
LEC11: DEPTH-FIRST SEARCH (169-184)

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

PROBLEM OF THE DAY

 Prove that in a breadth-first search on a undirected
graph G, every edge in G is either a tree edge or a
cross edge, where a cross edge (x; y) is an edge where
x is neither is an ancestor or descendent of y.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

BFS VS DFS

 The difference between BFS and DFS results is in the
order in which they explore vertices.

 This order depends completely upon the container
data structure used to store the discovered but not
processed vertices (The Todo-list),

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

TODO LIST STRUCTURES

 Queue allows the BFS to explore the oldest
unexplored vertices first.
 Thus our explorations radiate out slowly from the starting

vertex.

 Stack allows the DFS to explore the vertices by
lurching along a path, visiting a new neighbor if one is
available, and backing up only when we are
surrounded by previously discovered vertices.
 Thus, our explorations quickly wander away from our

starting point.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

DEPTH-FIRST SEARCH

 DFS has a neat recursive implementation which
eliminates the need to explicitly use a stack.

 By maintaining a notion of traversal time for each
vertex.
 Our time clock ticks each time we enter or exit any vertex.
 Keep track of the entry and exit times for each vertex

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

DFS PSEUDO CODE

DFS(G, u)
 state[u] = “discovered”
 process vertex u if desired
 entry[u] = time /* time is global variable */
 time = time + 1
 for each v ∈ Adj[u] do
 process edge (u, v) if desired
 if state[v] = “undiscovered” then
 p[v] = u
 DFS(G, v)
 state[u] = “processed”
 exit[u] = time
 time = time + 1

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

IMPLEMENTATION

 The beauty of implementing dfs recursively is that
recursion eliminates the need to keep an explicit stack:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

dfs(graph *g, int v)
{
 edgenode *p; /* temporary pointer */
 int y; /* successor vertex */

 if (finished) return; /* allow for search termination */

 discovered[v] = TRUE;
 time = time + 1;
 entry_time[v] = time;

 process_vertex_early(v);

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

 p = g->edges[v];
 while (p != NULL) {
 y = p->y;
 if (discovered[y] == FALSE) {
 parent[y] = v;
 process_edge(v,y);
 dfs(g,y);
 }
 else if ((!processed[y]) || (g->directed))
 process_edge(v,y);
 if (finished) return;
 p = p->next;
 }
 process_vertex_late(v);
 time = time + 1;
 exit_time[v] = time;
 processed[v] = TRUE;
}

TREE EDGES AND BACK EDGES.

 In a DFS of an undirected graph, we assign a direction
to each edge, from the vertex which discover it:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

undirected graph
depth-first search tree

Tree edges

Back edges

EDGE CLASSIFICATION FOR DFS

 Every edge is either:

 On any particular DFS or BFS of a directed or
undirected graph, each edge gets classified as one of
the above.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

USEFUL PROPERTIES OF TIME INTERVALS

 Who is an ancestor?
 Suppose that x is an ancestor of y in the DFS tree.
 Time interval of y must be properly nested within ancestor x.

 we must enter x before y,
 we must exit y before we exit x

 How many descendants?
 Half the time difference between the exit and entry times for

v tells us how many descendants v has in the DFS tree.
 Clock ticks in entering & exiting (2 times)

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

SUMMARY OF DFS PROPERTIES

 Entry and Exit times in several applications of BFS,
 EX> topological sorting & biconnected/strongly-connected

components.

 DFS partitions the edges of an undirected graph into
exactly two classes: tree edges and back edges.
 Tree edges discover new vertices, and are those encoded in

the parent relation.
 Back edges are those whose other endpoint is an ancestor

of the vertex being expanded, so they point back into the
tree.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

APPLICATIONS OF DEPTH-FIRST SEARCH

 Application of DFS is surprisingly subtle, however
meaning that its correctness requires getting details
right.

 The correctness of a DFS-based algorithm depends
upon specifics of exactly when we process the edges
and vertices.
 We can process vertex v either before we have traversed any

of the outgoing edges from v (process_vertex_early()) or
 After we have finished processing all of them

(process_vertex_late()).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

PROCESSING UNDIRECTED GRAPHS (173)

 In undirected graphs, each edge (x, y) sits in the adjac
ency lists of vertex x and y.
 there are two potential times to process each edge (x, y), na

mely when exploring x and when exploring y.

