
LEC09: SORTING IV
QUICK SORT AND RANDOMIZED ALGORITHM

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

PROBLEM OF THE DAY

Problem: You have a computer with only 2Mb of
main memory. How do you use it to sort a large file
of 500 Mb that is on disk?

QUICKSORT

 In practice, the fastest internal sorting algorithm is
Quicksort, which uses partitioning as its main idea.
 Example: pivot about 10.
 Before: 17 12 6 19 23 8 5 10
 After: 6 8 5 10 23 19 12 17

 Partitioning places all the elements less than the pivot
in the left part of the array, and all elements greater
than the pivot in the right part of the array. The pivot
fits in the slot between them.

 Note that the pivot element ends up in the correct
place in the total order!

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

Lecture slide courtesy of Prof.
Steven Skiena

QUICKSORT PSEUDOCODE

Sort(A)
 quicksort(A,1,n)

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

Lecture slide courtesy of Prof.
Steven Skiena

PARTITIONING THE ELEMENTS

 We can partition an array about the pivot in one linear
scan, by maintaining three sections:
 < pivot (to the left of firsthigh),
 >= pivot (between firsthigh and i), and
 unexplored (to the right of i).

 As we scan from left to right,
 we move the left bound to the right when the element is

less than the pivot,
 otherwise we swap it with the rightmost unexplored element

and move the right bound one step closer to the left.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

Lecture slide courtesy of Prof.
Steven Skiena

PARTITION IMPLEMENTATION

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

Lecture slide courtesy of Prof.
Steven Skiena

WHY PARTITION?

 Since the partitioning step consists of at most n
swaps, it takes time linear in the number of keys. But
what does it buy us?
 1. The pivot element ends up in the position it retains in the

final sorted order.
 2. After a partitioning, no element flops to the other side of

the pivot in the final sorted order.

 Thus we can sort the elements to the left of the pivot
and the right of the pivot independently, giving us a
recursive sorting algorithm!

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

Lecture slide courtesy of Prof.
Steven Skiena

QUICKSORT ANIMATION

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

Lecture slide courtesy of Prof.
Steven Skiena

BEST CASE FOR QUICKSORT

 Since each element ultimately ends up in the correct
position, the algorithm correctly sorts. But how long
does it take?

 The best case for divide-and-conquer algorithms
comes when we split the input as evenly as possible.
Thus in the best case, each subproblem is of size n/2.

 The partition step on each subproblem is linear in its
size.

 Thus the total effort in partitioning the 2k problems of
size n/2k is O(n).

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

Lecture slide courtesy of Prof.
Steven Skiena

BEST CASE RECURSION TREE

 The total partitioning on each level is O(n), and it take lgn
levels of perfect partitions to get to single element
subproblems.

 When we are down to single elements, the problems are
sorted.

 Thus the total time in the best case is O(n lg n).

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

Lecture slide courtesy of Prof.
Steven Skiena

WORST CASE FOR QUICKSORT

 Suppose instead our pivot element splits the array as
unequally as possible. Thus instead of n/2 elements
in the smaller half, we get zero, meaning that the pivot
element is the biggest or smallest element in the
array.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

Lecture slide courtesy of Prof.
Steven Skiena

 Now we have n-1 levels, instead of lgn, for a worst
case time of 𝜃(n2), since the first n/2 levels each have
≥ 𝑛/2 elements to partition.

 To justify its name, Quicksort had better be good in
the average case. Showing this requires some
intricate analysis.

 The divide and conquer principle applies to real life. If
you break a job into pieces, make the pieces of equal
size!

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

Lecture slide courtesy of Prof.
Steven Skiena

INTUITION: THE AVERAGE CASE FOR QUICKSORT

 Suppose we pick the pivot element at random in an
array of n keys.

 Half the time, the pivot element will be from the center
half of the sorted array.

 Whenever the pivot element is from positions n/4 to
3n/4, the larger remaining subarray contains at most
3n/4 elements.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

Lecture slide courtesy of Prof.
Steven Skiena

HOW MANY GOOD PARTITIONS

 If we assume that the pivot element is always in this
range (n/4 ~ 3n/4), what is the maximum number of
partitions we need to get from n elements down to 1
element?

3
4

ℎ
∗ 𝑛 = 1 → 𝑛 = 4

3

ℎ

 lg 𝑛 = ℎ ∗ lg (4
3
)

 Therefore ℎ = lg 𝑛 / lg(4
3
) or h = O(lgn) good

partitions suffice.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

Lecture slide courtesy of Prof.
Steven Skiena

HOW MANY BAD PARTITIONS?

 How often when we pick an arbitrary element as pivot
will it generate a good partition?

 Since any number ranked between n/4 and 3n/4
would make a decent pivot, we get one half the time
on average.

