
LEC07 SORTING III:  
MERGESORT – SORTING DIVIDE-AND-CONQUER 

CSE 373 Analysis of Algorithms  
Fall 2016 
Instructor: Prof. Sael Lee 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

1 

Lecture slide courtesy of Prof. Steven Skiena  

Lecture slide courtesy of Prof. 
Steven Skiena  



PROBLEM OF THE DAY  

Problem: Given an array-based heap on n elements 
and a real number x, efficiently determine whether 
the kth smallest element in the heap is greater than 
or equal to x.  
 
Your algorithm should be O(k) in the worst-case, 
independent of the size of the heap.  
 
Hint: you do not have to find the kth smallest 
element; you need only determine its relationship to 
x.  

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

2 



MERGESORT 

 Recursive algorithms are based on reducing large 
problems into small ones. 

 A nice recursive approach to sorting involves 
partitioning the elements into sub-groups, sorting 
each of the smaller problems recursively, and then 
interleaving the two sorted lists to totally order the 
elements. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

3 

Lecture slide courtesy of Prof. 
Steven Skiena  



MERGESORT IMPLEMENTATION 

mergesort(item type s[], int low, int high) 
{ 
 int i;    /* counter */ 
 int middle;   /* index of middle element */ 
 if (low < high) { 
  middle = (low+high)/2;  
  mergesort(s,low,middle); 
  mergesort(s,middle+1,high); 
  merge(s, low, middle, high); 
 } 
} 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

4 

Lecture slide courtesy of Prof. 
Steven Skiena  



MERGESORT ANIMATION 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

5 

Lecture slide courtesy of Prof. 
Steven Skiena  



MERGING SORTED LISTS 

 The efficiency of Mergesort depends upon how 
efficiently we combine the two sorted halves into a 
single sorted list. 

 This smallest element can be removed, leaving two 
sorted lists behind, one slightly shorter than before. 

 Repeating this operation until both lists are empty 
merges two sorted lists (with a total of n elements 
between them) into one, using at most n - 1 
comparisons or O(n) total work 

 Example: A = {5; 7; 12; 19} and B = {4; 6; 13; 15} 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

6 

Lecture slide courtesy of Prof. 
Steven Skiena  



BUFFERING 

 Although mergesort is O(nlgn), it is inconvenient to 
implement with arrays, since we need extra space to 
merge the lists. 
 Merging (4; 5; 6) and (1; 2; 3) would overwrite the first three 

elements if they were packed in an array. 

 Writing the merged list to a buffer and recopying it 
uses extra space but not extra time (in the big Oh 
sense). 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

7 

Lecture slide courtesy of Prof. 
Steven Skiena  



http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

8 

Challenging turns out to be the details of how the merging is done. We 
must put our merged array somewhere to avoid losing an element by 
overwriting it in the course of the merge. 
  

we first copy each 
subarray to a separate 
queue 

Then merge these 
elements back into 
the array. 

Lecture slide courtesy of Prof. 
Steven Skiena  



EXTERNAL SORTING 

 Which O(nlogn) algorithm you use for sorting doesn’t 
matter much until n is so big the data does not fit in 
memory. 

 Mergesort proves to be the basis for the most efficient 
external sorting programs.(no random access needed) 

 Disks are much slower than main memory, and 
benefit from algorithms that read and write data in 
long streams – not random access. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

9 

Lecture slide courtesy of Prof. 
Steven Skiena  



BREAKING PROBLEMS DOWN INTO SMALLER PROBLEMS 

 Dynamic Programming (ch8) typically removes one 
element from the problem, solves the smaller 
problem, and then uses the solution to this smaller 
problem to add back the element in the proper way. 

 Divide-and-conquer splits the problem in (say) halves, 
solves each half, then stitches the pieces back 
together to form a full solution. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

10 

Lecture slide courtesy of Prof. 
Steven Skiena  



DIVIDE AND CONQUER 

 Divide and conquer is an important algorithm design 
technique using in mergesort, binary search the fast 
Fourier transform (FFT), and Strassen’s matrix 
multiplication algorithm. 

