
LEC11: BREADTH-FIRST SEARCH

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

TRAVERSING A GRAPH

 One of the most fundamental graph problems is to
traverse every edge and vertex in a graph.
 E.g. printing or copying graphs, and converting between

alternate representations

 For efficiency, we must make sure we don’t visit each
edge repeatedly.

 For correctness, we must do the traversal in a
systematic way so that we don’t miss anything.

 Since a maze is just a graph, such an algorithm must
be powerful enough to enable us to get out of an
arbitrary maze.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

MARKING VERTICES

 The key idea is that we must mark each vertex when
we first visit it, and keep track of what have not yet
completely explored.

 Each vertex will always be in one of the following three
states:
 Undiscovered – the vertex in its initial, virgin state.
 Discovered – the vertex after we have encountered it, but

before we have checked out all its incident edges.
 Processed – the vertex after we have visited all its incident

edges.
 Obviously, a vertex cannot be processed before we discover it, so

over the course of the traversal the state of each vertex progresses
from undiscovered -> discovered -> processed.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

TO DO LIST

 We must also maintain a structure containing all the
vertices we have discovered but not yet completely
processed.

 Initially, only a single start vertex is considered to be
discovered.

 To completely process a vertex, we look at each edge
going out of it.

 For each edge which goes to an undiscovered vertex,
we mark it discovered and add it to the list of work to
do. (do nothing to vertices already processed &
vertices discovered but not processed.)

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

CORRECTNESS OF GRAPH TRAVERSAL

 Each undirected edge will be considered exactly twice,
 once when each of its endpoints is explored.

 Directed edges will be considered only once,
 when exploring the source vertex.

 Every edge and vertex in the connected component
must eventually be visited.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

 Suppose that there exists a vertex
u that remains unvisited, whose
neighbor v was visited.

 This neighbor v will eventually be
explored, after which we will
certainly visit u.

 Thus, we must find everything that
is there to be found.

u
 v

BREADTH-FIRST TRAVERSAL

 The basic operation in most graph algorithms is
completely and systematically traversing the graph.

 We want to visit every vertex and every edge exactly
once in some well-defined order.

 Breadth-first search is appropriate if we are interested
in shortest paths on unweighted graphs.
 In a breadth-first search of an undirected graph, we assign a

direction to each edge, from the discoverer u to the
discovered v. We thus denote u to be the parent of v.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

BFS(G, s)
 for each vertex u ∈ V [G] − {s} do
 state[u] = “undiscovered”
 p[u] = nil, i.e. no parent is in the BFS tree
 state[s] = “discovered”
 p[s] = NULL
 Q = {s}
 while Q = ∅ do
 u = dequeue[Q]
 process vertex u as desired
 for each v ∈ Adj[u] do
 process edge (u, v) as desired
 if state[v] = “undiscovered” then
 state[v] = “discovered”
 p[v] = u
 enqueue[Q, v]
 state[u] = “processed”

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

DATA STRUCTURES FOR BFS

 We use two Boolean arrays to maintain our knowledge
about each vertex in the graph.
 A vertex is discovered the first time we visit it.
 A vertex is considered processed after we have traversed all

outgoing edges from it.

 Once a vertex is discovered, it is placed on a FIFO
queue.
 Thus the oldest vertices / closest to the root are expanded

first.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

BFS IMPLEMENTATION - INITIALIZING BFS

Global Variables:
 bool processed[MAXV+1];
 bool discovered[MAXV+1];
 int parent[MAXV+1];

Each vertex is initialized as undiscovered:

initialize search(graph *g)
{
 int i;
 for (i=1; i<=g->nvertices; i++) {
 processed[i] = discovered[i] = FALSE;
 parent[i] = -1;
 }
}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

BFS IMPLEMENTATION

bfs(graph *g, int start)
{
 queue q; /* queue of nodes to visit */
 int v; /* current vertex */
 int y; /* successor vertex */
 edgenode *p; /* temporary pointer */

 init queue(&q);
 enqueue(&q,start);
 discovered[start] = TRUE;

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = TRUE;
 p = g->edges[v];
 while (p ! = NULL) {
 y = p->y;
 if ((processed[y] == FALSE||g-->directed)
 process_edge(v,y);
 if (discovered[y] == FALSE) {
 enqueue(&q,y);
 discovered[y] = TRUE;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

Once a vertex is discovered, it is placed on a queue

EXPLOITING TRAVERSAL

 The exact behavior of bfs depends upon the functions
process vertex early(), process vertex late(), and
process edge().By setting the functions to

 By setting the active functions to
 process_vertex(int v) {
 printf("processed vertex %d\n",v);
 }
 process_edge(int x, int y) {
 printf(”processed edge (%d,%d) ”,x,y);
 }

 we print each vertex and edge exactly once.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

FINDING PATHS

 The parent array set within bfs() is very useful for
finding interesting paths through a graph.