 If we need O(log n) levels of decent partitions to finish
the job, and since the expected number of good splits
and bad splits is the same, the bad splits can only
double the height of the tree, expected height of the
tree is 𝜃(log𝑛)

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

Lecture slide courtesy of Prof.
Steven Skiena

Since O(n) work is done partitioning on each level, the
average time is O(n lg n).

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

Lecture slide courtesy of Prof.
Steven Skiena

AVERAGE-CASE ANALYSIS OF QUICKSORT (*)

 To do a precise average-case analysis of quicksort, we
formulate a recurrence given the exact expected time T(n):

𝑇 𝑛 = �
1
𝑛
𝑇 𝑝 − 1 + 𝑇 𝑛 − 𝑝 + 𝑛 − 1

𝑛

𝑝=1

 Each possible pivot p is selected with equal probability.
 The number of comparisons needed to do the partition is

n - 1.
 We will need one useful fact about the Harmonic numbers

Hn, namely 𝐻𝑛 = ∑ 1/𝑖𝑛
𝑖=1 ≈ ln 𝑛

 It is important to understand (1) where the recurrence
relation

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

Lecture slide courtesy of Prof.
Steven Skiena

 comes from and (2) how the log comes out from the summatio
n. The rest is just messy algebra.

𝑇 𝑛 = �
1
𝑛
𝑇 𝑝 − 1 + 𝑇 𝑛 − 𝑝 + 𝑛 − 1

𝑛

𝑝=1

𝑇 𝑛 =
2
𝑛
�𝑇 𝑝 − 1 + 𝑛 − 1
𝑛

𝑝=1

𝑛𝑇 𝑛 = 2∑ 𝑇 𝑝 − 1 + 𝑛(𝑛 − 1)𝑛
𝑝=1 multiply by n

 (𝑛 − 1)𝑇 𝑛 − 1 = 2∑ 𝑇 𝑝 − 1 + (𝑛 − 1)(𝑛 − 2)𝑛−1
𝑝=1 apply to n-1

 𝑛𝑇 𝑛 − 𝑛 − 1 𝑇 𝑛 − 1 = 2𝑇 𝑛 − 1 + 2 𝑛 − 1
 Rearranging the terms give us:

T n
𝑛 + 1

=
𝑇 𝑛 − 1

𝑛
+

2 𝑛 − 1
𝑛 𝑛 + 1

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

Lecture slide courtesy of Prof.
Steven Skiena

 Substituting 𝑎𝑛 = 𝐴 𝑛
𝑛+1

 gives

𝑎𝑛 = 𝑎𝑛−1 +
2 𝑛 − 1
𝑛 𝑛 + 1

= �
2 𝑖 − 1
𝑖 𝑖 + 1

𝑛

𝑖=1

𝑎𝑛 ≈ 2�
1

𝑖 + 1

𝑛

𝑖=1

≈ 2 ln𝑛

 We are really interested in A(n), so
𝐴 𝑛 = 𝑛 + 1 𝑎𝑛 ≈ 2 𝑛 + 1 ln𝑛 ≈ 1.38𝑛lg𝑛

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

Lecture slide courtesy of Prof.
Steven Skiena

PICK A BETTER PIVOT

Having the worst case occur when they are sorted or
almost sorted is very bad, since that is likely to be the
case in certain applications.
To eliminate this problem, pick a better pivot:
 1. Use the middle element of the subarray as pivot.
 2. Use a random element of the array as the pivot.
 3. Perhaps best of all, take the median of three

elements (first, last, middle) as the pivot. Why should
we use median instead of the mean?

Whichever of these three rules we use, the worst case
remains O(n2).

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

Lecture slide courtesy of Prof.
Steven Skiena

IS QUICKSORT REALLY FASTER THAN HEAPSORT?

 Since Heapsort is Θ(n lg n) and selection sort is Θ(n2),
there is no debate about which will be better for
decent-sized files.

 When Quicksort is implemented well, it is typically 2-3
times faster than mergesort or heapsort.

 The primary reason is that the operations in the
innermost loop are simpler.

 Since the difference between the two programs will be
limited to a multiplicative constant factor, the details
of how you program each algorithm will make a big
difference.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

Lecture slide courtesy of Prof.
Steven Skiena

RANDOMIZED QUICKSORT

 Suppose you are writing a sorting program, to run on data
given to you by your worst enemy.

 Quicksort is good on average, but bad on certain worst-
case instances.

 If you used Quicksort, what kind of data would your enemy
give you to run it on? Exactly the worst-case instance, to
make you look bad.

 But instead of picking the median of three or the first
element as pivot, suppose you picked the pivot element at
random.

 Now your enemy cannot design a worst-case instance to
give to you, because no matter which data they give you,
you would have the same probability of picking a good
pivot!

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

Lecture slide courtesy of Prof.
Steven Skiena

RANDOMIZED GUARANTEES

 Randomization is a very important and useful idea. By
either picking a random pivot or scrambling the
permutation before sorting it, we can say:
“With high probability, randomized quicksort runs in

𝛩(nlgn) time.”
 Where before, all we could say is:

“If you give me random input data, quicksort runs in
expected 𝛩(nlgn) time.”

