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WEIGHTED GRAPH ALGORITHMS 

 Beyond DFS/BFS exists an alternate universe of 
algorithms for edge-weighted graphs. 

 Our adjacency list structure consists of an array of 
linked lists, such that the outgoing edges from vertex x 
appear in the list edges[x]:  

typedef struct { 
  edgenode *edges[MAXV+1];  /* adjacency info */ 
  int degree[MAXV+1];  /* outdegree of each vertex */ 
  int nvertices;   /* number of vertices in graph */ 
  int nedges;   /* number of edges in graph */ 
  int directed;   /* is the graph directed? */ 
} graph; 
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 Each edgenode is a record containing three fields, the 
first describing the second endpoint of the edge (y), 
the second enabling us to annotate the edge with a 
weight (weight), and the third pointing to the next edge 
in the list (next): 

 
typedef struct { 
  int y;    /* adjacency info */ 
  int weight;   /* edge weight, if any */ 
  struct edgenode *next;  /* next edge in list */ 
} edgenode; 
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MINIMUM SPANNING TREES 
 A tree is a connected graph with no cycles.  
 A spanning tree is a subgraph of G which has the same set 

of vertices of G and is a tree. 
 A minimum spanning tree of a weighted graph G is the 

spanning tree of G whose edges sum to minimum weight. 
 There can be more than one minimum spanning tree in a 

graph 
 Ex> consider a graph with identical weight edges. 
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(a) Two spanning trees of point set;  
(b) the minimum spanning tree, and  
(c) The shortest path from center tree 



WHY MINIMUM SPANNING TREES? 

 The minimum spanning tree problem has a long history  
 the first algorithm dates back at least to 1926!. 

 Minimum spanning tree is always taught in algorithm 
courses since  
 (1) it arises in many applications,  
 (2) it is an important example where greedy algorithms always 

give the optimal answer, and  
 (3) Clever data structures are necessary to make it work. 

 In greedy algorithms, we make the decision of what next to 
do by selecting the best local option from all available 
choices, without regard to the global structure. 
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APPLICATIONS OF MINIMUM SPANNING TREES 

 Minimum spanning trees are useful in constructing 
networks, by describing the way to connect a set of 
sites using the smallest total amount of wire. 
 

 Minimum spanning trees provide a reasonable way for 
clustering points in space into natural groups. 

 What are natural clusters in the friendship graph? 
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MINIMUM SPANNING TREES AND NET PARTITIONING 

 One of the war stories in the text describes how to 
partition a graph into compact subgraphs by deleting 
large edges from the minimum spanning tree. 
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MINIMUM SPANNING TREES AND TSP 

 When the cities are points in 
the Euclidean plane, the 
minimum spanning tree 
provides a good heuristic for 
traveling salesman problems. 
 

 The optimum traveling 
salesman tour is at most 
twice the length of the 
minimum spanning tree. 
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PRIM’S ALGORITHM 

 If G is connected, every vertex will appear in the 
minimum spanning tree.  

 If not, we can talk about a minimum spanning forest. 
 Prim’s algorithm starts from one vertex and grows the 

rest of the tree an edge at a time. 
 As a greedy algorithm, which edge should we pick?  

 The cheapest edge with which can grow the tree by 
one vertex without creating a cycle. 
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PRIM’S ALGORITHM (PSEUDOCODE) 

 During execution each vertex v is either in the tree, fringe 
(meaning there exists an edge from a tree vertex to v) or 
unseen (meaning v is more than one edge away). 

 
Prim-MST(G) 
  Select an arbitrary vertex s to start the tree from. 
  While (there are still non-tree vertices) 
   Select the edge of min weight between a tree   
   Add the selected edge and vertex to the tree Tprim. 
 

 This creates a spanning tree, since no cycle can be 
introduced, but is it minimum? 
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PRIM’S ALGORITHM IN ACTION 
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WHY IS PRIM CORRECT? 
 We use a proof by contradiction: 
 Suppose Prim’s algorithm does not always give the 

minimum cost spanning tree on some graph. 
 If so, there is a graph on which it fails.  
 And if so, there must be a first edge (x, y) Prim adds such 

that the partial tree V’ cannot be extended into a minimum 
spanning tree. 

