LEC09: GRAPH DATA STRUCTURES

Lecture slide courtesy of Prof. Steven Skiena
Graphs are one of the unifying themes of computer science.

A graph \(G = (V;E) \) is defined by

- a set of vertices \(V \), and
- a set of edges \(E \) consisting of ordered or unordered pairs of vertices from \(V \).
In modeling a road network, the vertices may represent the cities or junctions, certain pairs of which are connected by roads/edges.
GRAPH EXAMPLES: ELECTRONIC CIRCUITS

- In an electronic circuit, with junctions as vertices as components as edges.
The first step in any graph problem is determining which flavor of graph you are dealing with.

Learning to talk the talk is an important part of walking the walk.

The flavor of graph has a big impact on which algorithms are appropriate and efficient.
A graph \(G = (V, E) \) is **undirected** if edge \((x, y) \in E\) implies that \((y, x) \in E\).

Road networks *between* cities are typically undirected.

Street networks *within* cities (Manhattan) are almost always directed because of one-way streets.

Most graphs of graph-theoretic interest are undirected.
In *weighted* graphs, each edge (or vertex) of G is assigned a numerical value, or weight.

The edges of a road network graph might be weighted with their length, drive-time or speed limit.

In *unweighted* graphs, there is no cost distinction between various edges and vertices.
SIMPLE VS. NON-SIMPLE GRAPHS

- Certain types of edges complicate the task of working with graphs. A self-loop is an edge (x; x) involving only one vertex.
- An edge (x; y) is a multi-edge if it occurs more than once in the graph.
- Any graph which avoids these structures is called simple.
SPARSE VS. DENSE GRAPHS

- Graphs are **sparse** when only a small fraction of the possible number of vertex pairs actually have edges defined between them.

- Graphs are usually sparse due to application-specific constraints.
 - Road networks must be sparse because of road junctions.

- Typically **dense** graphs have a **quadratic** number of edges while **sparse** graphs are **linear** in size.
CYCLIC VS. ACYCLIC GRAPHS

- An **acyclic graph** does not contain any cycles.
 - **Trees** are connected **acyclic undirected graphs**.

- **Directed acyclic graphs** are called **DAGs**. They arise naturally in scheduling problems, where a directed edge \((x; y)\) indicates that \(x\) must occur before \(y\).
Many graphs are not explicitly constructed and then traversed, but built as we use them.

A good example arises in backtrack search.
A graph is **embedded** if the vertices and edges have been assigned geometric positions.

- Example: TSP or Shortest path on points in the plane.
- Example: Grid graphs.
- Example: Planar graphs.
Consider a graph where the vertices are people, and there is an edge between two people if and only if they are friends.

This graph is well-defined on any set of people: SUNY SB, New York, or the world.

What questions might we ask about the friendship graph?
IF I AM YOUR FRIEND, DOES THAT MEAN YOU ARE MY FRIEND?

- A graph is **undirected** if \((x, y)\) implies \((y, x)\). Otherwise the graph is **directed**.

 - The “heard-of” graph is directed since countless famous people have never heard of me!
 - The “play-table tennis-with” graph is presumably undirected, since it requires a partner.
AM I MY OWN FRIEND?

- An edge of the form \((x, x)\) is said to be a **loop**.
- If \(x\) is \(y\)’s friend several times over, that could be modeled using **multiedges**, multiple edges between the same pair of vertices.
- A graph is said to be **simple** if it contains no loops and multiple edges.
A path is a sequence of edges connecting two vertices. Since Mel Brooks is my father’s-sister’s-husband’s cousin, there is a path between me (Steve) and him (Mel)!
If I were trying to impress you with how tight I am with Mel Brooks, I would be much better off saying that Uncle Lenny knows him than to go into the details of how connected I am to Uncle Lenny.

Thus we are often interested in the shortest path between two nodes.
IS THERE A PATH OF FRIENDS BETWEEN ANY TWO PEOPLE?

- A graph is *connected* if there is a path between any two vertices.
- A directed graph is *strongly connected* if there is a directed path between any two vertices.
WHO HAS THE MOST FRIENDS?

- The **degree** of a vertex is the number of edges adjacent to it.
We assume the graph $G = (V, E)$ contains n vertices and m edges.

There are two main data structures used to represent graphs.

We can represent G using an nxn matrix M, where element $M[i, j]$ is, say, 1, if (i, j) is an edge of G, and 0 if it isn’t.
- It may use excessive space for graphs with many vertices and relatively few edges, however.

