
LEC11: BREADTH-FIRST SEARCH 

CSE 373 Analysis of Algorithms  
Fall 2016 
Instructor: Prof. Sael Lee 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

1 

Lecture slide courtesy of Prof. Steven Skiena  

Lecture slide courtesy of Prof. 
Steven Skiena  



TRAVERSING A GRAPH 

 One of the most fundamental graph problems is to 
traverse every edge and vertex in a graph. 
 E.g. printing or copying graphs, and converting between 

alternate representations 

 For efficiency, we must make sure we don’t visit each 
edge repeatedly. 

 For correctness, we must do the traversal in a 
systematic way so that we don’t miss anything. 

 Since a maze is just a graph, such an algorithm must 
be powerful enough to enable us to get out of an 
arbitrary maze. 
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MARKING VERTICES 

 The key idea is that we must mark each vertex when 
we first visit it, and keep track of what have not yet 
completely explored. 

 Each vertex will always be in one of the following three 
states: 
 Undiscovered – the vertex in its initial, virgin state. 
 Discovered – the vertex after we have encountered it, but 

before we have checked out all its incident edges. 
 Processed – the vertex after we have visited all its incident 

edges. 
 Obviously, a vertex cannot be processed before we discover it, so 

over the course of the traversal the state of each vertex progresses 
from undiscovered -> discovered -> processed. 
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TO DO LIST 

 We must also maintain a structure containing all the 
vertices we have discovered but not yet completely 
processed. 

 Initially, only a single start vertex is considered to be 
discovered. 

 To completely process a vertex, we look at each edge 
going out of it.  

 For each edge which goes to an undiscovered vertex, 
we mark it discovered and add it to the list of work to 
do. (do nothing to vertices already processed & 
vertices discovered but not processed.) 
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CORRECTNESS OF GRAPH TRAVERSAL 

 Each undirected edge will be considered exactly twice, 
 once when each of its endpoints is explored.  

 Directed edges will be considered only once,  
 when exploring the source vertex.  

 Every edge and vertex in the connected component 
must eventually be visited. 
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 Suppose that there exists a vertex 
u that remains unvisited, whose 
neighbor v was visited.  

 This neighbor v will eventually be 
explored, after which we will 
certainly visit u.  

 Thus, we must find everything that 
is there to be found. 

u 
 v  



BREADTH-FIRST TRAVERSAL 

 The basic operation in most graph algorithms is 
completely and systematically traversing the graph.  

 We want to visit every vertex and every edge exactly 
once in some well-defined order. 

 Breadth-first search is appropriate if we are interested 
in shortest paths on unweighted graphs. 
 In a breadth-first search of an undirected graph, we assign a 

direction to each edge, from the discoverer u to the 
discovered v. We thus denote u to be the parent of v.  
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BFS(G, s) 
 for each vertex u ∈ V [G] − {s} do 
  state[u] = “undiscovered” 
  p[u] = nil, i.e. no parent is in the BFS tree 
 state[s] = “discovered” 
 p[s] = NULL 
 Q = {s} 
 while Q = ∅ do 
  u = dequeue[Q] 
  process vertex u as desired 
  for each v ∈ Adj[u] do 
   process edge (u, v) as desired 
   if state[v] = “undiscovered” then 
    state[v] = “discovered” 
    p[v] = u 
    enqueue[Q, v] 
  state[u] = “processed” 
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DATA STRUCTURES FOR BFS 

 We use two Boolean arrays to maintain our knowledge 
about each vertex in the graph. 
 A vertex is discovered the first time we visit it. 
 A vertex is considered processed after we have traversed all 

outgoing edges from it. 

 Once a vertex is discovered, it is placed on a FIFO 
queue. 
 Thus the oldest vertices / closest to the root are expanded 

first. 
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BFS IMPLEMENTATION - INITIALIZING BFS 

Global Variables:  
 bool processed[MAXV+1]; 
 bool discovered[MAXV+1]; 
 int parent[MAXV+1]; 

 
Each vertex is initialized as undiscovered: 
 
initialize search(graph *g) 
{ 
 int i; 
 for (i=1; i<=g->nvertices; i++) { 
  processed[i] = discovered[i] = FALSE; 
  parent[i] = -1; 
 } 
} 
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BFS IMPLEMENTATION 

bfs(graph *g, int start) 
{ 
    queue q; /* queue of nodes to visit */ 
    int v;    /* current vertex */ 
    int y;       /* successor vertex */ 
    edgenode *p;     /* temporary pointer */ 
 
    init queue(&q); 
    enqueue(&q,start); 
    discovered[start] = TRUE; 
 
      

while (empty_queue(&q) == FALSE) { 
        v = dequeue(&q); 
        process_vertex_early(v); 
        processed[v] = TRUE; 
        p = g->edges[v]; 
        while (p ! = NULL) { 
 y = p->y; 
 if ((processed[y] == FALSE||g-->directed) 
       process_edge(v,y); 
 if (discovered[y] == FALSE) { 
                      enqueue(&q,y); 
       discovered[y] = TRUE; 
       parent[y] = v; 
 } 
 p = p->next; 
          } 
          process_vertex_late(v);  
     } 
} 
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Once a vertex is discovered, it is placed on a queue 



EXPLOITING TRAVERSAL 

 The exact behavior of bfs depends upon the functions 
process vertex early(), process vertex late(), and 
process edge().By setting the functions to 

 By setting the active functions to 
 process_vertex(int v) { 
  printf("processed vertex %d\n",v); 
 }  
 process_edge(int x, int y) {  
  printf(”processed edge (%d,%d) ”,x,y); 
 } 

 we print each vertex and edge exactly once. 
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FINDING PATHS 

 The parent array set within bfs() is very useful for 
finding interesting paths through a graph. 