 Edge-specific processing happened the first time and t
ake different action the second time we see an edge.
 EX> The labeling of edges (as tree edges or back edges) occ

urs during the first time the edge is explored

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

EDGE LABELING IN UNDIRECTED GRAPH

 How can we tell if we have previously traversed the
edge from y?
 If vertex y is undiscovered: (x, y) becomes a tree edge so this

must be the first time visiting the edge (x,y)
 If y has not been completely processed: we explored the

edge (y,x) when we explored y this must be the second time
visiting (x,y).

 If y is an ancestor of x thus in a discovered state: this must
be our first traversal unless y is the immediate ancestor of
x—i.e. , (y, x) is a tree edge.
 testing if y == parent[x].

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

DFS APPLICATION 1: FINDING CYCLES

 Back edges are the key to finding a cycle in an
undirected graph.

 Any back edge going from x to an ancestor y creates a
cycle with the path in the tree from y to x.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

process_edge(int x, int y)
{
 if (parent[x] != y) { /* found back edge! */
 printf("Cycle from %d to %d:",y,x);
 find_path(y,x,parent);
 printf("\n\n");
 finished = TRUE; /* so that we finish after first cycle */
 }
}

DFS APPLICATION 2: ARTICULATION VERTICES

 articulation vertex or cut-node : a single vertex whose
deletion disconnects a connected component of the
graph

 Any graph that contains an articulation vertex is
inherently fragile, because deleting that single vertex
causes a loss of connectivity between other nodes.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

FINDING ARTICULATION VERTICES

 Brute force method O(n(m+n)) :
 just delete each vertex to do a DFS or BFS on the remaining

graph to see if it is connected.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

 Better method O(n+m):
 In a DFS tree, a vertex v

(other than the root) is
an articulation vertex iff v
is not a leaf and some
subtree of v has no back
edge incident until a
proper ancestor of v.

DEPTH-FIRST SEARCH ON DIRECTED GRAPHS

 When traversing undirected graphs, every edge is
either in the depth-first search tree or a back edge to
an ancestor in the tree.
 Suppose we encountered a “forward edge” (x, y) directed

toward a descendant vertex. In this case, we would have
discovered (x, y) while exploring y, making it a back edge.

 Suppose we encounter a “cross edge” (x, y), linking two
unrelated vertices.

 For directed graphs, depth-first search labelings can
take all four labels

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

EDGE CLASSIFICATION IMPLEMENTATION

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

int edge_classification(int x, int y)
{
 if (parent[y] == x)
 return(TREE);
 if (discovered[y] && !processed[y])
 return(BACK);
 if (processed[y] && (entry time[y]<entry time[x]))
 return(FORWARD);
 if (processed[y] && (entry time[y]>entry time[x]))
 return(CROSS);
 printf(”Warning: unclassified edge (%d,%d)”,x,y);
}

APPLICATION : TOPOLOGICAL SORTING

 A directed acyclic graph (DAG) has no directed cycles.

 A topological sort of a graph is an ordering on the
vertices so that all edges go from left to right. DAGs
(and only DAGs) has at least one topological sort (here
G; A;B; C; F;E;D).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

25

APPLICATIONS OF TOPOLOGICAL SORTING

 Topological sorting is often useful in scheduling jobs in
their proper sequence.

 In general, we can use it to order things given
precedence constraints.

 Example: Dressing schedule from CLR.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

26

TOPOLOGICAL SORTING VIA DFS

 A directed graph is a DAG if and only if no back edges
are encountered during a depth-first search.

 Labeling each of the vertices in the reverse order that
they are marked processed finds a topological sort of
a DAG.

 Why?
 Consider what happens to each directed edge {x,y} as

we encounter it during the exploration of vertex x:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

28

CASE ANALYSIS

 If y is currently undiscovered, then we then start a
DFS of y before we can continue with x. Thus y is
marked processed before x is, and x appears before y
in the topological order, as it must.

