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PROBLEM OF THE DAY  

Problem: Given an array-based heap on n elements 
and a real number x, efficiently determine whether 
the kth smallest element in the heap is greater than 
or equal to x.  
 
Your algorithm should be O(k) in the worst-case, 
independent of the size of the heap.  
 
Hint: you do not have to find the kth smallest 
element; you need only determine its relationship to 
x.  
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MERGESORT 

 Recursive algorithms are based on reducing large 
problems into small ones. 

 A nice recursive approach to sorting involves 
partitioning the elements into sub-groups, sorting 
each of the smaller problems recursively, and then 
interleaving the two sorted lists to totally order the 
elements. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

3 

Lecture slide courtesy of Prof. 
Steven Skiena  



MERGESORT IMPLEMENTATION 

mergesort(item type s[], int low, int high) 
{ 
 int i;    /* counter */ 
 int middle;   /* index of middle element */ 
 if (low < high) { 
  middle = (low+high)/2;  
  mergesort(s,low,middle); 
  mergesort(s,middle+1,high); 
  merge(s, low, middle, high); 
 } 
} 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

4 

Lecture slide courtesy of Prof. 
Steven Skiena  



MERGESORT ANIMATION 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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MERGING SORTED LISTS 

 The efficiency of Mergesort depends upon how 
efficiently we combine the two sorted halves into a 
single sorted list. 

 This smallest element can be removed, leaving two 
sorted lists behind, one slightly shorter than before. 

 Repeating this operation until both lists are empty 
merges two sorted lists (with a total of n elements 
between them) into one, using at most n - 1 
comparisons or O(n) total work 

 Example: A = {5; 7; 12; 19} and B = {4; 6; 13; 15} 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

6 

Lecture slide courtesy of Prof. 
Steven Skiena  



BUFFERING 

 Although mergesort is O(nlgn), it is inconvenient to 
implement with arrays, since we need extra space to 
merge the lists. 
 Merging (4; 5; 6) and (1; 2; 3) would overwrite the first three 

elements if they were packed in an array. 

 Writing the merged list to a buffer and recopying it 
uses extra space but not extra time (in the big Oh 
sense). 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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Challenging turns out to be the details of how the merging is done. We 
must put our merged array somewhere to avoid losing an element by 
overwriting it in the course of the merge. 
  

we first copy each 
subarray to a separate 
queue 

Then merge these 
elements back into 
the array. 
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EXTERNAL SORTING 

 Which O(nlogn) algorithm you use for sorting doesn’t 
matter much until n is so big the data does not fit in 
memory. 

 Mergesort proves to be the basis for the most efficient 
external sorting programs.(no random access needed) 

 Disks are much slower than main memory, and 
benefit from algorithms that read and write data in 
long streams – not random access. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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BREAKING PROBLEMS DOWN INTO SMALLER PROBLEMS 

 Dynamic Programming (ch8) typically removes one 
element from the problem, solves the smaller 
problem, and then uses the solution to this smaller 
problem to add back the element in the proper way. 

 Divide-and-conquer splits the problem in (say) halves, 
solves each half, then stitches the pieces back 
together to form a full solution. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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DIVIDE AND CONQUER 

 Divide and conquer is an important algorithm design 
technique using in mergesort, binary search the fast 
Fourier transform (FFT), and Strassen’s matrix 
multiplication algorithm. 

 We divide the problem into two smaller subproblems, 
solve each recursively, and then meld the two partial 
solutions into one solution for the full problem. 

 When merging takes less time than solving the two 
subproblems, we get an efficient algorithm. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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MATRIX MULTIPLICATION (BRUTE FORCE) 

http://www.aw-bc.com/info/levitin http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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multiplication: Θ(n3)  addition: Θ(n3)                

2.5.4 Matrix Multiplication 

algorithm is O(xyz) 



MATRIX MULTIPLICATION  
(DIVIDE-CONQUER RECURSIVE ALGORITHM)  

http://www.aw-bc.com/info/levitin http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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A, B: n by n matrices; 
Aij, Bij: n/2 by n/2 matrices, where i, j ∈ {0, 1} 

recurrence relations: 

multiplication: M(n) = Θ(n3) 

addition: A(n) = Θ(n3)         



STRASSEN’S MATRIX MULTIPLICATION 

http://www.aw-bc.com/info/levitin http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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M1=(A00+A11)*(B00+B11) 
M2=(A10+A11)*B00 
M3=A00*(B01-B11) 
M4=A11*(B10-B00) 
M5=(A00+A01)*B11 
M6=(A10-A00)*(B00+B01) 
M7=(A01-A11)*(B10+B11) 
 

For matrices of size N = 2n , let f(n) be the 
number of operations for a 2n × 2n matrix. 
Recursive formula for Strassen algorithm:  
T(n) = 7T(n−1) + O(4n) 



RECURRENCE RELATIONS 

 Many divide-and-conquer algorithms have time 
complexities that are naturally modeled by recurrence 
relations. 

