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TRAVERSING A GRAPH 

 One of the most fundamental graph problems is to 
traverse every edge and vertex in a graph. 
 E.g. printing or copying graphs, and converting between 

alternate representations 

 For efficiency, we must make sure we don’t visit each 
edge repeatedly. 

 For correctness, we must do the traversal in a 
systematic way so that we don’t miss anything. 

 Since a maze is just a graph, such an algorithm must 
be powerful enough to enable us to get out of an 
arbitrary maze. 
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MARKING VERTICES 

 The key idea is that we must mark each vertex when 
we first visit it, and keep track of what have not yet 
completely explored. 

 Each vertex will always be in one of the following three 
states: 
 Undiscovered – the vertex in its initial, virgin state. 
 Discovered – the vertex after we have encountered it, but 

before we have checked out all its incident edges. 
 Processed – the vertex after we have visited all its incident 

edges. 
 Obviously, a vertex cannot be processed before we discover it, so 

over the course of the traversal the state of each vertex progresses 
from undiscovered -> discovered -> processed. 
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TO DO LIST 

 We must also maintain a structure containing all the 
vertices we have discovered but not yet completely 
processed. 

 Initially, only a single start vertex is considered to be 
discovered. 

 To completely process a vertex, we look at each edge 
going out of it.  

 For each edge which goes to an undiscovered vertex, 
we mark it discovered and add it to the list of work to 
do. (do nothing to vertices already processed & 
vertices discovered but not processed.) 
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CORRECTNESS OF GRAPH TRAVERSAL 

 Each undirected edge will be considered exactly twice, 
 once when each of its endpoints is explored.  

 Directed edges will be considered only once,  
 when exploring the source vertex.  

 Every edge and vertex in the connected component 
must eventually be visited. 
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 Suppose that there exists a vertex 
u that remains unvisited, whose 
neighbor v was visited.  

 This neighbor v will eventually be 
explored, after which we will 
certainly visit u.  

 Thus, we must find everything that 
is there to be found. 

u 
 v  



BREADTH-FIRST TRAVERSAL 

 The basic operation in most graph algorithms is 
completely and systematically traversing the graph.  

 We want to visit every vertex and every edge exactly 
once in some well-defined order. 

 Breadth-first search is appropriate if we are interested 
in shortest paths on unweighted graphs. 
 In a breadth-first search of an undirected graph, we assign a 

direction to each edge, from the discoverer u to the 
discovered v. We thus denote u to be the parent of v.  
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BFS(G, s) 
 for each vertex u ∈ V [G] − {s} do 
  state[u] = “undiscovered” 
  p[u] = nil, i.e. no parent is in the BFS tree 
 state[s] = “discovered” 
 p[s] = NULL 
 Q = {s} 
 while Q = ∅ do 
  u = dequeue[Q] 
  process vertex u as desired 
  for each v ∈ Adj[u] do 
   process edge (u, v) as desired 
   if state[v] = “undiscovered” then 
    state[v] = “discovered” 
    p[v] = u 
    enqueue[Q, v] 
  state[u] = “processed” 
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DATA STRUCTURES FOR BFS 

 We use two Boolean arrays to maintain our knowledge 
about each vertex in the graph. 
 A vertex is discovered the first time we visit it. 
 A vertex is considered processed after we have traversed all 

outgoing edges from it. 

 Once a vertex is discovered, it is placed on a FIFO 
queue. 
 Thus the oldest vertices / closest to the root are expanded 

first. 
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BFS IMPLEMENTATION - INITIALIZING BFS 

Global Variables:  
 bool processed[MAXV+1]; 
 bool discovered[MAXV+1]; 
 int parent[MAXV+1]; 

 
Each vertex is initialized as undiscovered: 
 
initialize search(graph *g) 
{ 
 int i; 
 for (i=1; i<=g->nvertices; i++) { 
  processed[i] = discovered[i] = FALSE; 
  parent[i] = -1; 
 } 
} 
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BFS IMPLEMENTATION 

bfs(graph *g, int start) 
{ 
    queue q; /* queue of nodes to visit */ 
    int v;    /* current vertex */ 
    int y;       /* successor vertex */ 
    edgenode *p;     /* temporary pointer */ 
 
    init queue(&q); 
    enqueue(&q,start); 
    discovered[start] = TRUE; 
 
      

while (empty_queue(&q) == FALSE) { 
        v = dequeue(&q); 
        process_vertex_early(v); 
        processed[v] = TRUE; 
        p = g->edges[v]; 
        while (p ! = NULL) { 
 y = p->y; 
 if ((processed[y] == FALSE||g-->directed) 
       process_edge(v,y); 
 if (discovered[y] == FALSE) { 
                      enqueue(&q,y); 
       discovered[y] = TRUE; 
       parent[y] = v; 
 } 
 p = p->next; 
          } 
          process_vertex_late(v);  
     } 
} 
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Once a vertex is discovered, it is placed on a queue 



EXPLOITING TRAVERSAL 

 The exact behavior of bfs depends upon the functions 
process vertex early(), process vertex late(), and 
process edge().By setting the functions to 

 By setting the active functions to 
 process_vertex(int v) { 
  printf("processed vertex %d\n",v); 
 }  
 process_edge(int x, int y) {  
  printf(”processed edge (%d,%d) ”,x,y); 
 } 

 we print each vertex and edge exactly once. 
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FINDING PATHS 

 The parent array set within bfs() is very useful for 
finding interesting paths through a graph. 

