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PROBLEM OF THE DAY  

Problem: You have a computer with only 2Mb of 
main memory. How do you use it to sort a large file 
of  500 Mb that is on disk? 



QUICKSORT 

 In practice, the fastest internal sorting algorithm is 
Quicksort, which uses partitioning as its main idea. 
 Example: pivot about 10. 
 Before: 17 12 6 19 23 8 5 10 
 After: 6 8 5          10          23 19 12 17 

 Partitioning places all the elements less than the pivot 
in the left part of the array, and all elements greater 
than the pivot in the right part of the array. The pivot 
fits in the slot between them. 

 Note that the pivot element ends up in the correct 
place in the total order! 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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QUICKSORT PSEUDOCODE 

Sort(A) 
 quicksort(A,1,n) 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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PARTITIONING THE ELEMENTS 

 We can partition an array about the pivot in one linear 
scan, by maintaining three sections:  
 < pivot (to the left of firsthigh), 
 >= pivot (between firsthigh and i), and  
 unexplored (to the right of i).  

 As we scan from left to right, 
  we move the left bound to the right when the element is 

less than the pivot,  
 otherwise we swap it with the rightmost unexplored element 

and move the right bound one step closer to the left. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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PARTITION IMPLEMENTATION 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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WHY PARTITION? 

 Since the partitioning step consists of at most n 
swaps, it takes time linear in the number of keys. But 
what does it buy us? 
 1. The pivot element ends up in the position it retains in the 

final sorted order. 
 2. After a partitioning, no element flops to the other side of 

the pivot in the final sorted order. 

 Thus we can sort the elements to the left of the pivot 
and the right of the pivot independently, giving us a 
recursive sorting algorithm! 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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QUICKSORT ANIMATION 

 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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BEST CASE FOR QUICKSORT 

 Since each element ultimately ends up in the correct 
position, the algorithm correctly sorts. But how long 
does it take? 

 The best case for divide-and-conquer algorithms 
comes when we split the input as evenly as possible. 
Thus in the best case, each subproblem is of size n/2. 

 The partition step on each subproblem is linear in its 
size. 

 Thus the total effort in partitioning the 2k problems of 
size n/2k is O(n). 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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BEST CASE RECURSION TREE 

 The total partitioning on each level is O(n), and it take lgn 
levels of perfect partitions to get to single element 
subproblems.  

 When we are down to single elements, the problems are 
sorted.  

 Thus the total time in the best case is O(n lg n). 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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WORST CASE FOR QUICKSORT 

 Suppose instead our pivot element splits the array as 
unequally as possible. Thus instead of n/2 elements 
in the smaller half, we get zero, meaning that the pivot 
element is the biggest or smallest element in the 
array. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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 Now we have n-1 levels, instead of lgn, for a worst 
case time of 𝜃(n2), since the first n/2 levels each have  
≥ 𝑛/2 elements to partition. 

 To justify its name, Quicksort had better be good in 
the average case. Showing this requires some 
intricate analysis. 

 The divide and conquer principle applies to real life. If 
you break a job into pieces, make the pieces of equal 
size! 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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INTUITION: THE AVERAGE CASE FOR QUICKSORT 

 Suppose we pick the pivot element at random in an 
array of n keys. 
 
 
 

 Half the time, the pivot element will be from the center 
half of the sorted array. 

 Whenever the pivot element is from positions n/4 to 
3n/4, the larger remaining subarray contains at most 
3n/4 elements. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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HOW MANY GOOD PARTITIONS 

 If we assume that the pivot element is always in this 
range (n/4 ~ 3n/4), what is the maximum number of 
partitions we need to get from n elements down to 1 
element? 

3
4

ℎ
∗ 𝑛 = 1 → 𝑛 = 4

3

ℎ
  

  lg 𝑛 = ℎ ∗ lg (4
3
) 

 Therefore ℎ = lg 𝑛 / lg(4
3
)  or h = O(lgn) good 

partitions suffice. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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HOW MANY BAD PARTITIONS? 

 How often when we pick an arbitrary element as pivot 
will it generate a good partition? 

 Since any number ranked between n/4 and 3n/4 
would make a decent pivot, we get one half the time 
on average. 