- Can we save space if
 + (1) the graph is undirected?
 + (2) if the graph is sparse?
An **adjacency list** consists of a Nx1 array of pointers, where the \(i\)th element points to a linked list of the edges incident on vertex \(i\).

To test if edge \((i, j)\) is in the graph:
- search the \(i\)th list for \(j\), which takes \(O(d_i)\), where \(d_i\) is the degree of the \(i\)th vertex.

Note that \(d_i\) can be much less than \(n\) when the graph is sparse.

If necessary, the two copies of each edge can be linked by a pointer to facilitate deletions.
TRADEOFFS BETWEEN ADJACENCY LISTS AND ADJACENCY MATRICES

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faster to test if ((x, y)) exists?</td>
<td>matrices</td>
</tr>
<tr>
<td>Faster to find vertex degree?</td>
<td>lists</td>
</tr>
<tr>
<td>Less memory on small graphs?</td>
<td>lists ((m + n)) vs. ((n^2))</td>
</tr>
<tr>
<td>Less memory on big graphs?</td>
<td>matrices (small win)</td>
</tr>
<tr>
<td>Edge insertion or deletion?</td>
<td>matrices (O(1))</td>
</tr>
<tr>
<td>Faster to traverse the graph?</td>
<td>lists (m + n) vs. (n^2)</td>
</tr>
<tr>
<td>Better for most problems?</td>
<td>lists</td>
</tr>
</tbody>
</table>

- Both representations are very useful and have different properties, although adjacency lists are probably better for most problems.
Keep count of the number of vertices, and

Assign each vertex a unique identification number from 1 to \(n_{vertices} \)

Represent the edges using an array of linked lists

```c
#define MAXV 1000 /* maximum number of vertices */
typedef struct {
    int y; /* adjacency info */
    int weight; /* edge weight, if any */
    struct edgenode *next; /* next edge in list */
} edgenode;
```

Represent directed edge \((x, y)\) by an edgenode \(y\) in \(x\)'s adjacency list.
typedef struct {
 edgenode *edges[MAXV+1]; /* adjacency info */
 int degree[MAXV+1]; /* outdegree of each vertex */
 int nvertices; /* number of vertices in graph */
 int nedges; /* number of edges in graph */
 bool directed; /* is the graph directed? */
} graph;

- The *degree* field of the graph counts the number of meaningful entries for the given vertex.
- An undirected edge \((x, y)\) appears twice
 - once as \(y\) in \(x\)’s list, and once as \(x\) in \(y\)’s list.
- The boolean flag *directed* identifies whether the given graph is to be interpreted as directed or undirected.
initialize_graph(graph *g, bool directed)
{
 int i; /* counter */
 g->nvertices = 0;
 g->nedges = 0;
 g->directed = directed;

 for (i=1; i<=MAXV; i++) g->degree[i] = 0;
 for (i=1; i<=MAXV; i++) g->edges[i] = NULL;
}

A typical graph file format consists of an initial line featuring the number of vertices and edges in the graph, followed by a listing of the edges at one vertex pair per line.

```c
read_graph(graph *g, bool directed)
{
    int i;                /* counter */
    int m;                /* number of edges */
    int x, y;             /* vertices in edge (x,y) */

    initialize_graph(g, directed);

    scanf("%d %d",&(g->nvertices),&m);
    for (i=1; i<=m; i++)
    {
        scanf("%d %d",&x,&y);
        insert_edge(g,x,y,directed);
    }
}
```
INSERTING AN EDGE

Insert_edge(graph *g, int x, int y, bool directed)
{
 edgenode *p; /* temporary pointer */
 p = malloc(sizeof(edgenode)); /* allocate edgenode storage */
 p->weight = NULL;
 p->y = y;
 p->next = g->edges[x];

 g->edges[x] = p; /* insert at head of list */
 g->degree[x] ++;
 if (directed == FALSE)
 insert_edge(g, y, x, TRUE);
 else
 g->nedges ++;
}

Lecture slide courtesy of Prof. Steven Skiena
print_graph(graph *g)
{
 int i; /* counter */
 edgenode *p; /* temporary pointer */

 for (i=1; i<=g->nvertices; i++) {
 printf("%d: ",i);
 p = g->edges[i];
 while (p != NULL) {
 printf(" %d",p->y);
 p = p->next;
 }
 printf("\n");
 }
}
- It is a good idea to use a well-designed graph data type as a model for building your own, or even better as the foundation for your application.

- Recommended as the best-designed general-purpose graph data structures currently available
 - LEDA (see Section 19.1.1 (page 658)) or
 - Boost (see Section 19.1.3 (page 659))