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PROBLEM OF THE DAY 

 Prove that in a breadth-first search on a undirected 
graph G, every edge in G is either a tree edge or a 
cross edge, where a cross edge (x; y) is an edge where 
x is neither is an ancestor or descendent of y. 
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BFS VS DFS 

 The difference between BFS and DFS results is in the 
order in which they explore vertices. 

  This order depends completely upon the container 
data structure used to store the discovered but not 
processed vertices (The Todo-list),  
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TODO LIST STRUCTURES 

 Queue allows the BFS to explore the oldest 
unexplored vertices first.  
 Thus our explorations radiate out slowly from the starting 

vertex. 

 Stack allows the DFS to explore the vertices by 
lurching along a path, visiting a new neighbor if one is 
available, and backing up only when we are 
surrounded by previously discovered vertices.  
 Thus, our explorations quickly wander away from our 

starting point.  
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DEPTH-FIRST SEARCH 

 DFS has a neat recursive implementation which 
eliminates the need to explicitly use a stack. 

 By maintaining a notion of traversal time for each 
vertex. 
 Our time clock ticks each time we enter or exit any vertex.  
 Keep track of the entry and exit times for each vertex 
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DFS PSEUDO CODE 

DFS(G, u) 
 state[u] = “discovered” 
 process vertex u if desired 
 entry[u] = time  /* time is global variable */ 
 time = time + 1 
 for each v ∈ Adj[u] do 
  process edge (u, v) if desired 
  if state[v] = “undiscovered” then 
   p[v] = u 
   DFS(G, v) 
 state[u] = “processed” 
 exit[u] = time 
 time = time + 1 
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IMPLEMENTATION 

 The beauty of implementing dfs recursively is that 
recursion eliminates the need to keep an explicit stack: 
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dfs(graph *g, int v) 
{ 
 edgenode *p; /* temporary pointer */ 
 int y; /* successor vertex */ 
 
 if (finished) return; /* allow for search termination */ 
 
 discovered[v] = TRUE; 
 time = time + 1; 
 entry_time[v] = time; 
 
 process_vertex_early(v); 
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 p = g->edges[v];  
 while (p != NULL) { 
  y = p->y; 
  if (discovered[y] == FALSE) { 
   parent[y] = v; 
   process_edge(v,y); 
   dfs(g,y); 
  } 
  else if ((!processed[y]) || (g->directed)) 
   process_edge(v,y); 
  if (finished) return; 
  p = p->next; 
 } 
 process_vertex_late(v); 
 time = time + 1; 
 exit_time[v] = time; 
 processed[v] = TRUE; 
} 



TREE EDGES AND BACK EDGES. 

 In a DFS of an undirected graph, we assign a direction 
to each edge, from the vertex which discover it: 
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undirected graph 
depth-first search tree 

Tree edges  

Back edges  



EDGE CLASSIFICATION FOR DFS 

 Every edge is either: 
 
 
 
 
 
 
 

 On any particular DFS or BFS of a directed or 
undirected graph, each edge gets classified as one of 
the above. 
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USEFUL PROPERTIES OF TIME INTERVALS 

 Who is an ancestor?  
 Suppose that x is an ancestor of y in the DFS tree. 
 Time interval of y must be properly nested within ancestor x. 

 we must enter x before y, 
 we must exit y before we exit x 

 How many descendants?  
 Half the time difference between the exit and entry times for 

v tells us how many descendants v has in the DFS tree. 
 Clock ticks in entering & exiting (2 times)  
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SUMMARY OF DFS PROPERTIES 

 Entry and Exit times in several applications of BFS,  
 EX> topological sorting  & biconnected/strongly-connected 

components. 

 DFS partitions the edges of an undirected graph into 
exactly two classes: tree edges and back edges. 
 Tree edges discover new vertices, and are those encoded in 

the parent relation.  
 Back edges are those whose other endpoint is an ancestor 

of the vertex being expanded, so they point back into the 
tree. 
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APPLICATIONS OF DEPTH-FIRST SEARCH 

 Application of DFS is surprisingly subtle, however 
meaning that its correctness requires getting details 
right. 

