@ Ko rea q\& Stony Brook
- University

CSE 373 Analysis of Algorithms
Fall 2016

Instructor: Prof. Sael Lee

LEC11: BREADTH-FIRST SEARCH

Lecture slide courtesy of Prof. Steven Skiena



TRAVERSING A GRAPH

One of the most fundamental graph problems is to
traverse every edge and vertex in a graph.

E.g. printing or copying graphs, and converting between
alternate representations

For efficiency, we must make sure we don't visit each
edge repeatedly.

For correctness, we must do the traversal in a
systematic way so that we don’t miss anything.

Since a maze is just a graph, such an algorithm must
be powerful enough to enable us to get out of an
arbitrary maze.




MARKING VERTICES

The key idea is that we must mark each vertex when
we first visit it, and keep track of what have not yet
completely explored.

Each vertex will always be in one of the following three
states:

Undiscovered - the vertex in its initial, virgin state.

Discovered - the vertex after we have encountered it, but
before we have checked out all its incident edges.

Processed - the vertex after we have visited all its incident
edges.
Obviously, a vertex cannot be processed before we discover it, so

over the course of the traversal the state of each vertex progresses
from undiscovered -> discovered -> processed.



TO DO LIST

We must also maintain a structure containing all the
vertices we have discovered but not yet completely
processed.

Initially, only a single start vertex is considered to be
discovered.

To completely process a vertex, we look at each edge
going out of it.

For each edge which goes to an undiscovered vertex,
we mark it discovered and add it to the list of work to
do. (do nothing to vertices already processed &
vertices discovered but not processed.)



CORRECTNESS OF GRAPH TRAVERSAL

Each undirected edge will be considered exactly twice,
once when each of its endpoints is explored.

Directed edges will be considered only once,
when exploring the source vertex.

Every edge and vertex in the connected component
must eventually be visited.

Suppose that there exists a vertex e
u that remains unvisited, whose u O~
neighbor v was visited. [0 v
This neighbor v will eventually be -

explored, after which we will |
certainly visit u.

Thus, we must find everything that — _,j
is there to be found.



BREADTH-FIRST TRAVERSAL

The basic operation in most graph algorithms is
completely and systematically traversing the graph.

We want to visit every vertex and every edge exactly
once in some well-defined order.

Breadth-first search is appropriate if we are interested
iIn shortest paths on unweighted graphs.
In a breadth-first search of an undirected graph, we assign a

direction to each edge, from the discoverer u to the
discovered v. We thus denote u to be the parent of v.




BFS(G, S)
for each vertex u € V[G] — {s} do
state[u] = “undiscovered”
p[u] = nil, i.e. no parent is in the BFS tree

state[s] = “discovered” 2 3 1)

pls] = NULL . ‘ --‘-- 5 /{ ‘51?\
Q=1{s] \ o J/ w
while Q = gdo & : 3r—==4)

u = dequeue[Q]
process vertex u as desired
for each v € Adj[u] do
process edge (u, v) as desired
if state[v] = “undiscovered” then
state[v] = “discovered”
plvl=u
enqueuelQ, v]
state[u] = “processed”



DATA STRUCTURES FOR BFS

We use two Boolean arrays to maintain our knowledge
about each vertex in the graph.

A vertex is discovered the first time we visit it.

A vertex is considered processed after we have traversed all
outgoing edges from it.
Once a vertex is discovered, it is placed on a FIF
gueue.

Thus the oldest vertices / closest to the root are expanded
first.




BFS IMPLEMENTATION - INITIALIZING BFS

Global Variables:
bool processed[MAXV+1];
bool discovered[MAXV+1];
int parent[MAXV+1];

Each vertex is initialized as undiscovered:

initialize search(graph *g)
{
int i;
for (i=1; i<=g->nvertices; i++) {
processed[i] = discovered[i] = FALSE;
parent[i] = -1;



{

BFS IMPLEMENTATION

Once a vertex is discovered, it is placed on a queue
bfs(graph *g, int start)

queue q; /* queue of nodes to visit */
intv; /* current vertex */

inty; /* successor vertex */
edgenode *p; /* temporary pointer */

init queue(&q);
enqueue(&q,start);
discovered|start] = TRUE;

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = TRUE;
p = g->edges|[v];
while (p ! = NULL) {
Al g
if ((processed[y] == FALSE| | g->directed)
process_edge(v,y);
if (discovered[y] == FALSE) {
enqueue(&q,y);
discovered|[y] = TRUE;
parent[y] = v;
}
p = p->next;

}

process_vertex_late(v);



EXPLOITING TRAVERSAL

The exact behavior of bfs depends upon the functions
process vertex early(), process vertex late(), and

process edge().By setting the functions to
By setting the active functions to
process_vertex(int v) {
printf("processed vertex %d\n",v);
}
process_edge(int x, inty) {
printf("processed edge (%d,%d) ”,X,y);
}

we print each vertex and edge exactly once.