 Recurrence Relation is an equation that is defined in 
terms of itself.  
 Example: The Fibonacci numbers are described by the 

recurrence relation Fn = Fn−1+Fn−2 

 Any polynomial can be represented by a recurrence  
         linear function: an = an−1 + 1, a1 = 1 → an = n 

             exponential: an = 2an−1, a1 = 1 → an = 2n−1 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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DIVIDE-AND-CONQUER RECURRENCES 

Divide-and-conquer algorithms tend to break a given problem into 
some number of smaller pieces (say a), each of which is of size 
n/b. Further, they spend f(n) time to combine these subproblem 
solutions into a complete result.  
 
Let T(n) denote the worst-case time the algorithm takes to solve a 
problem of size n. Then T(n) is given by the following recurrence 
relation: 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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T(n) = aT (n/b) + f(n) 
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RECURRENCE : MERGESORT  

The running time behavior of mergesort is governed by 
the recurrence 

T(n) = 2T(n/2) + O(n),  
 since the algorithm divides the data into  equal-

sized halves and  
 then spends linear time merging the halves after 

they are sorted.  
 

In fact, this recurrence evaluates to T(n) = O(n lg n), just 
as we got by our previous analysis. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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RECURRENCE: BINARY SEARCH 

The running time behavior of binary search is governed b
y the recurrence  

T(n) = T(n/2) + O(1),  
since at each step we spend constant time to reduce the 
problem to an instance half its size.  
 
In fact, this recurrence evaluates to T(n) = O(lg n), just as 
we got by our previous analysis. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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FAST HEAP CONSTRUCTION 

 Fast Heap Construction reduces to the recurrence 
relation  

T(n) = 2T(n/2) + O(lg n).  
 Since the bubble down method of heap construction 

built an n-element heap by constructing two n/2 
element heaps and then merging them with the root in 
logarithmic time.  
 

 In fact, this recurrence evaluates to T(n) = O(n), just as 
we got by our previous analysis. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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MASTER THEOREM 

Divide-and-conquer recurrences of the form  
T(n) = aT (n/b) + f(n)  

solutions typically fall into one of three distinct cases: 
1. If f(n) = 𝑂(𝑛log𝑏 𝑎−𝜖) for some constant  > 0,               

then T(n) = 𝜃(𝑛log𝑏 𝑎). 
 heap construction and matrix multiplication 

2. If f(n) = 𝜃(𝑛log𝑏 𝑎), then T(n) = 𝜃(𝑛log𝑏 𝑎lg𝑛). 
 mergesort and binary search 

3. If f(n) = Ω(𝑛log𝑏 𝑎+𝜖) for some constant 𝜖 > 0, and if 
af(n/b) ≤ cf(n) for some c < 1, then T(n) = 𝜃(𝑓 𝑛 )  
 generally arises for clumsier algorithms, where the cost of 

combining the subproblems dominates everything. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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 Case 1 holds for heap construction and matrix multipli
cation, while 

 Case 2 holds mergesort and binary search.  
 Case 3 generally arises for clumsier algorithms, where 

the cost of combining the subproblems dominates eve
rything. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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Recursion Tree associated with a typical T(n) = aT (n/b)+ f(n) 
divide-and-conquer algorithm 

logba 

Each subproblem of 
size k takes O(f(k)) 
time to deal with 
internally, between 
partitioning and 
merging. 
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The three cases of the master theorem correspond to three 
different costs which might be dominant as a function of a, b, and 
f(n) (compare 𝑛log𝑏 𝑎 vs f(n)) . 
 
 Case 1: Too many leaves (𝑛log𝑏 𝑎 is polynomially larger) 

 If the number of leaf nodes outweighs the sum of the internal evaluation 
cost, the total running time is O(𝑛log𝑏 𝑎). 

 Case 2: Equal work per level (𝑛log𝑏 𝑎 and f(n) are same in size) 
 As we move down the tree, each problem gets smaller but there are 

more of them to solve. If the sum of the internal evaluation costs at each 
level are equal, the total running time is the cost per level (𝑛log𝑏 𝑎) times 
the number of levels (log𝑏 𝑎), for a total running time of O(𝑛log𝑏 𝑎lg𝑛). 

 Case 3: Too expensive a root  (f(n) is polynomially larger) 
 If the internal evaluation costs grow rapidly enough with n, then the cost 

of the root evaluation may dominate. If so, the the total running time is 
O(f(n)). 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 
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