 If we need O(log n) levels of decent partitions to finish 
the job, and since the expected number of good splits 
and bad splits is the same, the bad splits can only 
double the height of the tree, expected  height of the 
tree is 𝜃(log𝑛) 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

15 

Lecture slide courtesy of Prof. 
Steven Skiena  



Since O(n) work is done partitioning on each level, the 
average time is O(n lg n). 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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AVERAGE-CASE ANALYSIS OF QUICKSORT (*) 

 To do a precise average-case analysis of quicksort, we 
formulate a recurrence given the exact expected time T(n): 

𝑇 𝑛 =  �
1
𝑛
𝑇 𝑝 − 1 + 𝑇 𝑛 − 𝑝 + 𝑛 − 1

𝑛

𝑝=1

 

 Each possible pivot p is selected with equal probability. 
 The number of comparisons needed to do the partition is 

n - 1. 
 We will need one useful fact about the Harmonic numbers 

Hn, namely 𝐻𝑛 = ∑ 1/𝑖𝑛
𝑖=1 ≈ ln 𝑛  

 It is important to understand (1) where the recurrence 
relation 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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 comes from and (2) how the log comes out from the summatio
n. The rest is just messy algebra. 

𝑇 𝑛 =  �
1
𝑛
𝑇 𝑝 − 1 + 𝑇 𝑛 − 𝑝 + 𝑛 − 1

𝑛

𝑝=1

 

𝑇 𝑛 =
2
𝑛
�𝑇 𝑝 − 1 + 𝑛 − 1
𝑛

𝑝=1

 

𝑛𝑇 𝑛 = 2∑ 𝑇 𝑝 − 1 + 𝑛(𝑛 − 1)𝑛
𝑝=1  multiply by n 

 (𝑛 − 1)𝑇 𝑛 − 1 = 2∑ 𝑇 𝑝 − 1 + (𝑛 − 1)(𝑛 − 2)𝑛−1
𝑝=1  apply to n-1 

 𝑛𝑇 𝑛 − 𝑛 − 1 𝑇 𝑛 − 1 = 2𝑇 𝑛 − 1 + 2 𝑛 − 1  
 Rearranging the terms give us:  

T n
𝑛 + 1

=
𝑇 𝑛 − 1

𝑛
+

2 𝑛 − 1
𝑛 𝑛 + 1

 

 
 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

18 

Lecture slide courtesy of Prof. 
Steven Skiena  



 Substituting 𝑎𝑛 = 𝐴 𝑛
𝑛+1

 gives 

𝑎𝑛 = 𝑎𝑛−1 +
2 𝑛 − 1
𝑛 𝑛 + 1

= �
2 𝑖 − 1
𝑖 𝑖 + 1

𝑛

𝑖=1

 

𝑎𝑛 ≈ 2�
1

𝑖 + 1

𝑛

𝑖=1

≈ 2 ln𝑛 

 We are really interested in A(n), so 
𝐴 𝑛 = 𝑛 + 1 𝑎𝑛 ≈ 2 𝑛 + 1 ln𝑛 ≈ 1.38𝑛lg𝑛 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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PICK A BETTER PIVOT 

Having the worst case occur when they are sorted or 
almost sorted is very bad, since that is likely to be the 
case in certain applications. 
To eliminate this problem, pick a better pivot: 
 1. Use the middle element of the subarray as pivot. 
 2. Use a random element of the array as the pivot. 
 3. Perhaps best of all, take the median of three 

elements (first, last, middle) as the pivot. Why should 
we use median instead of the mean? 

Whichever of these three rules we use, the worst case 
remains O(n2). 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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IS QUICKSORT REALLY FASTER THAN HEAPSORT? 

 Since Heapsort is Θ(n lg n) and selection sort is Θ(n2), 
there is no debate about which will be better for 
decent-sized files. 

 When Quicksort is implemented well, it is typically 2-3 
times faster than mergesort or heapsort. 

 The primary reason is that the operations in the 
innermost loop are simpler. 

 Since the difference between the two programs will be 
limited to a multiplicative constant factor, the details 
of how you program each algorithm will make a big 
difference. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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RANDOMIZED QUICKSORT 

 Suppose you are writing a sorting program, to run on data 
given to you by your worst enemy.  