 The correctness of a DFS-based algorithm depends 
upon specifics of exactly when we process the edges 
and vertices. 
 We can process vertex v either before we have traversed any 

of the outgoing edges from v (process_vertex_early()) or  
 After we have finished processing all of them 

(process_vertex_late()). 
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PROCESSING UNDIRECTED GRAPHS (173) 

 In undirected graphs, each edge (x, y) sits in the adjac
ency lists of vertex x and y. 
 there are two potential times to process each edge (x, y), na

mely when exploring x and when exploring y. 

 Edge-specific processing happened the first time and t
ake different action the second time we see an edge. 
 EX> The labeling of edges (as tree edges or back edges) occ

urs during the first time the edge is explored 
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EDGE LABELING IN UNDIRECTED GRAPH  

 How can we tell if we have previously traversed the 
edge from y? 
 If vertex y is undiscovered: (x, y) becomes a tree edge so this 

must be the first time visiting the edge (x,y)  
 If y has not been completely processed: we explored the 

edge (y,x) when we explored y this must be the second time 
visiting (x,y). 

 If y is an ancestor of x thus in a discovered state: this must 
be our first traversal unless y is the immediate ancestor of 
x—i.e. , (y, x) is a tree edge. 
 testing if y == parent[x]. 
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DFS APPLICATION 1: FINDING CYCLES 

 Back edges are the key to finding a cycle in an 
undirected graph. 

 Any back edge going from x to an ancestor y creates a 
cycle with the path in the tree from y to x. 
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process_edge(int x, int y) 
{ 
 if (parent[x] != y) { /* found back edge! */ 
  printf("Cycle from %d to %d:",y,x); 
  find_path(y,x,parent); 
  printf("\n\n"); 
  finished = TRUE; /* so that we finish after first cycle */ 
 } 
} 



DFS APPLICATION 2: ARTICULATION VERTICES 

 articulation vertex or cut-node : a single vertex whose 
deletion disconnects a connected component of the 
graph 

 Any graph that contains an articulation vertex is 
inherently fragile, because deleting that single vertex 
causes a loss of connectivity between other nodes. 
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FINDING ARTICULATION VERTICES  

 Brute force method O(n(m+n)) :  
 just delete each vertex to do a DFS or BFS on the remaining 

graph to see if it is connected. 
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 Better method O(n+m): 
 In a DFS tree, a vertex v 

(other than the root) is 
an articulation vertex iff v 
is not a leaf and some 
subtree of v has no back 
edge incident until a 
proper ancestor of v. 



DEPTH-FIRST SEARCH ON DIRECTED GRAPHS 

 When traversing undirected graphs, every edge is 
either in the depth-first search tree or a back edge to 
an ancestor in the tree. 
 Suppose we encountered a “forward edge” (x, y) directed 

toward a descendant vertex. In this case, we would have 
discovered (x, y) while exploring y, making it a back edge.  

 Suppose we encounter a “cross edge” (x, y), linking two 
unrelated vertices. 

 For directed graphs, depth-first search labelings can 
take all four labels  
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EDGE CLASSIFICATION IMPLEMENTATION 
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int edge_classification(int x, int y) 
{ 
 if (parent[y] == x)  
  return(TREE); 
 if (discovered[y] && !processed[y])  
  return(BACK); 
 if (processed[y] && (entry time[y]<entry time[x]))  
  return(FORWARD); 
 if (processed[y] && (entry time[y]>entry time[x]))  
  return(CROSS); 
 printf(”Warning: unclassified edge (%d,%d)”,x,y); 
} 



APPLICATION : TOPOLOGICAL SORTING 

 A directed acyclic graph (DAG) has no directed cycles. 
 
 
 
 
 

 A topological sort of a graph is an ordering on the 
vertices so that all edges go from left to right. DAGs 
(and only DAGs) has at least one topological sort (here 
G; A;B; C; F;E;D). 
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APPLICATIONS OF TOPOLOGICAL SORTING 

 Topological sorting is often useful in scheduling jobs in 
their proper sequence.  

 In general, we can use it to order things given 
precedence constraints. 