FINDING PATHS

The parent array set within bfs() is very useful for
finding interesting paths through a graph.

The vertex which discovered vertex i is defined as
parent]i].

The parent relation defines a tree of discovery with
the initial search node as the root of the tree.



SHORTEST PATHS AND BFS

In BFS vertices are discovered in order of increasing
distance from the root, so this tree has a very

Important property.
The unique tree path from the root to any node x € V

uses the smallest number of edges (or equivalently,
Intermediate nodes) possible on any root-to-x path in

the graph.



RECURSION AND PATH FINDING

We can reconstruct this path by following the chain of
ancestors from x to the root.

Note that we have to work backward.

We cannot find the path from the root to X, since that does
not follow the direction of the parent pointers.

Instead, we must find the path from x to the root.



FINDING PATH EXAMPLE

find path(int start, int end, int parents[])

{
if ((start ==end) || (end ==-1))
printf("%d”,start);
else {
find_path(start,parents[end],parents);
printf(” %d”,end);
}
}

vertex |

1 2
Y
4 = © parent | -1 1 2

G

For the shortest path from 1 to 4, upper-right corner, this parent
relation yields the path {1, 5, 4}.



BFS APPLICATION 1: CONNECTED COMPONENTS

A graph is connected if there is a path between any tw
0 vertices.

The connected components of an undirected graph is
a maximal set of vertices such that there is a path
between every pair of vertices.

The components are separate “pieces” of the graph s
uch that there is no connection between the pieces



Many seemingly complicated problems reduce to
finding or counting connected components.
EX> Testing whether a puzzle such as Rubik’s cube or the

15-puzzle can be solved from any position is really asking
whether the graph of legal configurations is connected.

Connected components can be found using BFS

Anything we discover during a BFS must be part of the same
connected component.

Repeat the search from any undiscovered vertex (if one

exists) to define the next component, until all vertices have
been found



IMPLEMENTATION

connected_components(graph *g)

{

int ¢ =0; /* component number */
Int I; /* counter */

initialize_search(g);
for (i=1; i<=g->nvertices; i++){
if (discovered|[i] == FALSE) {
c =ct+1;
printf("Component %d:”,c);
bfs(g,i);
printf("\n");

}
process_vertex_early(int v) { printf(" %d",v); } O(n + m)

process_edge(int x, inty) { }



BFS APPLICATION 2: TWO-COLORING GRAPHS

The vertex coloring problem seeks to assign a label (or
color) to each vertex of a graph such that no edge
links any two vertices of the same color.

The goal is to use as few colors as possible

Vertex coloring problems often arise in scheduling
applications
Ex> register allocation in compilers




A graph is bipartiteif it can be colored without
conflicts while using only two colors.

Bipartite graphs are important because they arise
naturally in many applications.

For example, consider the “married-to” graph in a hetero

sexual world. Men have marry only with women, and vice
versa.

Thus gender defines a legal two-coloring.



Solution Scratch (Augmented BFS):

Whenever we discover a new vertex, color it the opposite of i
ts parent.

Check for conflict:

We check whether any nondiscovery edge links two vertices of the sa
me color.

We will have constructed a proper two-coloring whenever we
terminate without conflict



FINDING A TWO-COLORING

twocolor(graph *g)
{
int i; /* counter */
for (i=1; i<=(g->nvertices); i++)
color[i] = UNCOLORED;
bipartite = TRUE;
initialize search(&g);
for (i=1; i<=(g->nvertices); i++){
if (discovered[i] == FALSE) f
color[i] = WHITE;
bfs(g,i);



process_edge(int x, int y)

{
if (color[x] == color[y]) {
bipartite = FALSE;
printf("Warning: graph not bipartite, due to (%d,%d)",x,y);
color[y] = complement(color[x]);
}
complement(int color)
{
if (color == WHITE) return(BLACK);
if (color == BLACK) return(WHITE);
return(UNCOLORED);
}

We can assign the first vertex in any connected component to
be whatever color we wish.



	LEC11: Breadth-First Search
	Traversing a Graph
	Marking Vertices
	To Do List
	Correctness of Graph Traversal
	Breadth-First Traversal
	Slide Number 7
	Data Structures for BFS
	BFS Implementation - Initializing BFS
	BFS Implementation
	Exploiting Traversal
	Finding Paths
	Shortest Paths and BFS
	Recursion and Path Finding
	Finding Path Example 
	BFS Application 1: Connected Components
	Slide Number 18
	Implementation
	BFS Application 2: Two-Coloring Graphs
	Slide Number 21
	Slide Number 22
	Finding a Two-Coloring
	Slide Number 24