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

Lecture slide courtesy of Prof.
Steven Skiena

IMPORTANCE OF RANDOMIZATION

 Since the time bound now does not depend upon your
input distribution, this means that unless we are
extremely unlucky we will certainly get good
performance.

 Randomization is a general tool to improve algorithms
with bad worst-case but good average-case
complexity.

 The worst-case is still there, but we almost certainly
won’t see it.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

Lecture slide courtesy of Prof.
Steven Skiena

CAN WE SORT

 Any comparison-based sorting program can be
thought of as defining a decision tree of possible
executions.

 Running the same program twice on the same
permutation causes it to do exactly the same thing,
but running it on different permutations of the same
data causes a different sequence of comparisons to
be made on each.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

25

𝑜(𝑛𝑛𝑛𝑛)

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

26

Claim: the height of this decision tree is the worst-case
complexity of sorting.

Lecture slide courtesy of Prof.
Steven Skiena

LOWER BOUND ANALYSIS

Since any two different permutations of n elements requires
a different sequence of steps to sort, there must be at least
n! different paths from the root to leaves in the decision tree.
Thus there must be at least n! different leaves in this binary
tree.
Since a binary tree of height h has at most 2h leaves, we
know 𝑛! ≤ 2ℎ or ℎ ≥ lg 𝑛! .

By inspection 𝑛! > (𝑛
2

)
𝑛
2, since the last n/2 terms of the

product are each greater than n/2. Thus

log 𝑛! > log
𝑛
2

𝑛
2 =

𝑛
2

log
𝑛
2

→ Θ(𝑛log𝑛)

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

27

Lecture slide courtesy of Prof.
Steven Skiena

NON-COMPARISON-BASED SORTING

 All the sorting algorithms we have seen assume binary
comparisons as the basic primitive, questions of the
form “is x before y?”.

 But how would you sort a deck of playing cards?
 Most likely you would set up 13 piles and put all cards

with the same number in one pile. With only a
constant number of cards left in each pile, you can
use insertion sort to order by suite and concatenate
everything together.

 If we could find the correct pile for each card in
constant time, and each pile gets O(1) cards, this
algorithm takes O(n) time.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

29

Lecture slide courtesy of Prof.
Steven Skiena

BUCKETSORT

 Suppose we are sorting n numbers from 1 to m, where
we know the numbers are approximately uniformly
distributed.

 We can set up n buckets, each responsible for an
interval of m/n numbers from 1 to m

 Given an input number x, it belongs in bucket number
𝑥𝑛/𝑚 .

 If we use an array of buckets, each item gets mapped
to the right bucket in O(1) time.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

30

Lecture slide courtesy of Prof.
Steven Skiena

BUCKETSORT ANALYSIS

 With uniformly distributed keys, the expected number
of items per bucket is 1. Thus sorting each bucket
takes O(1) time!

 The total effort of bucketing, sorting buckets, and
concatenating the sorted buckets together is O(n)

 What happened to our Ω(𝑛 lg𝑛) lower bound!

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

31

Lecture slide courtesy of Prof.
Steven Skiena

WORST-CASE VS. ASSUMED-CASE

 Bad things happen to bucketsort when we assume the
wrong distribution

 We might spend linear time distributing our items into
buckets and learn nothing.

 Problems like this are why we worry about the worst-
case performance of algorithms!

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

32

Lecture slide courtesy of Prof.
Steven Skiena

REALWORLD DISTRIBUTIONS

 The worst case “shouldn’t” happen if we understand
the distribution of our data.

 Consider the distribution of names in a telephone
book.
 Will there be a lot of Skiena’s?
 Will there be a lot of Smith’s?
 Will there be a lot of Shifflett’s?

 Either make sure you understand your data, or use a
good worst-case or randomized algorithm!

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

33

Lecture slide courtesy of Prof.
Steven Skiena

	Lec09: Sorting IV�Quick Sort and Randomized Algorithm
	Problem of the Day
	Quicksort
	Quicksort Pseudocode
	Partitioning the Elements
	Partition Implementation
	Why Partition?
	Quicksort Animation
	Best Case for Quicksort
	Best Case Recursion Tree
	Worst Case for Quicksort
	Slide Number 12
	Intuition: The Average Case for Quicksort
	How Many Good Partitions
	How Many Bad Partitions?
	Slide Number 16
	Average-Case Analysis of Quicksort (*)
	Slide Number 18
	Slide Number 19
	Pick a Better Pivot
	Is Quicksort really faster than Heapsort?
	Randomized Quicksort
	Randomized Guarantees
	Importance of Randomization
	Can we sort
	Slide Number 26
	Lower Bound Analysis
	Non-Comparison-Based Sorting
	Bucketsort
	Bucketsort Analysis
	Worst-Case vs. Assumed-Case
	RealWorld Distributions