 Quicksort is good on average, but bad on certain worst-
case instances. 

 If you used Quicksort, what kind of data would your enemy 
give you to run it on? Exactly the worst-case instance, to 
make you look bad. 

 But instead of picking the median of three or the first 
element as pivot, suppose you picked the pivot element at 
random. 

 Now your enemy cannot design a worst-case instance to 
give to you, because no matter which data they give you, 
you would have the same probability of picking a good 
pivot! 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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RANDOMIZED GUARANTEES 

 Randomization is a very important and useful idea. By 
either picking a random pivot or scrambling the 
permutation before sorting it, we can say: 
“With high probability, randomized quicksort runs in 

𝛩(nlgn) time.” 
 Where before, all we could say is: 

“If you give me random input data, quicksort runs in 
expected 𝛩(nlgn) time.” 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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IMPORTANCE OF RANDOMIZATION 

 Since the time bound now does not depend upon your 
input distribution, this means that unless we are 
extremely unlucky we will certainly get good 
performance. 

 Randomization is a general tool to improve algorithms 
with bad worst-case but good average-case 
complexity. 

 The worst-case is still there, but we almost certainly 
won’t see it. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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CAN WE SORT 

 Any comparison-based sorting program can be 
thought of as defining a decision tree of possible 
executions. 

 Running the same program twice on the same 
permutation causes it to do exactly the same thing, 
but running it on different permutations of the same 
data causes a different sequence of comparisons to 
be made on each. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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LOWER BOUND ANALYSIS 

Since any two different permutations of n elements requires 
a different sequence of steps to sort, there must be at least 
n! different paths from the root to leaves in the decision tree. 
Thus there must be at least n! different leaves in this binary 
tree. 
Since a binary tree of height h has at most 2h leaves, we 
know  𝑛! ≤ 2ℎ or ℎ ≥ lg 𝑛!  . 

By inspection 𝑛! > (𝑛
2

)
𝑛
2, since the last n/2 terms of the 

product are each greater than n/2. Thus 

log 𝑛! > log
𝑛
2

𝑛
2 =

𝑛
2

log
𝑛
2

→  Θ(𝑛log𝑛) 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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NON-COMPARISON-BASED SORTING 

 All the sorting algorithms we have seen assume binary 
comparisons as the basic primitive, questions of the 
form “is x before y?”. 

 But how would you sort a deck of playing cards? 
 Most likely you would set up 13 piles and put all cards 

with the same number in one pile. With only a 
constant number of cards left in each pile, you can 
use insertion sort to order by suite and concatenate 
everything together. 

 If we could find the correct pile for each card in 
constant time, and each pile gets O(1) cards, this 
algorithm takes O(n) time. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

29 

Lecture slide courtesy of Prof. 
Steven Skiena  



BUCKETSORT 

 Suppose we are sorting n numbers from 1 to m, where 
we know the numbers are approximately uniformly 
distributed. 

 We can set up n buckets, each responsible for an 
interval of m/n numbers from 1 to m 
 
 

 Given an input number x, it belongs in bucket number 
𝑥𝑛/𝑚 . 

 If we use an array of buckets, each item gets mapped 
to the right bucket in O(1) time. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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BUCKETSORT ANALYSIS 

 With uniformly distributed keys, the expected number 
of items per bucket is 1. Thus sorting each bucket 
takes O(1) time! 

 The total effort of bucketing, sorting buckets, and 
concatenating the sorted buckets together is O(n) 

 What happened to our Ω(𝑛 lg𝑛) lower bound! 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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WORST-CASE VS. ASSUMED-CASE 

 Bad things happen to bucketsort when we assume the 
wrong distribution 
 
 
 

 We might spend linear time distributing our items into 
buckets and learn nothing. 

 Problems like this are why we worry about the worst-
case performance of algorithms! 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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REALWORLD DISTRIBUTIONS 

 The worst case “shouldn’t” happen if we understand 
the distribution of our data. 

 Consider the distribution of names in a telephone 
book. 
  Will there be a lot of Skiena’s? 
  Will there be a lot of Smith’s? 
  Will there be a lot of Shifflett’s? 

 Either make sure you understand your data, or use a 
good worst-case or randomized algorithm! 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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