 We divide the problem into two smaller subproblems, 
solve each recursively, and then meld the two partial 
solutions into one solution for the full problem. 

 When merging takes less time than solving the two 
subproblems, we get an efficient algorithm. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

11 

Lecture slide courtesy of Prof. 
Steven Skiena  



MATRIX MULTIPLICATION (BRUTE FORCE) 

http://www.aw-bc.com/info/levitin http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

12 

multiplication: Θ(n3)  addition: Θ(n3)                

2.5.4 Matrix Multiplication 

algorithm is O(xyz) 



MATRIX MULTIPLICATION  
(DIVIDE-CONQUER RECURSIVE ALGORITHM)  

http://www.aw-bc.com/info/levitin http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

13 

 

 

 

 

 

 

 









++
++

=

















=









1111011010110010

1101010010010000

1110

0100

1110

0100

1110

0100

****
****

*

BABABABA
BABABABA

BB
BB

AA
AA

CC
CC

A, B: n by n matrices; 
Aij, Bij: n/2 by n/2 matrices, where i, j ∈ {0, 1} 

recurrence relations: 

multiplication: M(n) = Θ(n3) 

addition: A(n) = Θ(n3)         



STRASSEN’S MATRIX MULTIPLICATION 

http://www.aw-bc.com/info/levitin http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

14 









+−++

++−+
=

















=









623142

537541

1110

0100

1110

0100

1110

0100 *

MMMMMM
MMMMMM

BB
BB

AA
AA

CC
CC

M1=(A00+A11)*(B00+B11) 
M2=(A10+A11)*B00 
M3=A00*(B01-B11) 
M4=A11*(B10-B00) 
M5=(A00+A01)*B11 
M6=(A10-A00)*(B00+B01) 
M7=(A01-A11)*(B10+B11) 
 

For matrices of size N = 2n , let f(n) be the 
number of operations for a 2n × 2n matrix. 
Recursive formula for Strassen algorithm:  
T(n) = 7T(n−1) + O(4n) 



RECURRENCE RELATIONS 

 Many divide-and-conquer algorithms have time 
complexities that are naturally modeled by recurrence 
relations. 

 Recurrence Relation is an equation that is defined in 
terms of itself.  
 Example: The Fibonacci numbers are described by the 

recurrence relation Fn = Fn−1+Fn−2 

 Any polynomial can be represented by a recurrence  
         linear function: an = an−1 + 1, a1 = 1 → an = n 

             exponential: an = 2an−1, a1 = 1 → an = 2n−1 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

15 

Lecture slide courtesy of Prof. 
Steven Skiena  



DIVIDE-AND-CONQUER RECURRENCES 

Divide-and-conquer algorithms tend to break a given problem into 
some number of smaller pieces (say a), each of which is of size 
n/b. Further, they spend f(n) time to combine these subproblem 
solutions into a complete result.  
 
Let T(n) denote the worst-case time the algorithm takes to solve a 
problem of size n. Then T(n) is given by the following recurrence 
relation: 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

16 

T(n) = aT (n/b) + f(n) 

Lecture slide courtesy of Prof. 
Steven Skiena  



RECURRENCE : MERGESORT  

The running time behavior of mergesort is governed by 
the recurrence 

T(n) = 2T(n/2) + O(n),  
 since the algorithm divides the data into  equal-

sized halves and  
 then spends linear time merging the halves after 

they are sorted.  
 

In fact, this recurrence evaluates to T(n) = O(n lg n), just 
as we got by our previous analysis. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

17 

Lecture slide courtesy of Prof. 
Steven Skiena  



RECURRENCE: BINARY SEARCH 

The running time behavior of binary search is governed b
y the recurrence  

T(n) = T(n/2) + O(1),  
since at each step we spend constant time to reduce the 
problem to an instance half its size.  
 
