
LEC12: MINIMUM SPANNING TREES (PP.191-205)
(CH6 WEIGHTED GRAPH ALGORITHMS)

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

WEIGHTED GRAPH ALGORITHMS

 Beyond DFS/BFS exists an alternate universe of
algorithms for edge-weighted graphs.

 Our adjacency list structure consists of an array of
linked lists, such that the outgoing edges from vertex x
appear in the list edges[x]:

typedef struct {
 edgenode *edges[MAXV+1]; /* adjacency info */
 int degree[MAXV+1]; /* outdegree of each vertex */
 int nvertices; /* number of vertices in graph */
 int nedges; /* number of edges in graph */
 int directed; /* is the graph directed? */
} graph;

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

 Each edgenode is a record containing three fields, the
first describing the second endpoint of the edge (y),
the second enabling us to annotate the edge with a
weight (weight), and the third pointing to the next edge
in the list (next):

typedef struct {
 int y; /* adjacency info */
 int weight; /* edge weight, if any */
 struct edgenode *next; /* next edge in list */
} edgenode;

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

MINIMUM SPANNING TREES
 A tree is a connected graph with no cycles.
 A spanning tree is a subgraph of G which has the same set

of vertices of G and is a tree.
 A minimum spanning tree of a weighted graph G is the

spanning tree of G whose edges sum to minimum weight.
 There can be more than one minimum spanning tree in a

graph
 Ex> consider a graph with identical weight edges.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

(a) Two spanning trees of point set;
(b) the minimum spanning tree, and
(c) The shortest path from center tree

WHY MINIMUM SPANNING TREES?

 The minimum spanning tree problem has a long history
 the first algorithm dates back at least to 1926!.

 Minimum spanning tree is always taught in algorithm
courses since
 (1) it arises in many applications,
 (2) it is an important example where greedy algorithms always

give the optimal answer, and
 (3) Clever data structures are necessary to make it work.

 In greedy algorithms, we make the decision of what next to
do by selecting the best local option from all available
choices, without regard to the global structure.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

APPLICATIONS OF MINIMUM SPANNING TREES

 Minimum spanning trees are useful in constructing
networks, by describing the way to connect a set of
sites using the smallest total amount of wire.

 Minimum spanning trees provide a reasonable way for
clustering points in space into natural groups.

 What are natural clusters in the friendship graph?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

MINIMUM SPANNING TREES AND NET PARTITIONING

 One of the war stories in the text describes how to
partition a graph into compact subgraphs by deleting
large edges from the minimum spanning tree.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

MINIMUM SPANNING TREES AND TSP

 When the cities are points in
the Euclidean plane, the
minimum spanning tree
provides a good heuristic for
traveling salesman problems.

 The optimum traveling
salesman tour is at most
twice the length of the
minimum spanning tree.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

PRIM’S ALGORITHM

 If G is connected, every vertex will appear in the
minimum spanning tree.

 If not, we can talk about a minimum spanning forest.
 Prim’s algorithm starts from one vertex and grows the

rest of the tree an edge at a time.
 As a greedy algorithm, which edge should we pick?

 The cheapest edge with which can grow the tree by
one vertex without creating a cycle.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

PRIM’S ALGORITHM (PSEUDOCODE)

 During execution each vertex v is either in the tree, fringe
(meaning there exists an edge from a tree vertex to v) or
unseen (meaning v is more than one edge away).

Prim-MST(G)
 Select an arbitrary vertex s to start the tree from.
 While (there are still non-tree vertices)
 Select the edge of min weight between a tree
 Add the selected edge and vertex to the tree Tprim.

 This creates a spanning tree, since no cycle can be
introduced, but is it minimum?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

PRIM’S ALGORITHM IN ACTION

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

WHY IS PRIM CORRECT?
 We use a proof by contradiction:
 Suppose Prim’s algorithm does not always give the

minimum cost spanning tree on some graph.
 If so, there is a graph on which it fails.
 And if so, there must be a first edge (x, y) Prim adds such

that the partial tree V’ cannot be extended into a minimum
spanning tree.

 But if (x; y) is not in MST(G), then there must be a path in
MST(G) from x to y since the tree is connected.