 But if (x; y) is not in MST(G), then there must be a path in 
MST(G) from x to y since the tree is connected.  

 Let (v, w) be the first edge on this path with one edge in V’ 
Replacing it with (x, y) we get a spanning tree with smaller 
weight, since W(v, w) > W(x, y).  

 Thus you did not have the MST!! 
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 Thus we cannot go wrong with the greedy strategy the 
way we could with the traveling salesman problem. 
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Where Prim’s algorithm goes bad? No, because d(v1, v2) ≥ d(x, y) 



HOW FAST IS PRIM’S ALGORITHM? 

 That depends on what data structures are used.  
 In the simplest implementation, we can simply mark each 

vertex as tree and non-tree and search always from 
scratch: 
 
Select an arbitrary vertex to start. 
While (there are non-tree vertices) 
 select minimum weight edge between tree and fringe 
 add the selected edge and vertex to the tree 
 

 This can be done in O(nm) time, by doing a DFS or BFS to 
loop through all edges, with a constant time test per edge, 
and a total of n iterations. 
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PRIM’S IMPLEMENTATION 

 To do it faster, we must identify fringe vertices and the
minimum cost edge associated with it fast. 
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prim(graph *g, int start) 
{ 

int i;   /* counter */ 
edgenode *p;  /* temporary pointer */ 
bool intree[MAXV+1];  /* is the vertex in the tree yet? */ 
int distance[MAXV+1];  /* cost of adding to tree */ 
int v;   /* current vertex to process */ 
int w;   /* candidate next vertex */ 
int weight;   /* edge weight */ 
int dist;   /* best current distance from start */ 
 
for (i=1; i<=g->nvertices; i++) { 

intree[i] = FALSE; 
distance[i] = MAXINT; 
parent[i] = -1; 

} 
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distance[start] = 0; 
v = start; 
while (intree[v] == FALSE) { 

intree[v] = TRUE; 
p = g->edges[v]; 
while (p != NULL) { 

w = p->y; 
weight = p->weight; 
if ((distance[w] > weight) && (intree[w] == FALSE)) { 

distance[w] = weight; 
parent[w] = v; 

} 
p = p->next; 

} 
v = 1; 
dist = MAXINT; 
for (i=1; i<=g->nvertices; i++) 

if ((intree[i] == FALSE) && (dist > distance[i])) { 
dist = distance[i]; 
v = i; 

} 
} 

} 



PRIM’S ANALYSIS 

 Finding the minimum weight fringe-edge takes O(n) 
time – just bump through fringe list. 

 After adding a vertex to the tree, running through its 
adjacency list to update the cost of adding fringe 
vertices(there may be a cheaper way through the new 
vertex) can be done in O(n) time. 

 Total time is O(n2). 
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KRUSKAL’S ALGORITHM 

 Since an easy lower bound argument shows that every 
edge must be looked at to find the minimum spanning 
tree, and the number of edges m = O(n2), Prim’s 
algorithm is optimal in the worst case.  

 The complexity of Prim’s algorithm is independent of 
the number of edges.  

 Can we do better with sparse graphs? Yes! 
 Kruskal’s algorithm is also greedy. It repeatedly adds 

the smallest edge to the spanning tree that does not 
create a cycle. 
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KRUSKAL’S ALGORITHM IN ACTION 
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WHY IS KRUSKAL’S ALGORITHM CORRECT? 

 Again, we use proof by contradiction. 
 Suppose Kruskal’s algorithm does not always give the 

minimum cost spanning tree on some graph. 
 If so, there is a graph on which it fails. 
 And if so, there must be a first edge (x,y) Kruskal adds 

such that the set of edges cannot be extended into a 
minimum spanning tree. 

 When we added (x,y) there previously was no path 
between x and y, or it would have created a cycle 

 Thus if we add (x, y) to the optimal tree it must create a 
cycle. 

 At least one edge in this cycle must have been added after 
(x, y), so it must have a heavier weight.  

 Deleting this heavy edge leave a better MST than the 
optimal tree? A contradiction! 
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HOW FAST IS KRUSKAL’S ALGORITHM? 

