j]); 1 ≤ 𝑘 ≤ 𝑖
 since w[k, k] = 0

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

NOT FLOYD IMPLEMENTATION

 This gives us a recurrence, which we can evaluate in a
bottom up fashion:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

for i = 1 to n
for j = 1 to n
 𝑑 𝑖, 𝑗 𝑚 = ∞
 for k = 1 to n
 𝑑 𝑖, 𝑗 0 = 𝑀𝑖𝑀(𝑑 𝑖,𝑘 𝑚,𝑑 𝑖,𝑘 𝑚−1 + 𝑑[𝑘, 𝑗])

TIME ANALYSIS

 This is an O(n3) algorithm just like matrix
multiplication, but it only goes from m to m + 1 edges.

 Since the shortest path between any two nodes must
use at most n edges (unless we have negative cost
cycles), we must repeat that procedure n times (m = 1
to n) for an O(n4) algorithm.

 Although this is slick, observe that even O(n3log n) is
faster than running Dijkstra’s algorithm starting from
each vertex!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

THE FLOYD-WARSHALL ALGORITHM

 An alternate recurrence yields a more efficient
dynamic programming formulation.

 Number the vertices from 1 to n.
 Let d[i,j]k be the shortest path from i to j using only

vertices from 1,2,…,k as possible intermediate
vertices.

 What is d[j,j]0?
 With no intermediate vertices, any path consists of at

most one edge, so d[i,j]0 = w[i,j].

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

RECURRENCE RELATION

 In general, adding a new vertex k + 1 helps iff a path
goes through it, so

 d[i,j]k = w[i,j] if k = 0
 = min(d[i, j]k-1 + d[i,k]k-1 + [k,j]k-1); 1 ≤ 𝑘

 Although this looks similar to the previous recurrence,

it isn’t.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

IMPLEMENTATION

 The following algorithm implements it:

 This obviously runs in 𝜃(n3) time, which is asymptotically
no better than n calls to Dijkstra’s algorithm.

 However, the loops are so tight and it is so short and
simple that it runs better in practice by a constant factor.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

25

d0 = w
for k = 1 to n

for I = 1 to n
 for k = 1 to n
 𝑑 𝑖, 𝑗 𝑘 = 𝑀𝑖𝑀(𝑑 𝑖, 𝑗 𝑘−1,𝑑 𝑖,𝑘 𝑘−1 + 𝑑 𝑘, 𝑗 𝑘−1)

	LEC13:� Shortest Path
	Shortest Paths
	Shortest Paths: Unweighted Graphs
	Negative Edge Weights
	Dijkstra’s Algorithm
	Initialization and Update
	Pseudocode: Dijkstra’s Algorithm
	Dijkstra Example
	Dijkstra’s Implementation
	Slide Number 13
	Prim’s/Dijkstra’s Analysis
	All-Pairs Shortest Path
	Dynamic Programming and Shortest Paths
	Initialization
	Characterization Based on Path Length
	Recurrence on Path Length
	Not Floyd Implementation
	Time Analysis
	The Floyd-Warshall Algorithm
	Recurrence Relation
	Implementation