 Example: Dressing schedule from CLR. 
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TOPOLOGICAL SORTING VIA DFS 

 A directed graph is a DAG if and only if no back edges 
are encountered during a depth-first search. 

 Labeling each of the vertices in the reverse order that 
they are marked processed finds a topological sort of 
a DAG. 

 Why?  
 Consider what happens to each directed edge {x,y} as 

we encounter it during the exploration of vertex x: 
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CASE ANALYSIS 

 If y is currently undiscovered, then we then start a 
DFS of y before we can continue with x. Thus y is 
marked processed before x is, and x appears before y 
in the topological order, as it must. 
 

 If y is discovered but not processed, then {x,y} is a 
back edge, which is forbidden in a DAG. 
 

  If y is processed, then it will have been so labeled 
before x. Therefore, x appears before y in the 
topological order, as it must. 
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TOPOLOGICAL SORTING IMPLEMENTATION 
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process_vertex_late(int v) 
{ 
 push(&sorted,v); 
} 
 
process_edge(int x, int y) 
{ 
 int class; /* edge class */ 
 class = edge_classification(x,y); 
 if (class == BACK) 
  printf("Warning: directed cycle found, not a DAG\n"); 
} 
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topsort(graph *g) 
{ 

int i;    /* counter */ 
init_stack(&sorted); 
 
for (i=1; i<=g->nvertices; i++) 

if (discovered[i] == FALSE) 
 dfs(g,i); 

 
print_stack(&sorted);  /* report topological order */ 

} 

We push each vertex on a stack as soon as we have evaluated all outgoing 
edges. The top vertex on the stack always has no incoming edges from any 
vertex on the stack. Repeatedly popping them off yields a topological ordering. 



APPLICATION: STRONGLY CONNECTED COMPONENTS 

 A directed graph is strongly connected iff there is a 
directed path between any two vertices. 

 The strongly connected components of a graph is a 
partition of the vertices into subsets (maximal) such 
that each subset is strongly connected. 
 
 
 
 

 Observe that no vertex can be in two maximal 
components,  so it is a partition. 
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 There is an elegant, linear time algorithm to find the 
strongly connected components of a directed graph 
using DFS.  
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BACKTRACKING AND DEPTH-FIRST SEARCH 

 Depth-first search uses essentially the same idea as 
backtracking. 

 Both involve exhaustively searching all possibilities by 
advancing if it is possible, and backing up as soon as 
there is no unexplored possibility for further 
advancement.  

 Both are most easily understood as recursive 
algorithms. 
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IMPLEMENTATION  
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strong_components(graph *g) 
{ 
      int i;   /* counter */ 

for (i=1; i<=(g->nvertices); i++) { 
low[i] = i; 
scc[i] = -1; 

} 
components_found = 0; 
init_stack(&active); 
initialize_search(&g); 
 
for (i=1; i<=(g->nvertices); i++) 

if (discovered[i] == FALSE) { 
dfs(g,i); 

} 
} 
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int low[MAXV+1]; /* oldest vertex surely in component of v */ 
int scc[MAXV+1]; /* strong component number for each vertex */ 
 
process_edge(int x, int y) 
{ 

int class; /* edge class */ 
class = edge_classification(x,y); 
if (class == BACK) { 

if (entry_time[y] < entry_time[ low[x] ] ) 
      low[x] = y; 

} 
if (class == CROSS) { 

if (scc[y] == -1) /* component not yet assigned */ 
if (entry_time[y] < entry_time[ low[x] ] ) 
 low[x] = y; 

} 
} 
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process_vertex_early(int v) { push(&active,v); }  
process_vertex_late(int v) 
{ 

if (low[v] == v)  /* edge (parent[v],v) cuts off scc */ 
 pop_component(v); 
 
if (entry_time[low[v]] < entry_time[low[parent[v]]]) 
 low[parent[v]] = low[v]; 

} 
pop_component(int v) 
{ 

int t;   /* vertex placeholder */ 
components_found = components_found + 1; 
scc[ v ] = components_found; 
while ((t = pop(&active)) != v) { 
 scc[ t ] = components_found; 
} 

} 
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