 What is the simplest implementation? 
 Sort the m edges in O(mlgm) time. 
 For each edge in order, test whether it creates a 

cycle the forest we have thus far built – if so 
discard, else add to forest.  
With a BFS/DFS, this can be done in O(n) time (since the 

tree has at most n edges). 

 The total time is O(mn), but can we do better? 
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FAST COMPONENT TESTS GIVE FAST MST 

 Kruskal’s algorithm builds up connected components.  
 Any edge where both vertices are in the same 

connected component create a cycle. 
 Thus if we can maintain which vertices are in which 

component fast, we do not have test for cycles! 
 Same component(v1,v2) – Do vertices v1 and v2 lie 

in the same connected component of the current 
graph? 

 Merge components(C1,C2) – Merge the given pair of 
connected components into one component. 
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FAST KRUSKAL IMPLEMENTATION 

Put the edges in a heap 
count = 0 
while (count < n-1) do 
 get next edge (v, w) 
 if (component (v) != component(w)) 
  add to T 
  component (v)=component(w) 

 If we can test components in O(log n), we can find the 
MST in O(mlogm)! 

 Question: Is O(mlogn) better than O(mlogm)? 
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UNION-FIND PROGRAMS 

 We need a data structure for maintaining sets which 
can test if two elements are in the same and merge 
two sets together. 

 These can be implemented by union and find 
operations, where 
 Find(i) – Return the label of the root of tree containing 

element i, by walking up the parent pointers until there is no 
where to go. 

 Union(i,j) – Link the root of one of the trees (say containing i) 
to the root of the tree containing the other (say j) so find(i) 
now equals find(j). 
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COMPONENT TESTS 

 Same Component Tests  Merge Components 
Operation 
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Is si ≡ sj 
 t = Find(si) 
 u = Find(sj) 
 Return (Is t = u?) 

Make si ≡ sj 
 t = d(si) 
 u = d(sj) 
 Union(t, u) 



UNION-FIND “TREES” 

 We are interested in minimizing the time it takes to 
execute any sequence of unions and finds. 

 A simple implementation is to represent each set as a 
tree, with pointers from a node to its parent. Each 
element is contained in a node, and the name of the 
set is the key at the root: 
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WORST CASE FOR UNION FIND 

 In the worst case, these structures can be very 
unbalanced: 
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For i = 1 to n=2 do 
 UNION(i,i+1) 
For i = 1 to n=2 do 
 FIND(1) 



WHO’S THE DADDY? 

 We want the limit the height of our trees 
which are effected by union’s. 

 When we union, we can make the tree 
with fewer nodes the child. 

 Since the number of nodes is related to 
the height, the height of the final tree 
will increase only if both subtrees are of 
equal height! 

 If Union(t, v) attaches the root of v as a 
subtree of t iff the number of nodes in t 
is greater than or equal to the number 
in v, after any sequence of unions, any 
tree with h/4 nodes has height at most 
lgℎ . 
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PROOF 

 By induction on the number of 
nodes k, k = 1 has height 0. 

 Let di be the height of the tree ti 

 If (d1 > d2) then 𝑑 = 𝑑1 ≤
 lg 𝑘1 ≤  lg(𝑘1 + 𝑘2) =  lg 𝑘  

 If (𝑑1 ≤ 𝑑2), then 
 𝑑 = 𝑑2 + 1 ≤  lg 𝑘2 + 1 =

lg 2𝑘2 ≤  lg 𝑘1 + 𝑘2 = log 𝑘 
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CAN WE DO BETTER? 

 We can do unions and finds in O(log n), good enough 
for 

 Kruskal’s algorithm. But can we do better? 
 The ideal Union-Find tree has depth 1: 

 
 
 

 On a find, if we are going down a path anyway, why not 
 change the pointers to point to the root? 
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 This path compression will let us do better than O(n 
log n) for n union-finds. 

 O(n)? Not quite . . . Difficult analysis shows that it 
takes O(n(n)) time, where (n) is the inverse Ackerman 
function and (number of atoms in the universe)= 5. 
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