 The vertex which discovered vertex i is defined as 
parent[i]. 

 The parent relation defines a tree of discovery with 
the initial search node as the root of the tree. 
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SHORTEST PATHS AND BFS 

 In BFS vertices are discovered in order of increasing 
distance from the root, so this tree has a very 
important property. 

 The unique tree path from the root to any node 𝑥 ∈ 𝑉 
uses the smallest number of edges (or equivalently, 
intermediate nodes) possible on any root-to-x path in 
the graph. 
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RECURSION AND PATH FINDING 

 We can reconstruct this path by following the chain of 
ancestors from x to the root.  

 Note that we have to work backward.  
 We cannot find the path from the root to x, since that does 

not follow the direction of the parent pointers. 
 Instead, we must find the path from x to the root. 
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FINDING PATH EXAMPLE  
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find path(int start, int end, int parents[]) 
{ 
  if ((start == end) || (end == -1)) 
   printf(”%d”,start); 
  else { 
   find_path(start,parents[end],parents); 
   printf(” %d”,end); 
  } 
} 

For the shortest path from 1 to 4, upper-right corner, this parent 
relation yields the path {1, 5, 4}. 



BFS APPLICATION 1: CONNECTED COMPONENTS 

 A graph is connected if there is a path between any tw
o vertices. 

 The connected components of an undirected graph is 
a maximal set of vertices such that there is a path 
between every pair of vertices. 

 The components are separate “pieces” of the graph s
uch that there is no connection between the pieces 
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 Many seemingly complicated problems reduce to 
finding or counting connected components.  
 EX> Testing whether a puzzle such as Rubik’s cube or the 

15-puzzle can be solved from any position is really asking 
whether the graph of legal configurations is connected. 

 Connected components can be found using BFS 
 Anything we discover during a BFS must be part of the same 

connected component.  
 Repeat the search from any undiscovered vertex (if one 

exists) to define the next component, until all vertices have 
been found 
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IMPLEMENTATION 
connected_components(graph *g) 
{ 
 int c =0;  /* component number */ 
 int i;   /* counter */ 
  
 initialize_search(g); 
 for (i=1; i<=g->nvertices; i++){ 
  if (discovered[i] == FALSE) { 
   c = c+1; 
   printf(”Component %d:”,c); 
   bfs(g,i); 
   printf("\n"); 
  } 
 } 
} 
 
process_vertex_early(int v) { printf(" %d",v); } 
 
process_edge(int x, int y) {   } 
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O(n + m) 



BFS APPLICATION 2: TWO-COLORING GRAPHS 

 The vertex coloring problem seeks to assign a label (or 
color) to each vertex of a graph such that no edge 
links any two vertices of the same color. 

 The goal is to use as few colors as possible 
 Vertex coloring problems often arise in scheduling      

applications 
 Ex> register allocation in compilers 
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 A graph is bipartite if it can be colored without 
conflicts while using only two colors.  

 Bipartite graphs are important because they arise 
naturally in many applications. 
 For example, consider the “married-to” graph in a hetero 

sexual world. Men have marry only with women, and vice 
versa. 

 Thus gender defines a legal two-coloring. 
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 Solution Scratch (Augmented BFS):  
 Whenever we discover a new vertex, color it the opposite of i

ts parent. 
 Check for conflict:  

 We check whether any nondiscovery edge links two vertices of the sa
me color.  

 We will have constructed a proper two-coloring whenever we 
terminate without conflict 
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FINDING A TWO-COLORING 

 
twocolor(graph *g) 
{ 
 int i;   /* counter */ 
 for (i=1; i<=(g->nvertices); i++) 
  color[i] = UNCOLORED; 
 bipartite = TRUE; 
 initialize search(&g); 
 for (i=1; i<=(g->nvertices); i++){ 
  if (discovered[i] == FALSE) f 
   color[i] = WHITE; 
   bfs(g,i); 
  } 
 } 
} 
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process_edge(int x, int y) 
{ 
 if (color[x] == color[y]) { 
  bipartite = FALSE; 
  printf(”Warning: graph not bipartite, due to (%d,%d)”,x,y); 
 } 
 color[y] = complement(color[x]); 
} 
 
complement(int color) 
{ 
 if (color == WHITE) return(BLACK); 
 if (color == BLACK) return(WHITE); 
 return(UNCOLORED); 
} 
 

 We can assign the first vertex in any connected component to 
be whatever color we wish. 
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