 If y is discovered but not processed, then {x,y} is a
back edge, which is forbidden in a DAG.

 If y is processed, then it will have been so labeled
before x. Therefore, x appears before y in the
topological order, as it must.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

29

TOPOLOGICAL SORTING IMPLEMENTATION

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

30

process_vertex_late(int v)
{
 push(&sorted,v);
}

process_edge(int x, int y)
{
 int class; /* edge class */
 class = edge_classification(x,y);
 if (class == BACK)
 printf("Warning: directed cycle found, not a DAG\n");
}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

31

topsort(graph *g)
{

int i; /* counter */
init_stack(&sorted);

for (i=1; i<=g->nvertices; i++)

if (discovered[i] == FALSE)
 dfs(g,i);

print_stack(&sorted); /* report topological order */

}

We push each vertex on a stack as soon as we have evaluated all outgoing
edges. The top vertex on the stack always has no incoming edges from any
vertex on the stack. Repeatedly popping them off yields a topological ordering.

APPLICATION: STRONGLY CONNECTED COMPONENTS

 A directed graph is strongly connected iff there is a
directed path between any two vertices.

 The strongly connected components of a graph is a
partition of the vertices into subsets (maximal) such
that each subset is strongly connected.

 Observe that no vertex can be in two maximal
components, so it is a partition.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

32

 There is an elegant, linear time algorithm to find the
strongly connected components of a directed graph
using DFS.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

33

strongly-connected components associated DFS tree

BACKTRACKING AND DEPTH-FIRST SEARCH

 Depth-first search uses essentially the same idea as
backtracking.

 Both involve exhaustively searching all possibilities by
advancing if it is possible, and backing up as soon as
there is no unexplored possibility for further
advancement.

 Both are most easily understood as recursive
algorithms.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

34

IMPLEMENTATION

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

35

strong_components(graph *g)
{
 int i; /* counter */

for (i=1; i<=(g->nvertices); i++) {
low[i] = i;
scc[i] = -1;

}
components_found = 0;
init_stack(&active);
initialize_search(&g);

for (i=1; i<=(g->nvertices); i++)

if (discovered[i] == FALSE) {
dfs(g,i);

}
}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

36

int low[MAXV+1]; /* oldest vertex surely in component of v */
int scc[MAXV+1]; /* strong component number for each vertex */

process_edge(int x, int y)
{

int class; /* edge class */
class = edge_classification(x,y);
if (class == BACK) {

if (entry_time[y] < entry_time[low[x]])
 low[x] = y;

}
if (class == CROSS) {

if (scc[y] == -1) /* component not yet assigned */
if (entry_time[y] < entry_time[low[x]])
 low[x] = y;

}
}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

37

process_vertex_early(int v) { push(&active,v); }
process_vertex_late(int v)
{

if (low[v] == v) /* edge (parent[v],v) cuts off scc */
 pop_component(v);

if (entry_time[low[v]] < entry_time[low[parent[v]]])
 low[parent[v]] = low[v];

}
pop_component(int v)
{

int t; /* vertex placeholder */
components_found = components_found + 1;
scc[v] = components_found;
while ((t = pop(&active)) != v) {
 scc[t] = components_found;
}

}

	LEC11: Depth-First Search (169-184)
	Problem of the Day
	BFS vS DFS
	TODO list StructureS
	Depth-First Search
	DFS Pseudo Code
	Implementation
	Slide Number 8
	tree edges and back edges.
	Edge Classification for DFS
	Useful properties of time intervals
	Summary of dfs properties
	Applications of Depth-First Search
	Processing Undirected Graphs (173)
	Edge labeling in Undirected Graph
	DFS Application 1: Finding Cycles
	DFS Application 2: Articulation Vertices
	Finding Articulation vertices
	Depth-First Search on Directed Graphs
	Edge Classification Implementation
	Application : Topological Sorting
	Applications of Topological Sorting
	Topological Sorting via DFS
	Case Analysis
	Topological Sorting Implementation
	Slide Number 31
	Application: Strongly Connected Components
	Slide Number 33
	Backtracking and Depth-First Search
	Implementation
	Slide Number 36
	Slide Number 37