 The vertex which discovered vertex i is defined as
parent[i].

 The parent relation defines a tree of discovery with
the initial search node as the root of the tree.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

SHORTEST PATHS AND BFS

 In BFS vertices are discovered in order of increasing
distance from the root, so this tree has a very
important property.

 The unique tree path from the root to any node 𝑥 ∈ 𝑉
uses the smallest number of edges (or equivalently,
intermediate nodes) possible on any root-to-x path in
the graph.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

RECURSION AND PATH FINDING

 We can reconstruct this path by following the chain of
ancestors from x to the root.

 Note that we have to work backward.
 We cannot find the path from the root to x, since that does

not follow the direction of the parent pointers.
 Instead, we must find the path from x to the root.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

FINDING PATH EXAMPLE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

find path(int start, int end, int parents[])
{
 if ((start == end) || (end == -1))
 printf(”%d”,start);
 else {
 find_path(start,parents[end],parents);
 printf(” %d”,end);
 }
}

For the shortest path from 1 to 4, upper-right corner, this parent
relation yields the path {1, 5, 4}.

BFS APPLICATION 1: CONNECTED COMPONENTS

 A graph is connected if there is a path between any tw
o vertices.

 The connected components of an undirected graph is
a maximal set of vertices such that there is a path
between every pair of vertices.

 The components are separate “pieces” of the graph s
uch that there is no connection between the pieces

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

 Many seemingly complicated problems reduce to
finding or counting connected components.
 EX> Testing whether a puzzle such as Rubik’s cube or the

15-puzzle can be solved from any position is really asking
whether the graph of legal configurations is connected.

 Connected components can be found using BFS
 Anything we discover during a BFS must be part of the same

connected component.
 Repeat the search from any undiscovered vertex (if one

exists) to define the next component, until all vertices have
been found

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

IMPLEMENTATION
connected_components(graph *g)
{
 int c =0; /* component number */
 int i; /* counter */

 initialize_search(g);
 for (i=1; i<=g->nvertices; i++){
 if (discovered[i] == FALSE) {
 c = c+1;
 printf(”Component %d:”,c);
 bfs(g,i);
 printf("\n");
 }
 }
}

process_vertex_early(int v) { printf(" %d",v); }

process_edge(int x, int y) { }

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

O(n + m)

BFS APPLICATION 2: TWO-COLORING GRAPHS

 The vertex coloring problem seeks to assign a label (or
color) to each vertex of a graph such that no edge
links any two vertices of the same color.

 The goal is to use as few colors as possible
 Vertex coloring problems often arise in scheduling

applications
 Ex> register allocation in compilers

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

 A graph is bipartite if it can be colored without
conflicts while using only two colors.

 Bipartite graphs are important because they arise
naturally in many applications.
 For example, consider the “married-to” graph in a hetero

sexual world. Men have marry only with women, and vice
versa.

 Thus gender defines a legal two-coloring.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

 Solution Scratch (Augmented BFS):
 Whenever we discover a new vertex, color it the opposite of i

ts parent.
 Check for conflict:

 We check whether any nondiscovery edge links two vertices of the sa
me color.

 We will have constructed a proper two-coloring whenever we
terminate without conflict

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

FINDING A TWO-COLORING

twocolor(graph *g)
{
 int i; /* counter */
 for (i=1; i<=(g->nvertices); i++)
 color[i] = UNCOLORED;
 bipartite = TRUE;
 initialize search(&g);
 for (i=1; i<=(g->nvertices); i++){
 if (discovered[i] == FALSE) f
 color[i] = WHITE;
 bfs(g,i);
 }
 }
}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

process_edge(int x, int y)
{
 if (color[x] == color[y]) {
 bipartite = FALSE;
 printf(”Warning: graph not bipartite, due to (%d,%d)”,x,y);
 }
 color[y] = complement(color[x]);
}

complement(int color)
{
 if (color == WHITE) return(BLACK);
 if (color == BLACK) return(WHITE);
 return(UNCOLORED);
}

 We can assign the first vertex in any connected component to
be whatever color we wish.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

	LEC11: Breadth-First Search
	Traversing a Graph
	Marking Vertices
	To Do List
	Correctness of Graph Traversal
	Breadth-First Traversal
	Slide Number 7
	Data Structures for BFS
	BFS Implementation - Initializing BFS
	BFS Implementation
	Exploiting Traversal
	Finding Paths
	Shortest Paths and BFS
	Recursion and Path Finding
	Finding Path Example
	BFS Application 1: Connected Components
	Slide Number 18
	Implementation
	BFS Application 2: Two-Coloring Graphs
	Slide Number 21
	Slide Number 22
	Finding a Two-Coloring
	Slide Number 24

