
LEC11: BREADTH-FIRST SEARCH

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

TRAVERSING A GRAPH

 One of the most fundamental graph problems is to
traverse every edge and vertex in a graph.
 E.g. printing or copying graphs, and converting between

alternate representations

 For efficiency, we must make sure we don’t visit each
edge repeatedly.

 For correctness, we must do the traversal in a
systematic way so that we don’t miss anything.

 Since a maze is just a graph, such an algorithm must
be powerful enough to enable us to get out of an
arbitrary maze.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

MARKING VERTICES

 The key idea is that we must mark each vertex when
we first visit it, and keep track of what have not yet
completely explored.

 Each vertex will always be in one of the following three
states:
 Undiscovered – the vertex in its initial, virgin state.
 Discovered – the vertex after we have encountered it, but

before we have checked out all its incident edges.
 Processed – the vertex after we have visited all its incident

edges.
 Obviously, a vertex cannot be processed before we discover it, so

over the course of the traversal the state of each vertex progresses
from undiscovered -> discovered -> processed.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

TO DO LIST

 We must also maintain a structure containing all the
vertices we have discovered but not yet completely
processed.

 Initially, only a single start vertex is considered to be
discovered.

 To completely process a vertex, we look at each edge
going out of it.

 For each edge which goes to an undiscovered vertex,
we mark it discovered and add it to the list of work to
do. (do nothing to vertices already processed &
vertices discovered but not processed.)

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

CORRECTNESS OF GRAPH TRAVERSAL

 Each undirected edge will be considered exactly twice,
 once when each of its endpoints is explored.

 Directed edges will be considered only once,
 when exploring the source vertex.

 Every edge and vertex in the connected component
must eventually be visited.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

 Suppose that there exists a vertex
u that remains unvisited, whose
neighbor v was visited.

 This neighbor v will eventually be
explored, after which we will
certainly visit u.

 Thus, we must find everything that
is there to be found.

u
 v

BREADTH-FIRST TRAVERSAL

 The basic operation in most graph algorithms is
completely and systematically traversing the graph.

 We want to visit every vertex and every edge exactly
once in some well-defined order.

 Breadth-first search is appropriate if we are interested
in shortest paths on unweighted graphs.
 In a breadth-first search of an undirected graph, we assign a

direction to each edge, from the discoverer u to the
discovered v. We thus denote u to be the parent of v.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

BFS(G, s)
 for each vertex u ∈ V [G] − {s} do
 state[u] = “undiscovered”
 p[u] = nil, i.e. no parent is in the BFS tree
 state[s] = “discovered”
 p[s] = NULL
 Q = {s}
 while Q = ∅ do
 u = dequeue[Q]
 process vertex u as desired
 for each v ∈ Adj[u] do
 process edge (u, v) as desired
 if state[v] = “undiscovered” then
 state[v] = “discovered”
 p[v] = u
 enqueue[Q, v]
 state[u] = “processed”

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

DATA STRUCTURES FOR BFS

 We use two Boolean arrays to maintain our knowledge
about each vertex in the graph.
 A vertex is discovered the first time we visit it.
 A vertex is considered processed after we have traversed all

outgoing edges from it.

 Once a vertex is discovered, it is placed on a FIFO
queue.
 Thus the oldest vertices / closest to the root are expanded

first.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

BFS IMPLEMENTATION - INITIALIZING BFS

Global Variables:
 bool processed[MAXV+1];
 bool discovered[MAXV+1];
 int parent[MAXV+1];

Each vertex is initialized as undiscovered:

initialize search(graph *g)
{
 int i;
 for (i=1; i<=g->nvertices; i++) {
 processed[i] = discovered[i] = FALSE;
 parent[i] = -1;
 }
}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

BFS IMPLEMENTATION

bfs(graph *g, int start)
{
 queue q; /* queue of nodes to visit */
 int v; /* current vertex */
 int y; /* successor vertex */
 edgenode *p; /* temporary pointer */

 init queue(&q);
 enqueue(&q,start);
 discovered[start] = TRUE;

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = TRUE;
 p = g->edges[v];
 while (p ! = NULL) {
 y = p->y;
 if ((processed[y] == FALSE||g-->directed)
 process_edge(v,y);
 if (discovered[y] == FALSE) {
 enqueue(&q,y);
 discovered[y] = TRUE;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

Once a vertex is discovered, it is placed on a queue

EXPLOITING TRAVERSAL

 The exact behavior of bfs depends upon the functions
process vertex early(), process vertex late(), and
process edge().By setting the functions to

 By setting the active functions to
 process_vertex(int v) {
 printf("processed vertex %d\n",v);
 }
 process_edge(int x, int y) {
 printf(”processed edge (%d,%d) ”,x,y);
 }

 we print each vertex and edge exactly once.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

FINDING PATHS

 The parent array set within bfs() is very useful for
finding interesting paths through a graph.