In fact, this recurrence evaluates to T(n) = O(lg n), just as 
we got by our previous analysis. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

18 

Lecture slide courtesy of Prof. 
Steven Skiena  



FAST HEAP CONSTRUCTION 

 Fast Heap Construction reduces to the recurrence 
relation  

T(n) = 2T(n/2) + O(lg n).  
 Since the bubble down method of heap construction 

built an n-element heap by constructing two n/2 
element heaps and then merging them with the root in 
logarithmic time.  
 

 In fact, this recurrence evaluates to T(n) = O(n), just as 
we got by our previous analysis. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

19 

Lecture slide courtesy of Prof. 
Steven Skiena  



MASTER THEOREM 

Divide-and-conquer recurrences of the form  
T(n) = aT (n/b) + f(n)  

solutions typically fall into one of three distinct cases: 
1. If f(n) = 𝑂(𝑛log𝑏 𝑎−𝜖) for some constant  > 0,               

then T(n) = 𝜃(𝑛log𝑏 𝑎). 
 heap construction and matrix multiplication 

2. If f(n) = 𝜃(𝑛log𝑏 𝑎), then T(n) = 𝜃(𝑛log𝑏 𝑎lg𝑛). 
 mergesort and binary search 

3. If f(n) = Ω(𝑛log𝑏 𝑎+𝜖) for some constant 𝜖 > 0, and if 
af(n/b) ≤ cf(n) for some c < 1, then T(n) = 𝜃(𝑓 𝑛 )  
 generally arises for clumsier algorithms, where the cost of 

combining the subproblems dominates everything. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

20 

Lecture slide courtesy of Prof. 
Steven Skiena  



 Case 1 holds for heap construction and matrix multipli
cation, while 

 Case 2 holds mergesort and binary search.  
 Case 3 generally arises for clumsier algorithms, where 

the cost of combining the subproblems dominates eve
rything. 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

21 

Lecture slide courtesy of Prof. 
Steven Skiena  



http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

22 

Recursion Tree associated with a typical T(n) = aT (n/b)+ f(n) 
divide-and-conquer algorithm 

logba 

Each subproblem of 
size k takes O(f(k)) 
time to deal with 
internally, between 
partitioning and 
merging. 

Lecture slide courtesy of Prof. 
Steven Skiena  



The three cases of the master theorem correspond to three 
different costs which might be dominant as a function of a, b, and 
f(n) (compare 𝑛log𝑏 𝑎 vs f(n)) . 
 
 Case 1: Too many leaves (𝑛log𝑏 𝑎 is polynomially larger) 

 If the number of leaf nodes outweighs the sum of the internal evaluation 
cost, the total running time is O(𝑛log𝑏 𝑎). 

 Case 2: Equal work per level (𝑛log𝑏 𝑎 and f(n) are same in size) 
 As we move down the tree, each problem gets smaller but there are 

more of them to solve. If the sum of the internal evaluation costs at each 
level are equal, the total running time is the cost per level (𝑛log𝑏 𝑎) times 
the number of levels (log𝑏 𝑎), for a total running time of O(𝑛log𝑏 𝑎lg𝑛). 

 Case 3: Too expensive a root  (f(n) is polynomially larger) 
 If the internal evaluation costs grow rapidly enough with n, then the cost 

of the root evaluation may dominate. If so, the the total running time is 
O(f(n)). 

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

23 

Lecture slide courtesy of Prof. 
Steven Skiena  


	Lec07 Sorting III: �MergeSort – Sorting Divide-and-conquer
	Problem of the Day 
	Mergesort
	Mergesort Implementation
	Mergesort Animation
	Merging Sorted Lists
	Buffering
	Slide Number 8
	External Sorting
	breaking problems down into smaller problems
	Divide and Conquer
	Matrix multiplication (brute force)
	Matrix multiplication �(divide-conquer recursive algorithm) 
	Strassen’s matrix multiplication
	Recurrence Relations
	Divide-and-Conquer Recurrences
	Recurrence : Mergesort 
	Recurrence: Binary Search
	Fast Heap Construction
	Master Theorem
	Slide Number 21
	Slide Number 22
	Slide Number 23