 The vertex which discovered vertex i is defined as 
parent[i]. 

 The parent relation defines a tree of discovery with 
the initial search node as the root of the tree. 
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SHORTEST PATHS AND BFS 

 In BFS vertices are discovered in order of increasing 
distance from the root, so this tree has a very 
important property. 

 The unique tree path from the root to any node 𝑥 ∈ 𝑉 
uses the smallest number of edges (or equivalently, 
intermediate nodes) possible on any root-to-x path in 
the graph. 
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RECURSION AND PATH FINDING 

 We can reconstruct this path by following the chain of 
ancestors from x to the root.  

 Note that we have to work backward.  
 We cannot find the path from the root to x, since that does 

not follow the direction of the parent pointers. 
 Instead, we must find the path from x to the root. 
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FINDING PATH EXAMPLE  
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find path(int start, int end, int parents[]) 
{ 
  if ((start == end) || (end == -1)) 
   printf(”%d”,start); 
  else { 
   find_path(start,parents[end],parents); 
   printf(” %d”,end); 
  } 
} 

For the shortest path from 1 to 4, upper-right corner, this parent 
relation yields the path {1, 5, 4}. 



BFS APPLICATION 1: CONNECTED COMPONENTS 

 A graph is connected if there is a path between any tw
o vertices. 

 The connected components of an undirected graph is 
a maximal set of vertices such that there is a path 
between every pair of vertices. 

 The components are separate “pieces” of the graph s
uch that there is no connection between the pieces 
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 Many seemingly complicated problems reduce to 
finding or counting connected components.  
 EX> Testing whether a puzzle such as Rubik’s cube or the 

15-puzzle can be solved from any position is really asking 
whether the graph of legal configurations is connected. 

 Connected components can be found using BFS 
 Anything we discover during a BFS must be part of the same 

connected component.  
 Repeat the search from any undiscovered vertex (if one 

exists) to define the next component, until all vertices have 
been found 
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IMPLEMENTATION 
connected_components(graph *g) 
{ 
 int c =0;  /* component number */ 
 int i;   /* counter */ 
  
 initialize_search(g); 
 for (i=1; i<=g->nvertices; i++){ 
  if (discovered[i] == FALSE) { 
   c = c+1; 
   printf(”Component %d:”,c); 
   bfs(g,i); 
   printf("\n"); 
  } 
 } 
} 
 
process_vertex_early(int v) { printf(" %d",v); } 
 
process_edge(int x, int y) {   } 
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O(n + m) 



BFS APPLICATION 2: TWO-COLORING GRAPHS 

 The vertex coloring problem seeks to assign a label (or 
color) to each vertex of a graph such that no edge 
links any two vertices of the same color. 

 The goal is to use as few colors as possible 
 Vertex coloring problems often arise in scheduling      

applications 
 Ex> register allocation in compilers 
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 A graph is bipartite if it can be colored without 
conflicts while using only two colors.  

 Bipartite graphs are important because they arise 
naturally in many applications. 
 For example, consider the “married-to” graph in a hetero 

sexual world. Men have marry only with women, and vice 
versa. 

 Thus gender defines a legal two-coloring. 
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 Solution Scratch (Augmented BFS):  
 Whenever we discover a new vertex, color it the opposite of i

ts parent. 
 Check for conflict:  

 We check whether any nondiscovery edge links two vertices of the sa
me color.  

 We will have constructed a proper two-coloring whenever we 
terminate without conflict 
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FINDING A TWO-COLORING 

 
twocolor(graph *g) 
{ 
 int i;   /* counter */ 
 for (i=1; i<=(g->nvertices); i++) 
  color[i] = UNCOLORED; 
 bipartite = TRUE; 
 initialize search(&g); 
 for (i=1; i<=(g->nvertices); i++){ 
  if (discovered[i] == FALSE) f 
   color[i] = WHITE; 
   bfs(g,i); 
  } 
 } 
} 
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process_edge(int x, int y) 
{ 
 if (color[x] == color[y]) { 
  bipartite = FALSE; 
  printf(”Warning: graph not bipartite, due to (%d,%d)”,x,y); 
 } 
 color[y] = complement(color[x]); 
} 
 
complement(int color) 
{ 
 if (color == WHITE) return(BLACK); 
 if (color == BLACK) return(WHITE); 
 return(UNCOLORED); 
} 
 

 We can assign the first vertex in any connected component to 
be whatever color we wish. 
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