 Let (v, w) be the first edge on this path with one edge in V’
Replacing it with (x, y) we get a spanning tree with smaller
weight, since W(v, w) > W(x, y).

 Thus you did not have the MST!!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

 Thus we cannot go wrong with the greedy strategy the
way we could with the traveling salesman problem.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

Where Prim’s algorithm goes bad? No, because d(v1, v2) ≥ d(x, y)

HOW FAST IS PRIM’S ALGORITHM?

 That depends on what data structures are used.
 In the simplest implementation, we can simply mark each

vertex as tree and non-tree and search always from
scratch:

Select an arbitrary vertex to start.
While (there are non-tree vertices)
 select minimum weight edge between tree and fringe
 add the selected edge and vertex to the tree

 This can be done in O(nm) time, by doing a DFS or BFS to
loop through all edges, with a constant time test per edge,
and a total of n iterations.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

PRIM’S IMPLEMENTATION

 To do it faster, we must identify fringe vertices and the
minimum cost edge associated with it fast.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

prim(graph *g, int start)
{

int i; /* counter */
edgenode *p; /* temporary pointer */
bool intree[MAXV+1]; /* is the vertex in the tree yet? */
int distance[MAXV+1]; /* cost of adding to tree */
int v; /* current vertex to process */
int w; /* candidate next vertex */
int weight; /* edge weight */
int dist; /* best current distance from start */

for (i=1; i<=g->nvertices; i++) {

intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

distance[start] = 0;
v = start;
while (intree[v] == FALSE) {

intree[v] = TRUE;
p = g->edges[v];
while (p != NULL) {

w = p->y;
weight = p->weight;
if ((distance[w] > weight) && (intree[w] == FALSE)) {

distance[w] = weight;
parent[w] = v;

}
p = p->next;

}
v = 1;
dist = MAXINT;
for (i=1; i<=g->nvertices; i++)

if ((intree[i] == FALSE) && (dist > distance[i])) {
dist = distance[i];
v = i;

}
}

}

PRIM’S ANALYSIS

 Finding the minimum weight fringe-edge takes O(n)
time – just bump through fringe list.

 After adding a vertex to the tree, running through its
adjacency list to update the cost of adding fringe
vertices(there may be a cheaper way through the new
vertex) can be done in O(n) time.

 Total time is O(n2).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

KRUSKAL’S ALGORITHM

 Since an easy lower bound argument shows that every
edge must be looked at to find the minimum spanning
tree, and the number of edges m = O(n2), Prim’s
algorithm is optimal in the worst case.

 The complexity of Prim’s algorithm is independent of
the number of edges.

 Can we do better with sparse graphs? Yes!
 Kruskal’s algorithm is also greedy. It repeatedly adds

the smallest edge to the spanning tree that does not
create a cycle.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

KRUSKAL’S ALGORITHM IN ACTION

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

WHY IS KRUSKAL’S ALGORITHM CORRECT?

 Again, we use proof by contradiction.
 Suppose Kruskal’s algorithm does not always give the

minimum cost spanning tree on some graph.
 If so, there is a graph on which it fails.
 And if so, there must be a first edge (x,y) Kruskal adds

such that the set of edges cannot be extended into a
minimum spanning tree.

 When we added (x,y) there previously was no path
between x and y, or it would have created a cycle

 Thus if we add (x, y) to the optimal tree it must create a
cycle.

 At least one edge in this cycle must have been added after
(x, y), so it must have a heavier weight.

 Deleting this heavy edge leave a better MST than the
optimal tree? A contradiction!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

HOW FAST IS KRUSKAL’S ALGORITHM?

 What is the simplest implementation?
 Sort the m edges in O(mlgm) time.
 For each edge in order, test whether it creates a

cycle the forest we have thus far built – if so
discard, else add to forest.
With a BFS/DFS, this can be done in O(n) time (since the

tree has at most n edges).

 The total time is O(mn), but can we do better?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

FAST COMPONENT TESTS GIVE FAST MST

 Kruskal’s algorithm builds up connected components.
 Any edge where both vertices are in the same

connected component create a cycle.
 Thus if we can maintain which vertices are in which

component fast, we do not have test for cycles!
 Same component(v1,v2) – Do vertices v1 and v2 lie

in the same connected component of the current
graph?