 The vertex which discovered vertex i is defined as
parent[i].

 The parent relation defines a tree of discovery with
the initial search node as the root of the tree.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

SHORTEST PATHS AND BFS

 In BFS vertices are discovered in order of increasing
distance from the root, so this tree has a very
important property.

 The unique tree path from the root to any node 𝑥 ∈ 𝑉
uses the smallest number of edges (or equivalently,
intermediate nodes) possible on any root-to-x path in
the graph.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

RECURSION AND PATH FINDING

 We can reconstruct this path by following the chain of
ancestors from x to the root.

 Note that we have to work backward.
 We cannot find the path from the root to x, since that does

not follow the direction of the parent pointers.
 Instead, we must find the path from x to the root.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

FINDING PATH EXAMPLE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

find path(int start, int end, int parents[])
{
 if ((start == end) || (end == -1))
 printf(”%d”,start);
 else {
 find_path(start,parents[end],parents);
 printf(” %d”,end);
 }
}

For the shortest path from 1 to 4, upper-right corner, this parent
relation yields the path {1, 5, 4}.

BFS APPLICATION 1: CONNECTED COMPONENTS

 A graph is connected if there is a path between any tw
o vertices.

 The connected components of an undirected graph is
a maximal set of vertices such that there is a path
between every pair of vertices.

 The components are separate “pieces” of the graph s
uch that there is no connection between the pieces

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

 Many seemingly complicated problems reduce to
finding or counting connected components.
 EX> Testing whether a puzzle such as Rubik’s cube or the

15-puzzle can be solved from any position is really asking
whether the graph of legal configurations is connected.

 Connected components can be found using BFS
 Anything we discover during a BFS must be part of the same

connected component.
 Repeat the search from any undiscovered vertex (if one

exists) to define the next component, until all vertices have
been found

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

IMPLEMENTATION
connected_components(graph *g)
{
 int c =0; /* component number */
 int i; /* counter */

 initialize_search(g);
 for (i=1; i<=g->nvertices; i++){
 if (discovered[i] == FALSE) {
 c = c+1;
 printf(”Component %d:”,c);
 bfs(g,i);
 printf("\n");
 }
 }
}

process_vertex_early(int v) { printf(" %d",v); }

process_edge(int x, int y) { }

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

O(n + m)

BFS APPLICATION 2: TWO-COLORING GRAPHS

 The vertex coloring problem seeks to assign a label (or
color) to each vertex of a graph such that no edge
links any two vertices of the same color.

 The goal is to use as few colors as possible
 Vertex coloring problems often arise in scheduling

applications
 Ex> register allocation in compilers

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

 A graph is bipartite if it can be colored without
conflicts while using only two colors.

 Bipartite graphs are important because they arise
naturally in many applications.
 For example, consider the “married-to” graph in a hetero

sexual world. Men have marry only with women, and vice
versa.

 Thus gender defines a legal two-coloring.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

 Solution Scratch (Augmented BFS):
 Whenever we discover a new vertex, color it the opposite of i

ts parent.
 Check for conflict:

 We check whether any nondiscovery edge links two vertices of the sa
me color.

 We will have constructed a proper two-coloring whenever we
terminate without conflict

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

FINDING A TWO-COLORING

twocolor(graph *g)
{
 int i; /* counter */
 for (i=1; i<=(g->nvertices); i++)
 color[i] = UNCOLORED;
 bipartite = TRUE;
 initialize search(&g);
 for (i=1; i<=(g->nvertices); i++){
 if (discovered[i] == FALSE) f
 color[i] = WHITE;
 bfs(g,i);
 }
 }
}

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

process_edge(int x, int y)
{
 if (color[x] == color[y]) {
 bipartite = FALSE;
 printf(”Warning: graph not bipartite, due to (%d,%d)”,x,y);
 }
 color[y] = complement(color[x]);
}

complement(int color)
{
 if (color == WHITE) return(BLACK);
 if (color == BLACK) return(WHITE);
 return(UNCOLORED);
}

 We can assign the first vertex in any connected component to
be whatever color we wish.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

	LEC11: Breadth-First Search
	Traversing a Graph
	Marking Vertices
	To Do List
	Correctness of Graph Traversal
	Breadth-First Traversal
	Slide Number 7
	Data Structures for BFS
	BFS Implementation - Initializing BFS
	BFS Implementation
	Exploiting Traversal
	Finding Paths
	Shortest Paths and BFS
	Recursion and Path Finding
	Finding Path Example
	BFS Application 1: Connected Components
	Slide Number 18
	Implementation
	BFS Application 2: Two-Coloring Graphs
	Slide Number 21
	Slide Number 22
	Finding a Two-Coloring
	Slide Number 24