 Merge components(C1,C2) – Merge the given pair of
connected components into one component.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

FAST KRUSKAL IMPLEMENTATION

Put the edges in a heap
count = 0
while (count < n-1) do
 get next edge (v, w)
 if (component (v) != component(w))
 add to T
 component (v)=component(w)

 If we can test components in O(log n), we can find the
MST in O(mlogm)!

 Question: Is O(mlogn) better than O(mlogm)?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

UNION-FIND PROGRAMS

 We need a data structure for maintaining sets which
can test if two elements are in the same and merge
two sets together.

 These can be implemented by union and find
operations, where
 Find(i) – Return the label of the root of tree containing

element i, by walking up the parent pointers until there is no
where to go.

 Union(i,j) – Link the root of one of the trees (say containing i)
to the root of the tree containing the other (say j) so find(i)
now equals find(j).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

COMPONENT TESTS

 Same Component Tests Merge Components
Operation

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

25

Is si ≡ sj
 t = Find(si)
 u = Find(sj)
 Return (Is t = u?)

Make si ≡ sj
 t = d(si)
 u = d(sj)
 Union(t, u)

UNION-FIND “TREES”

 We are interested in minimizing the time it takes to
execute any sequence of unions and finds.

 A simple implementation is to represent each set as a
tree, with pointers from a node to its parent. Each
element is contained in a node, and the name of the
set is the key at the root:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

26

WORST CASE FOR UNION FIND

 In the worst case, these structures can be very
unbalanced:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

27

For i = 1 to n=2 do
 UNION(i,i+1)
For i = 1 to n=2 do
 FIND(1)

WHO’S THE DADDY?

 We want the limit the height of our trees
which are effected by union’s.

 When we union, we can make the tree
with fewer nodes the child.

 Since the number of nodes is related to
the height, the height of the final tree
will increase only if both subtrees are of
equal height!

 If Union(t, v) attaches the root of v as a
subtree of t iff the number of nodes in t
is greater than or equal to the number
in v, after any sequence of unions, any
tree with h/4 nodes has height at most
lgℎ .

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

28

PROOF

 By induction on the number of
nodes k, k = 1 has height 0.

 Let di be the height of the tree ti

 If (d1 > d2) then 𝑑 = 𝑑1 ≤
 lg 𝑘1 ≤ lg(𝑘1 + 𝑘2) = lg 𝑘

 If (𝑑1 ≤ 𝑑2), then
 𝑑 = 𝑑2 + 1 ≤ lg 𝑘2 + 1 =

lg 2𝑘2 ≤ lg 𝑘1 + 𝑘2 = log 𝑘

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

29

CAN WE DO BETTER?

 We can do unions and finds in O(log n), good enough
for

 Kruskal’s algorithm. But can we do better?
 The ideal Union-Find tree has depth 1:

 On a find, if we are going down a path anyway, why not
 change the pointers to point to the root?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

30

 This path compression will let us do better than O(n
log n) for n union-finds.

 O(n)? Not quite . . . Difficult analysis shows that it
takes O(n(n)) time, where (n) is the inverse Ackerman
function and (number of atoms in the universe)= 5.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

31

	LEC12: Minimum Spanning Trees (pp.191-205)�(Ch6 Weighted Graph Algorithms)
	Weighted Graph Algorithms
	Slide Number 3
	Minimum Spanning Trees
	Why Minimum Spanning Trees?
	Applications of Minimum Spanning Trees
	Minimum Spanning Trees and Net Partitioning
	Minimum Spanning Trees and TSP
	Prim’s Algorithm
	Prim’s Algorithm (Pseudocode)
	Prim’s Algorithm in Action
	Why is Prim Correct?
	Slide Number 13
	How Fast is Prim’s Algorithm?
	Prim’s Implementation
	Slide Number 16
	Prim’s Analysis
	Kruskal’s Algorithm
	Kruskal’s Algorithm in Action
	Why is Kruskal’s algorithm correct?
	How fast is Kruskal’s algorithm?
	Fast Component Tests Give Fast MST
	Fast Kruskal Implementation
	Union-Find Programs
	Component Tests
	Union-Find “Trees”
	Worst Case for Union Find
	Who’s The Daddy?
	Proof
	Can we do better?
	Slide Number 31

